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Abstract. Connectivity in remote areas continues to be a major chal-
lenge despite of the evolution of cellular technology. 5th Generation (5G)
technology can address remote connectivity if lower carrier frequencies
are available, which calls for shared use of spectrum to enable cost-
efficient license-free solution. Therefore, spectrum sensing has its own
role in future wireless systems such as mobile 5G networks and Internet
of Things (IoT) to complement database approach in dynamic spectrum
utilization. In this paper, a windowing based (WIBA) blind spectrum
sensing method is studied. Its performance is compared to the localiza-
tion algorithm based on double-thresholding (LAD) detection method.
Both the methods are based on energy detection and can be used in
any frequency range as well as for detecting all kind of relatively nar-
rowband signals. Probability of detection, relative mean square error for
the bandwidth estimation, and the number of detected signals were eval-
uated, including multipath and multi-signal scenarios. The simulation
results show that the WIBA method is very suitable for future 5G appli-
cations especially for remote area connectivity, due to its good detection
performance in low signal-to-noise ratio (SNR) areas with low complex-
ity and reasonable costs. The simulation results also show importance
of the used detection window selection since too wide detection window
degrades the detection performance of the WIBA method.

Keywords: signal detection · spectrum utilization · 5G system · over-
lapping · sampling.

1 Introduction

5th Generation (5G) technology can be considered to be an extensive revolution
of the mobile communication systems that brings a whole new era to connec-
tivity. Near-future 5G system brings spectrum efficiency, scalability, intelligence,
low latency and advanced security features. It enables Internet of Things (IoT)
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[1] which connects massive number of objects like computers, services and de-
vices like sensors and mobile phones together. At the same time, it has potential
to serve currently underserved remote areas. As the amount of disposable com-
munication radio channels is limited, the effectiveness of the use of radio spec-
trum must be optimized. 5G system includes the use of higher frequencies (e.g.
3.5 and 28 GHz) as well as aggregated use of licensed and unlicensed bands.
Traditionally, in cellular systems wireless spectrum is made available through
an inflexible spectrum allocation, where frequency bands are permanently allo-
cated to some licensed (primary) users (PU). 5G-RANGE project [13] proposes
that a cost-efficient remote and rural area connection can be enabled by using
5G cognitive radio (CR) networks where unlicensed (secondary) users (SU) are
able to use temporarily unused frequency bands (i.e. frequency holes) in licensed
frequency channels leading to increased spectrum efficiency. The main require-
ment for shared frequency use is that the licensed user must not be interfered by
SU(s). Two high-level approaches are used for that purpose: database and spec-
trum sensing. As databases collect and store information about licensed users
such as TV and program making and special events (PMSE) signals (e.g. wireless
microphone signals) in some geographical area, spectrum sensing can be used
to find out (detect) which frequency bands are available for a transmission by
observing the radio environment.

In 5G scenarios, spectrum sensing can be used to enhance the traditional
database approach by bringing more accurate information about the actual spec-
trum usage and thus increase the potential and reliability of shared spectrum
access. 5G communication application areas for spectrum sensing include, e.g.,
mobile cellular systems [2], device-to-device (D2D) communication [3], and IoT
[4]. Sensing can be used when the information in database or from geolocation
method (like GPS) is inaccurate, or there is no connection to the database at all,
like in disaster-related events or in remote areas. In addition, secondary users
(SU) may use sensing when defining are there other SUs present [5]. 5G can be
tailored to be used for remote area connectivity where the use of TV white spaces
(TVWS), i.e., Very High Frequency (VHF) and Ultra High Frequency (UHF)
bands, with database can be enhanced with spectrum sensing. In rural and re-
mote areas the challenge is that distances are long and, thus, signal-to-noise ratio
(SNR) levels are low.

As 5G systems will include a huge number of devices, especially in IoT sce-
narios, design complexity and costs should stay in a reasonable level. Energy
detection (ED) is a cost-efficient sensing technique that is recommended to be
used especially in cooperative sensing, where users collaborate and exchange
their sensing information [6]. 5G cooperative sensing based on ED methods has
been studied, for example, in [7]. The problem is that conventional ED does not
perform well at low SNR values.

In this paper, a novel ED-based spectrum sensing method is studied, namely
the windowing based (WIBA) signal detection method [8]. This recently pro-
posed method is an efficient blind spectrum sensing method that is able to itera-
tively estimate the noise level by using adaptive thresholds. The WIBA method
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uses overlapping blocks in spectrum sampling to increase its detection perfor-
mance. In [8], where the WIBA method was proposed, only the probability of
detection and the number of detected signals in one-signal case were studied.
In this paper, the method is studied more comprehensively. The effect of the
detection window length M to the detection performance in different channel
situations is studied. Relative mean squared error (RMSE) for the bandwidth
estimation is considered, as well as detection probability over multipath chan-
nels. In addition, multi-signal situation is considered. The results are compared
with the ones achieved by the widely studied localization algorithm based on
double-thresholding (LAD) method [9], which has been found to outperform
conventional ED methods [10].

2 System model

Connectivity in rural and remote areas is a true challenge because most of today’s
technologies aim for coverage below 10 km radius. In a sparsely populated area,
a 10 km cell will only cover a small number of subscribers, resulting in very high
fees per user. Another problem for realizing remote connectivity is the high cost
of the spectrum licenses, which increases the investments to deploy a mobile
network and hinders its economic feasibility. 5G in remote areas requires the use
of lower frequency bands to reach wider area coverage, e.g., 50-100 km. Therefore,
the upcoming 5G millimeterwave bands are not the first target for remote area
connectivity. Instead, the use of so called TV white spaces has the potential
to be used for 5G networks, to provide cost-efficient solution in remote areas,
after its main boom over a decade ago. Administrations have developed rules for
the use of TVWS and selected geolocation database approach as the means to
protect the incumbent TV broadcasting usage, see e.g. [11]. In these approaches,
devices wishing to access the TVWS need to inquire a database and report their
location to be allowed to use a channel such that the incumbents are protected.
The Federal Communications Commission (FCC) defined Citizen Broadband
Radio Service (CBRS) for shared commercial use of the 3.5 GHz band with the
incumbent military radars and fixed satellite stations [12]. CBRS system includes
the use of spectrum sensing in conjunction with database to avoid unlicensed
users interference to military radar systems. The use of spectrum sensing to
complement database approach in TVWS has been studied to some extent but
has not been adopted by other system so far.

The opportunistic use of the TVWS demands protection of the incumbents.
While several standards that employ cognitive radio approaches rely on geolo-
cation database to inform the base station (BS) about the spectrum opportu-
nities in a given region, the spectrum sensing can be used in conjunction with
the database approach to enhance the reliability and increase shared spectrum
access opportunities. Database information may be inaccurate due to software
based propagation estimation which can lead to erroneous results in varying ter-
rain shapes that are present in remote area scenarios. Spectrum sensing will be
used also to detect other SUs at the same region. In addition, there are situ-
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Fig. 1. System model for spectrum sensing to complement database approach.

ations where the use of spectrum sensing can provide benefits such as in the
presence of unauthorized transmissions (e.g., pirate TV transmissions). Figure 1
summarizes the high-level system model for combined spectrum sensing and
database approach. In the 5G-RANGE project [13], this approach is proposed
to be a feasible solutions for remote area system which targets to dynamically
exploit free spectrum holes available at TV bands. Next, we introduce the de-
veloped spectrum sensing method, which is considered as a one feasible option
for 5G-RANGE system, in detail.

3 Spectrum Sensing

Here will be described the WIBA method which is considered to be used for
spectrum sensing in 5G-RANGE system. In the performance evaluation, a well-
known LAD method is used as a point of comparison and will be introduced
shortly in this section.

Both the methods are blind spectrum sensing algorithms that are able to
iteratively estimate the noise level by using adaptive thresholds. They can be
applied to a wide set of situations. The signals to be detected must be narrow-
band with respect to the analyzed bandwidth (BW). The narrower the signal,
the better the method perform, hence it is reasonable to make an assumption
that the BW has to be at most 50% of the analyzed BW [8, 10]. According to
[10], as the signal’s BW gets wider, SNR must be higher in order to achieve
an acceptable sensing performance. Note, that the methods can be used in any
frequency band (kHz-GHz).
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Table 1. Threshold parameter values T for different PFA and M values.

PFA M = 1 M = 4 M = 10 M = 100

0.1 2.303 1.670 1.512 1.130
0.01 4.605 2.511 1.878 1.247
0.001 6.908 3.266 2.266 1.338

The signal detection is based on the estimated noise level, therefore infor-
mation about the noise level or present signal(s) are not needed. The noise is
assumed to be a white Gaussian process. Even though the assumption is that
the noise is Gaussian, it has been shown that the signal can be found even if
the noise is not purely Gaussian [10]. A detection threshold is used to divide re-
ceived samples into two sets: one set contains estimated noise-only samples, and
another set contains estimated signal samples and noise. Threshold selection is
addressed by the constant false alarm rate (CFAR) principle, which means that
the used detection threshold parameter is calculated a priori using a pre-selected
desired false alarm rate PFA and the statistical properties of the noise [14, 15].

In this paper, it is assumed that the samples xi, taken in the frequency-
domain are zero mean, independent Gaussian distributed (i.i.d.) complex random
variables. The energy of sample xi is yi = |xi|2, which follows a chi-squared
distribution. By assuming a chi-squared distributed variables with 2M degrees
of freedom, the threshold parameter T can be found by solving [16–18]

PFA = e−TM
M−1∑
k=0

1

k!
(TM)k, (1)

where PFA is the pre-selected false alarm rate. Note that (1) does not depend
on the noise variance. When M = 1, variables follow chi-squared distribution
with two degrees of freedom, and 1 leads to a threshold parameter

T = − ln(PFA). (2)

Example threshold parameter values T for different values of PFA and M are
presented in Table 1. For example, when M = 1 and PFA = 0.01, then T = 4.605.
Note that the threshold parameter is constant for specific M and PFA, and can
be calculated beforehand.

3.1 WIBA Method

In the WIBA method, overlapping is used in spectrum sampling. Assume that N
energy samples y are obtained during the channel sensing. The observed samples
are divided into L overlapping blocks (i.e. detection windows) with length M .
An example case, where the degree of overlapping between two blocks is 50%, is
illustrated in Figure 2. Samples in each block are summed up among themselves,
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Fig. 2. Illustration of 50% overlapping when there are L overlapping blocks and the
length of one block is M .

so each block Yi(l), l = 1, · · · ,M consists of samples kM
2 + 1, · · · , kM2 + M ,

k = 0, · · · , L− 1. The signal detection threshold is [8]

Th = T
1

L

L∑
i=1

Zi, (3)

where T comes from (1) and Zi is the total energy in ith block, i.e., Zi =∑M
l=1 Yi(l) when i = 1, 2, ..., L.

3.2 The LAD Method

The LAD method [9] [10] utilizes iterative forward consecutive mean excision
(FCME) threshold setting process. Therein, the threshold is Th = Ty, where
threshold parameter T comes from (2) and y is the mean of energy samples.
Threshold setting procedure is described more detailed, e.g., in [17]. After cal-
culating two FCME thresholds, the upper and lower ones, using two different
threshold parameters, the LAD method uses clustering to group adjacent sam-
ples assumed to be from the same signal. The LAD method clusters together
adjacent samples above the lower threshold. The cluster is accepted to be caused
by a signal if at least one of the samples is also above the upper threshold. The
performance of the LAD method can be improved using an ACC parameter that
allows p (usually p = 3) samples to be below the lower threshold between two
accepted clusters [10].

4 Simulation Results

In the computer simulations, the WIBA method was studied and compared to
the well-studied LAD method which has been found to outperform general ED
methods [9], [10], [17]. In this work the effect of the detection window length M
to the detection performance in different channel situations was studied. RMSE
for the bandwidth estimation was evaluated, as well as detection probability
over multipath channels in multi-signal situations. It was assumed an AWGN
channel and the measured signal, occupying 5 − 30% of the channel BW, was
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Table 2. Optimal detection window lengths M for signals with different bandwidths
(samples / %].

Detection window length M signal BW samples / %

10 samples BW 10 samples / 1%
40 samples BW 40 samples / 4%
52 samples BW 52 samples / 5%
102 samples BW 102 samples /10%
204 samples BW 204 samples / 20%
306 samples BW 306 samples / 30%

based on BPSK modulation. The BPSK signal was band-limited by a RC filter
with a roll-of factor of 0.22. The number of frequency domain samples N = 1024.
SNR was defined as a total signal power per total noise power, i.e., over N
samples. The probability of detection Pd was defined so that the signal is defined
to be detected if threshold is crossed at its center frequency. The amount of
Monte Carlo iterations were 1000. The WIBA method used PFA = 0.01, 50%
overlapping, M varied, and L ≈ 2NM . The used threshold parameter T depend on
M as shown in Table 1. Detection window length M was defined to be optimal
when it equals to the signal bandwidth. Table 2 shows optimal detection window
lengths M for signals with different bandwidths. For example, window length
M = 52 samples is optimal for signal with 5% BW (= 52 samples). The LAD
threshold parameters were 13.81 (PFA = 10−6) and 2.66 (PFA = 0.07) [10], and
M = 1 (=no windowing). An adjacent version of the LAD method with ACC
parameter p = 3 was used.

4.1 One Signal Scenario

In [8], an initial performance evaluation of WIBA was done by studying the
probability of detection and the number of detected signals in one-signal case.
Based on those results it was concluded that a very long window is preferred
instead of the very short one when considering performance in terms of Pd.

In this paper, BW estimation accuracy is studied. Relative mean square error
(or root mean squared relative error, RMSRE) of BW estimation is defined to
be

RMSEγ =

√√√√ 1

N

N∑
i=1

(
γi − γ̂i
γi

)2

, (4)

where γi is the BW and γ̂i is the estimated BW.
Table 3 shows the results when there is one signal with 10, 20 or 30% BW,

and M = 52, 102, 204 and 306. Results for optimal window lengths are in bold.
For example, when the signal BW is 10% and M = 102, RMSE is 100% for
WIBA method. On the other hand, RMSE for LAD ACC method is only 8%.
It can be noticed that using WIBA method, too long window degrades the BW
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Table 3. Relative Mean Square Error (RMSE) [%] in the one signal scenario for 10,
20, and 30% bandwidth when M = 52, 102, 204 and 306.

WIBA, M = LAD ACC
BW % (samples) 52 102 204 306

BW 10% (102) 58 100 300 500 8
BW 20% (204) 15 50 100 198 6
BW 30% (306) 7 1.5 33 100 13

estimation accuracy because in that case, the detected signal does not cover the
whole window.

In Figure 3, RMSE vs. SNR is presented for a signal occupying 10% of the
overall BW (corresponding to the first line in Table 3). Figure 3 also shows at
which SNR values each method achieve Pd = 0.9. Note that the WIBA method
has Pd = 0.9 when −13 dB ≤ SNR ≤ −11 dB, depending on the M , while the
LAD ACC method achieves Pd = 0.9 when SNR = 5 dB. That is, the perfor-
mance difference is 16− 18 dB. Because the WIBA method is able to operate in
low SNR region (SNR < −10 dB), it is feasible for remote area scenarios, where
long distance propagation makes received signal’s strength weak. However, the
LAD method has better BW estimation accuracy. It can be seen that, for the
WIBA method, RMSE rises with the SNR when M is large. This is because the
fact that as the detection performance of the LAD method depends on the band-
width of the detected signal, the detection performance of the WIBA method
depends also on the length of the used detection window.

4.2 Multi-Signal Situation

In this scenario, it is assumed that two RC-BPSK signals are present in the
channel. The results are presented in Table 4, considering that there are one or
two signals occupying 10% and 5% of the channel BW, respectively. For example,
when M = 102 and there are two signals with BWs corresponding to 10% and
5%, the performance of the WIBA method is at most 1 dB worse when compared
to the one signal scenario. Optimal values for M are 102 for 10% BW signal and
52 for 5% BW signal. Note that M does not effect the LAD ACC performance
because there is no windowing. Based on Table 4, multi-signal situation has only
slight effect to the performance of the methods.

In Figure 4, the number of detected signals vs. SNR is presented. There
are two signals with 5% and 10% BWs, and M = 10, 40, 52, 102 and 204. This
figure also shows at which SNR each approach achieve Pd = 0.9. For example,
when M = 52, Pd = 0.9 when SNR = −12 dB. The window is very short when
M = 10 and M = 40. Optimal window lengths are M = 52 for 5% BW signal
and M = 102 for 10% BW signal. When M = 40, 52 and 102, the WIBA method
estimated the number of signals correctly when Pd = 0.9. It can be seen that too
short window (M = 10) estimates the number of detected signals correctly only
when SNR is larger: when Pd = 0.9 (SNR = −5 dB), the number of detected
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Fig. 3. RMSE vs. SNR results for the case when bandwidth of the signal is 10%.
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Table 4. Required SNR [dB] for Pd = 0.9 when there is one or two signals present.

Window length # of Signal WIBA LAD ACC
M signals BW method method

Pd = 0.9 Pd = 0.9

M = 102 Two 10% −13 dB 3 dB
5% −13 dB −1 dB

M = 102 One 10% −13 dB 1 dB
5% −14 dB −2 dB

M = 52 Two 10% −12 dB 3 dB
5% −14 dB −1 dB

M = 40 Two 10% −11 dB 3 dB
5% −14 dB −1 dB

M = 10 Two 10% −5 dB 3 dB
5% −10 dB −1 dB

M = 10 One 10% −5 dB 1 dB
5% −11 dB −2 dB

signals is 2.7, and achieves 2 when SNR = 1 dB. This corresponds the behaviour
of the LAD ACC method. When using the LAD ACC method, the number of
detected signals is about 2.2 at its best. As can be seen from Figure 5, the BW
estimation accuracy of the WIBA method may suffer if the window is too wide
(M = 204, for instance). Large M means that closely spaced signals can be seen
as one signal by the sensing technique.

4.3 Scenario with Multipath Channel

Multipath channel can be a very challenging environment for spectrum sensing
since it includes typically LOS and scattered components (Rician channel). Let
ai, i = 1, · · · ,K be the average amplitude of each signal component. The total
energy of signal components is E =

∑K
i=1 a

2
i .

In the simulations, there were LOS component and two scattered compo-
nents (K = 3). The first scattered component had energy 3 dB below the LOS
component, while the second scattered component had energy 6 dB below the
LOS component. Used delays were 2, 20 and 100 samples for the first scattered
component, and 10, 40, 70 and 100 for the second scattered component.

In Figure 6, detection probability vs. SNR in multipath channel case is con-
sidered. Signal BW is 10%, M = 102 (optimal), and there are two multipath
components with different delays in samples. It can be seen that the multipath
enhances the detection performance by 1−2 dB, regardless of the sample delays.
This is because constructive summation increases the energy of the signal, and
this affects the detection when using ED based methods. Here, SNR is defined
to include only LOS energy. If SNR includes energy of LOS and scattered com-
ponents, the performance is 1− 2 dB worse, and the performance equals to the
non-multipath performance.
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Fig. 4. Number of detected signals vs. SNR results. There are two signals with 10%
and 5% bandwidths to be detected.

Fig. 5. One snapshot of two simulated signals with 5% and 10% bandwidth. M = 52
(optimal for 5% BW signal), 102 (optimal for 10% BW signal), and 204.
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Fig. 6. Probability of detection vs. SNR in multipath channel case. Signal bandwidth
is 10% and M = 102. SNR is calculated for LOS component.

Fig. 7. RMSE vs. SNR results in the presence of multipath components. BW of the
signal is 10% and M = 102.
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Next, the bandwidth estimation accuracy is studied. In Figure 7, RMSE
vs. SNR is presented in the presence of multipath. Here, signal BW is 10%
of the channel bandwidth and M = 102 (optimal). This figure also shows the
minimum SNR values when the Pd ≥ 0.9 is achieved. For example, when there
is no multipath and the WIBA method is used, a SNR = −13 dB is required to
achieve Pd = 0.9. As a comparison, the LAD ACC method requires SNR = 1
dB to achieve Pd = 0.9. The difference between the WIBA and the LAD ACC
methods is 14 dB. However, it can be noticed that the LAD method has better
BW estimation accuracy. The multipath has about 1− 3 dB effect to the RMSE
performance.

5 Conclusions

Remote area connectivity problem can be solved by using lower frequencies and
making shared license-free spectrum access possible to enable cost-efficient solu-
tion for low user density areas. Traditional database approach can be enhanced
by including spectrum sensing to more accurately characterize the current spec-
trum usage in order to identify more opportunities for shared spectrum access.
In this work, the performance of a spectrum windowing based energy detection
method WIBA was studied, and comparison was made with the well-studied
LAD ACC method. Probability of detection, relative mean square error for the
bandwidth estimation, and the number of detected signals were evaluated. From
the simulations results, one can conclude that the WIBA method has better de-
tection probability than the LAD ACC method. The WIBA method is able to
operate with SNR below −10 dB, depending on the signal and window lengths.
The WIBA method is suitable for 5G applications especially for rural and remote
areas due to its good detection performance in low SNR areas. The effect of the
detection window length to the detection performance in different channel sit-
uations was also studied. Too long detection window degrades the performance
of the WIBA method. The LAD ACC method outperforms the WIBA method
in terms of bandwidth estimation accuracy. Therefore it can be concluded that
if signal detection at a given frequency band is enough for the system, WIBA
method is preferred. If BW estimation accuracy is important, LAD ACC could
be used after WIBA method to improve the BW estimation.
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