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Abstract—Networks are designed with functionality, security,
performance, and cost in mind. Tools exist to check or optimize
individual properties of a network. These properties may conflict,
so it is not always possible to run these tools in series to find a
configuration that meets all requirements. This leads to network
administrators manually searching for a configuration.

This need not be the case. In this paper, we introduce a
layered framework for optimizing network configuration for
functional and security requirements. Our framework is able
to output configurations that meet reachability, bandwidth, and
risk requirements. Each layer of our framework optimizes over a
single property. A lower layer can constrain the search problem
of a higher layer allowing the framework to converge on a joint
solution.

Our approach has the most promise for software-defined
networks which can easily reconfigure their logical configuration.
Our approach is validated with experiments over the fat tree
topology, which is commonly used in data center networks.
Search terminates in between 1-5 minutes in experiments. Thus,
our solution can propose new configurations for short term events
such as defending against a focused network attack.

Index Terms—network security, reachability, risk assessment,
optimization, software defined networks.

I. INTRODUCTION

Network configuration is a crucial task in any enterprise.
Administrators balance functionality, performance, security,
cost and other industry specific requirements. The resulting
configuration is subject to periodic analysis and redesign due
to red team recommendations, emerging threats, and changing
priorities. Tools assist administrators with this complex task:
existing work assesses network reachability [1], wireless con-
flicts [2], network security risk [3], [4], and load balancing [5],
[6]. These tools assess the quality of a potential configuration.
Unfortunately, current tools suffer from three limitations:

1) Most tools assess whether a single property is satisfied,
making no recommendation if the property is not satis-
fied. This leaves IT personnel with the task of deciding
how to change the network.

2) Networks are assessed with respect to an individual goal
at a time. This means a change to satisfy a single prop-
erty may break another property. There is no guidance
for personnel on how to design a network that meets the
complex and often conflicting network requirements.

3) These tools do not react to changing external information
such as the publication of a new security vulnerability.

a) Our Contribution: This work introduces a new op-
timization framework that finds network configurations that
satisfy multiple (conflicting) requirements. We focus on data
center networks (DCN) that use software defined networking
(SDN). Background on these settings is in Section II. Our
framework is called DOCSDN (Dynamic and Optimal Con-
figuration of Software-Defined Networks).

DOCSDN searches for network configurations that simulta-
neously satisfy multiple properties. DOCSDN is organized into
layers that consider different properties. The core of DOCSDN
is a multistage optimization that decouples search on “orthog-
onal” concerns. The majority of the technical work is to effec-
tively separate concerns so the optimization problems remain
tractable. Our framework is designed to continually produce
network configurations based on changing requirements and
threats. It frees IT personnel from the complex question of how
to satisfy multiple requirements and can quickly incorporate
new threat information.

DOCSDN focuses on achieving functional requirements
(such as network reachability and flow satisfaction) and limit-
ing security risk (such as isolating high risk nodes and nodes
under denial of service attack). Naturally, other layers such
as performance or cost can be incorporated. The search for a
good configuration could be organized in many ways. State-
of-the-art approaches assess different properties in isolation,
frustrating search for a solution that satisfies all requirements.
Ideally, a framework should search for a configuration that
simultaneously satisfies all requirements. This extreme is
unlikely to be tractable on all but the smallest networks.
DOCSDN mediates between these approaches separating the
functional and security search problems but introducing a
feedback loop between the two search problems based on cuts.

In the proposed organization the functional layer is “above”
the security layer. Through the feedback loop, the security
layer describes a problematic part of the network to the
functional layer. The functional layer then refines its model
and searches for a functional configuration that satisfies an
additional constraint. This has the effect of blocking the
problematic part of the configuration. Currently, the feedback
signal is a pair of nodes that should not be proximate in
the network. After multiple iterations the two layers jointly
produce a solution that optimizes the SDN configuration both
with respect to functionality and security risks.

DOCSDN provides solutions of improving quality before
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the final solution. Thus, the network can be reconfigured once
the objective improves on the current configuration by a large
enough amount (to justify the cost/impact of reconfiguration).

While the underlying optimization problems are NP-hard,
optimization technology has seen tremendous advances in
performance during the past few decades. Since 1991, math-
ematical programming solvers have delivered speedups of 11
orders of magnitude [7], [8]. The advent of hybrid techniques
such as Benders decomposition [9]–[12] and column genera-
tion [13]–[15] (aka, Dantzig-Wolfe decomposition [16]) made
it possible to harness huge problems thanks to on-demand
generation of macroscopic variables and the dynamic addi-
tion of critical constraints. Large Neighborhood Search [17]
further contributed to delivering high-quality solution within
constrained time budgets.

These techniques are beginning to see adoption in network
security. Yu et al. recently applied stochastic optimization with
Bender’s decomposition to assess network risk under uncer-
tainty for IoT devices [4]. They used Bender’s decomposition
on a scenario-based stochastic optimization model to produce a
parent problem that chooses a deployment plan while children
are concerned with choosing the optimal nodes to serve the
demands in individual scenarios. In comparison, our approach
addresses both functional and security requirements. It relies
on Bender’s cuts from the security layer (child) to rule
out vulnerable functional plans whose routing paths fail to
adequately minimize risks and maximize served clients. We
now briefly describe the framework (a formal description is in
Section III) and present an illustrative example.

b) Overview of DOCSDN: Figure 1 presents an
overview of the framework. The functional layer takes as input
a Functional Model that describes the network including the
physical topology, link speeds, the allowable communication
patterns and the demand requirements. Network reachability
begins with a priming procedure that generates the k-least
cost paths to the optimizer for each source/destination pair
in the demand requirements. The objective for the functional
layer is to find a logical topology (a collection of routed
paths) that meets all demand requirements while favoring
shorter length routing paths and load balancing. The program
is formulated as quadratic binary program (QBP). The solution
as determined by the functional layer is passed to the security
layer.

The output of the functional layer and a security model are
the input for the security layer. The current configuration is
fed to a module that uses risk assessments for the individual
network devices (obtained for example using a vulnerability
database) to assess the overall risk of the entire configuration.
In our current implementation this risk calculation is based on
a simple risk propagation model where a path’s risk is based
on the risk of nodes on the path and close to the source and
sink. The security layer can deploy firewalls and deep packet
inspection as network defenses. Since these mechanisms affect
route capacity, the security layer has a dual objective function:
1) maximizing the functional objective and 2) minimizing
security risk. The security objective is formulated as a mixed
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Fig. 1. DOCSDN Framework. A layered decomposition that breaks
down configuration synthesis into functional and security layers.

integer program (MIP). When the security search completes, it
proposes nodes to the functional layer that should be separated.
As an example, a high value node with low risk may be
placed in a different (virtual) LAN than a high risk node.
These Benders cuts are designed to entice a better logical
topology from a subsequent iteration in the functional layer.
This feedback loop between the two layers can iterate multiple
times. When no further cuts are available, the overall output
is a set of configuration rules.

c) An example configuration: This section describes an
application of our framework to automatically respond to a
distributed denial of service (DDoS) attack. Current DDoS
attacks demonstrate peak volume of 1 Tbps [18]. Many DDoS
defense techniques require changes to the network behavior
by rate limiting, filtering, or reconfiguring the network (see
[19]–[23]). Recent techniques [24] leverage SDNs to react to
DDoS attacks in a dynamic and flexible manner. We show
how such a response would work in our framework using a
toy network illustrated in Figure 2. A more realistic network
and the framework’s response are described in Section V. We
stress that DDoS attacks are often short in timescale making
human diagnosis and reaction costly or impractical.

Consider a focused DDoS attack against a number of
services in an enterprise but not the entirety of its publicly
accessible address space. (The Great Cannon’s attack against
GreatFire targeted two specific Github repositories [25].) We
assume a service hosted by H1 is targeted, while services on
H2, H3 and H4 are not.



Fig. 2. Toy network example with a single gateway device G1, two
intermediate switches S1 and S2 and four hosts. We assume the switches
are physically connected to all hosts.

Recall, the functional layer establishes a logical topology
(forwarding rules) while the security layer adds network
defenses (packet inspection modules and firewall rules). We
elide how the attack is detected and assume it increases the
risk score for H1 in the security model.
The first iteration The functional layer proposes a candidate
configuration where G1 routes all traffic intended for H1 and
H2 to S1 which then forwards the traffic and G1 routes traffic
intended for H3 and H4 to S2 which then forwards the traffic.
This is the first candidate solution presented to the security
layer.

Since H1 is high risk the security layer proposes a firewall
at S1 to block all port 80 traffic. This reduces risk at the cost of
blocking all traffic to H2. Of course, in real firewalls more fine-
grained rules are possible, this simplified example is meant
to illustrate a case where collateral damage to the functional
objective is necessary to achieve the security objective. Since
traffic is being blocked to a node with low risk, the security
layer asks the functional layer to separate H1 and H2 so H2

does not suffer.
Repeated iterations The functional layer now has a constraint
that H1 and H2 should not be collocated in the network.
As such, it proposes a new configuration with H1 and H3

under S1 and H2 and H4 under S2. This is then sent to the
security layer. The security layer makes a similar assessment
and proposes a firewall rule at S2, finds this recommendation
hurts functionality and requests separation of H1 and H3.

This process repeats with the functional layer proposing
to collocate H1 and H4. The security layer similarly asks
to separate H1 and H4. Finally, H1 is segregated from all
other nodes. This produces a configuration where H1 is the
only child of S1. Note that having H2, H3 and H4 under a
single switch may hurt performance but the effect is less than
blocking traffic to one of the nodes entirely. DOCSDN can
then output the candidate solution as high level SDN fragments
(using a high-level language like Pyretic [26]).
Recovery Importantly, when the DDoS abates, DOCSDN
automatically reruns with a changed risk for H1, outputting a
binary tree.
Organization The rest of the work is organized as follows:
Section II provides background on our application and dis-
cusses related work, Section III describes our framework and
accompanying optimization models, Section IV describes our
experimental setup, Section V evaluates the framework and

finally Section VI concludes.

II. BACKGROUND AND RELATED WORK

Data Center Networks (DCN) host, process and analyze data
in financial, entertainment, medical, government and military
sectors. The services provided by DCNs must be reliable,
accurate and timely. Services provided by DCNs (and the
corresponding traffic) are heterogeneous. The network must
adapt to changing priorities and requirements while protecting
from emerging threats. They scale to thousands of servers
linked through various interconnects. Protocols used for these
services are split roughly 60 percent web (HTTP/HTPS) and
40 percent file storage (SMB/AFS) [27]. The interdependence
of device configurations make modifying any single config-
uration difficult and possibly dangerous for network health.
A seemingly simple update can cause significant collateral
damage and unintended consequences.

Simultaneously, the network fabric is changing with the
advent of Software Defined Networking (SDN) [28]. SDNs are
flexible and programmable networks that can adapt to emer-
gent functional or performance requirements. Openflow [29]
is a common open source software stack. Researchers have
proposed high-level languages and compilers [26], [30]–[32]
that bridge the semantic gap between network administra-
tors and the configuration languages used by SDN devices.
These languages focus on compositional and parametric SDN
software modules that execute specific micro-functions (e.g.,
packet forwarding, dropping, routing, etc.). The use of a high
level language is prompted by a desire to be able to select,
instantiate and compose SDN modules with guarantees.

Our framework is intended to be modular and allow integra-
tion of prior work on evaluating network configurations. As
such there is a breadth of relevant work. Due to space con-
straints we focus on the most relevant works. In the conclusion
we elaborate on the characteristics needed to integrate a prior
assessment tool into our framework (see Section VI).

Measuring Network Risk Known threats against com-
puter systems are maintained by governments and industry.
Common Vulnerabilities and Exposures (CVE) is a publicly
available dictionary including an identifier and description of
known vulnerabilities [33], CVE does not provide a severity
score or priority ranking for vulnerabilities. The US National
Vulnerability Database (NVD) [34] is provided by the US
National Institute of Standards and Technology (NIST). The
NVD augments the CVE, adding severity scores and impact
ratings for vulnerabilities in the CVE.

There are many mechanisms for measuring the security risk
on a network [35]–[39]. Lippmann et al. present a network
security model which computes risk based on a list of the most
current threats [40]. This model implements a cycle of observe
network state, compute risk, prioritize risk, and mitigate the
risk.

This loop is often codified into an attack graph [3], [41],
[42]. Attack graphs try to model the most likely paths that
an attacker could use to penetrate a network. Attack Graphs
often leverage one or more of the aforementioned vulnerability



assessment tools as input, combined with a network topology
and device software configurations to generate the graph.
Current attack graph technologies provide recommendations
to network administrators that effectively remove edges from
the graph and trigger a re-evaluation of the utility for the
attacker. To the best of our knowledge, current practice does
not leverage network risk measurement into constraints used
for the generation of new configurations.

Network Reachability The expansion of SDN has aided
the applicability of formal verification to computer networks.
Prior to SDN, the lack of clear separation between the data and
control plain created an intractable problem when considering
a network of any scale. Bounded model checking using SAT
and SMT solvers [43], [44] can currently verify reachability
properties in networks with several thousands of nodes.

Configuration Search Constraint Programming (CP) was
introduced in the late 1980s [45] and is used for schedul-
ing [46], routing, and configuration problems. Large-scale
optimization problems are often decomposed including Ben-
ders [12] and Dantzig-Wolfe [16]. Soft constraints or La-
grangian relaxation are used for over-constrained problems or
when the problem is too computationally expensive. Stochastic
optimization techniques have been used for many applications
in resilience [47], [48] and the underlying methodologies
are a key part of this research. Prior work in configuration
management with constraint programming [49], [50] focused
on connectivity or security. We are not aware of any work that
balances these two objectives in a meaningful way.

III. IMPLEMENTATION

Figure 1 outlines the overall structure of the DOCSDN
framework. layer inter-connections as well as their internals.
The functional layer uses a mathematical optimization model
that is fed to a quadratic mixed Boolean programming (QBP)
solver alongside an initial set of least-cost paths to be consid-
ered to service the required flows. The security layer receives
the topology chosen by the functional layer and a security
model to solve, with a mixed-integer programming (MIP)
solver, the risk minimization problem. The output can result in
low-risk flows being blocked as a consequence of deploying
firewalls to mitigate high-risk flows. A result analysis module
then produces a set of equivalence classes that is sent back
to the functional layer to request the separation of specific
flows that should not share paths, with the goal of minimizing
the collateral damage to low-risk flows. These equivalence
classes generate additional constraints, known as Bender’s
cuts, that are added to the functional solver for a new iteration.
The remainder of this section describes the major modules in
Figure 1.

A. Functional Layer

The mathematical optimization model in the functional layer
is a quadratic mixed binary programming model. In constraint
programming the four main components are Inputs, Variables,
Constraints, and an Objective function. Inputs are below.
Inputs
N – the set of all network devices

E – the set of edges (pair of vertices) connecting network
devices
T – the set of types of traffic to be routed
F – the set of (s, t, T ) ∈ N ×N ×T tuples defining desired
traffic flows of type T from source node s to sink node t.
D(f) : F → R – the actual demand for each flow f ∈ F
C ⊆ 2N – a subset of sets of network devices
R ⊆ C × C – pairs (c1, c2) of equivalence classes that
segregate traffic from c1 to c2.
P – the set of all paths
P (e) : E → P – the set of all paths containing edge e
P (n) : N → P – the set of all paths containing node n
P (c) : C → P – the set of all paths containing a node in c
N(p) : P → C – the set of nodes appearing in path p
P (s, t) : N ×N → P – the set of all paths s→ t
cap(e) : E → R – gives the capacity of an edge e.

Variables
activep,T ∈ {0, 1}, – for every path p ∈ P and traffic type
T ∈ T , indicates whether path p carries traffic of type T
flowp,T ∈ R≥0 – for every path p ∈ P and traffic type T ∈ T ,
amount of flow of type T that is sent along path p
equivc,n ∈ {0, 1} – does node n ∈ N appear in an active path
together with a node in equivalence class c
sharec1,c2,n ∈ {0, 1} – indicates whether node n ∈ N appears
on any active path with nodes in classes c1, c2 ∈ C. Namely,

sharec1,c2,n ⇔ n ∈

 (
∪p∈P (c1):activep,∗N(p)

)
∩(

∪p∈P (c2):activep,∗N(p)
)


activep,∗ = 1 if there is a type T ∈ T where activep,T = 1
loadn ∈ R – the amount of flow that goes through node n
loadObj – the sum of squares of all loadn variables.

Constraints ∑
p∈P (e),T∈T

flowp,T ≤ cap(e), ∀e ∈ E (1)

∑
p∈P (s,t)

flowp,T ≥ D(s, t, T ), ∀(s, t, T ) ∈ F (2)

activep,T =1→ flowp,T ≥1,∀(s, t, T ) ∈ F , p ∈ P (s, t) (3)∑
p∈P (s,t)

activep,T = 1, ∀(s, t, T ) ∈ F (4)

equivc,n=
∨

p∈P (n)∩P (c)

(activep,T ),∀T ∈ T , n ∈ N , c ∈ C (5)

sharec1,c2,n=equivc1,n∧ equivc2,n,∀n ∈ N , (c1, c2)∈R (6)

loadn =
∑

p∈P (n),T∈T

flowp,T ,∀n ∈ N (7)

Equation 1 enforces the edge capacity constraint to service
the demand of all paths flowing through it. Equation 2
ensures that enough capacity is available to meet the demand
of an (s, t, T ) flow. Equation 3 ensures that some non-zero
capacity is used if a specific path is activated (conversely, an



inactive path can only have a 0 flow). Equation 4 states that a
single path should be chosen to service a given flow f ∈ F .
Equations 5 define the auxiliary variables equivc,n as true if
and only if node n ∈ N appears on an active path sharing
a node with the equivalence class c ∈ C. Equation 6 defines
an active path that shares at least one node with two classes.
Finally, equation 7 defines the load of a node as the sum
of the flows associated to active paths passing through node n.

Objective

min

 α0

∑
p,T len(p) ∗ flowp,T +

α1

∑
(c1,c2)∈R,n∈N (sharec1,c2,n − 1) +

α2

∑
n∈N (loadn)

2


(8)

The objective function 8 in this model is a weighted sum of
three terms. The first term captures the total flows which are
penalized by the length of the path used to dispatch those
flows (such policies are codified in OSFP [51] and BGP
practice [52]). The second term gives a unit credit each time
equivalence classes on the segregation list R do not share a
node. (Due to this term, the objective value of the final solution
may change between iterations of the functional layer.) The
third and final term contribute to a bias towards solutions
that achieve load balancing thanks to the quadratic component
which heavily penalizes nodes with large loads.
Solving the Functional Model The functional model starts
with empty sets C and R which are augmented with each
iteration of the framework. New sets of nodes are added
to C and new segregation rules are added to R (by the
security layer). In the current implementation, least cost paths
between pairs of nodes s, t are not generated “on demand”.
Instead, the generation is limited to the first best k such paths,
for increasing values of k. This process will ultimately be
improved to use column generation techniques [16].

B. Risk Calculation

After the functional layer finds an optimal solution, it passes
this solution to the risk calculation procedure. This input is the
set of active paths. This module calculates the effective risk
to the network for each path and traffic type.
Inputs
risk(n, T ) : N ×T → R – the risk inherit to network device
n for traffic of type T (risk(n, T ) ≥ 1)
dk(n) : N → 2N – the set of nodes at a distance at most k
from n in the logical topology

Calculation
Given an active path p ∈ P with source s and sink t, the
calculation proceeds by partitioning the set of nodes of the
path into three segments: the nodes “close” to the source s,
“close” to the sink t and the nodes “in between”. Closeness is
characterized by the function dk and is meant to capture any
connected node over the logical topology which sits no more
that k hops away. Given this partition, flowRisk(p, T ) is:

flowRisk(p, T ) =
∑

i∈d2(s)∪d2(t)
risk(i, T )2+∑

i∈N(p)\(d2(s)∪d2(t))
risk(i, T )2

We use k = 2 to model nodes on the same LAN. The rationale
is to impart to source s and sink t risk resulting from lateral
movement of attacks. All other nodes contribute to the overall
path risk in proportion to the square of their own risks. We
expect in most networks for d2(s) (and d2(t)) to include nodes
not directly on the path (like nodes on the same LAN). The
input path risk calculation flowRisk(p, T ) is modular and can
be augmented using other risk calculation methods.

C. Security Layer

The mathematical optimization model in the security layer
is a mixed integer programming model. We similarly present
the inputs, variables, constraints, and objective for the security
layer. Its inputs are given below. Also note that all the variables
from the functional model are constants.
Inputs
mem(n) : N → R – the memory resources of SDN device n
fwCost(T ) : T → R – the memory footprint for a firewall
blocking traffic type T
piCost – the memory footprint for a packet inspection post
fwComp – the complexity footprint for adding a firewall
piComp – the complexity footprint for adding a packet
inspection post to the network
penalty(p, T ) : P ×T → R – the penalty for blocking a unit
of flow of type T along path p
rank(n, p) : N ×P → Z – the position of node n in path p
flowRisk(p, T ) : P × T → R≥0 – above risk calculation
Variables
fwn,T ∈ {0, 1} – does a firewall block traffic type T at n
pin ∈ {0, 1} – is there packet inspection at network device n
fwORn,T ∈ {0, 1} – is there a block everything or block
traffic of type T firewall at network device n
fwOPp,T ∈ {0, 1} – is there a firewall on path p
rfp,T ∈ [0, 1] – risk factor for path p ∈ P (s, t) servicing flow
(s, t, T ) ∈ F
RMfwp,n,T ∈ [0, 1] – used in the riskFactor calculation
RMpip,n,T ∈ [0, 1] – used in the riskFactor calculation
Constraints

fwORn,T = fwn,T ∨ fwn,∗,∀n ∈ N , T ∈ T (9)∑
T∈T ∪{∗}

fwCostT · fwn,T +piCost · pin ≤ memn,∀n ∈ N

(10)
fwOPp,T =

∨
n∈N(p)

(fwORn,T ),∀T ∈ T , p ∈ P : activep,T

(11)

RMfwp,n,T = 1− (.5)rank(n,p) · fwORn,T ,

∀p ∈ P (s, t), n ∈ N(p), (s, t, T ) ∈ F
(12)

RMpip,n,T = 1− 0.1 · (.5)rank(n,p) · pin,
∀p ∈ P (s, t), n ∈ N(p), (s, t, T ) ∈ F

(13)

rfp,T = min
⋃

n∈N(p)

{RMfwp,n,T , RMpip,n,T },

∀T ∈ T , p ∈ P : activep,T

(14)



Equation 9 is used to define the presence of a firewall that will
block traffic of type T at a node n. Equation 10 ensures that
the memory footprint in SDN node n for the deployment of
the firewall and the packet inspection logic does not exceed the
device memory. Equation 11 links the presence of a firewall
that will block traffic of type T on a path with the presence of
a firewall that will block traffic of type T on any node along
the active path.

Equation 12 defines the minimum risk factor associated to
a firewall. The earlier on the path the firewall is deployed, the
lower the risk. Equation 13 similarly defines the minimal risk.
Equation 14 defines the composite risk factor.

Objective

min


β0

(∑
n,T fwComp · fwn,T +

∑
n piComp · pin

)
+

β1
∑

n loadn · pin+
β2
∑

p,T penalty(p, T ) · flowp,T · fwOPp,T+

β3
∑

p,T flowRiskp,T · rfp,T


(15)

The objective function defined in equation 15 is a weighted
sum of four distinct terms that focus on minimizing the
network complexity based on security resources deployed,
the load induced by inspection posts, the penalties incurred
from dropping desirable flows due to firewall placement and
finally the residual risk. This model is a classic mixed integer
programming formulation.

D. Result Analysis

The result analysis module tries to generate cuts for the
functional layer with the goal of improving both functionality
and security. To generate cuts, this module will form equiva-
lence classes of network nodes and pass back certain pairs of
these classes, one at a time, to the functional layer. Each pair
of classes describes a segregation rule, or a cut, to which to
functional layer will adhere to as much as possible.

After the functional and security layers are re-optimized
using the most recent cut, the result analysis module deter-
mines whether the cut was beneficial or harmful based on the
objectives of each layer. If the cut is deemed to have been
beneficial, we permanently keep it as a constraint, repopulate
the cut queue, and continue the process.

If the cut is deemed to have been harmful, it is removed
from the functional layer’s constraint pool. Then the next cut
in the queue will be passed back to the functional layer. If the
cut queue is empty, the feedback mechanism terminates and
we output the best solution found.

We note that since this process only provides pairs of nodes
it is a heuristic, it may be necessary for many nodes to
simultaneously be separated to arrive at a global optimum.
This mechanism performed well in our experiments.

E. Layer Coordination

It is valuable to review how the layers coordinate. The
functional layer sends to the security layer a set of paths
that implements the routing within the network to serve the

Fig. 3. Order 4 Fat-tree with 2 gateway switches at the top and 2
hosts per edge switch.

specified flows while satisfying a set of segregation require-
ments. The security layer first computes risks for these paths
(in polynomial time) based on its knowledge of the traffic.
The paths, their risk and the security model are then tasked
with deploying packet inspection apparatus as well as firewalls
within that logical topology to monitor the traffic and block
threats (risky traffic). Once the security model is solved to
optimality, an analysis can determine whether the proposed
logical topology is beneficial or not (w.r.t. its objective) and
even suggest further equivalence classes for network nodes as
well as segregation rules to be sent back to the functional layer
for another iteration. Fundamentally, the coordination signal
boils down to additional equivalence classes to group nodes
together with segregation rules to separate paths that include
network nodes in “antagonistic” equivalence classes.

F. Outputs

When the set of potential cuts is empty, the proposed
configuration can be parsed and translated into SDN language
fragments to be deployed on the network devices in order to
obtain the desired logical network topology put forth by our
framework.

IV. EXPERIMENTAL SETUP

A fundamental component of our work is the separation
of the physical and logical networks. Our framework has po-
tential in applications where many different logical topologies
are possible from a single physical topology. Physical topology
is an input to our framework and the empirical evaluation is
based on a popular topology: Fat-Tree [53].

The instance of Fat-Tree we use is shown in Figure 3.
The updated design avoids bottlenecks through multiple equal
capacity links between layers. This design uses four layers
of switches: gateway, core, aggregate and edge with hosts
connected at the bottom.

Within our sample network, we consider having two main
types of devices: switches/routers and hosts. In order to
model traffic between internal and external entities we utilize
two gateway switches which represent the boundary of our
network. For generality we consider two traffic types A and
B which could represent any types of traffic such as web



and storage. We also classify traffic as internal and external,
with external traffic traversing one of the gateways. We allow
only half of our hosts to communicate with external sources
by allowing them to connect to one of the two gateways.
Further, all hosts are involved in internal communications. In
our network we have 16 hosts and we generated 60 flows, 44
of them being internal and 16 being external.

Additionally, our setup simulates an emergent vulnerabil-
ity/active attack. We select two hosts that are highly vulnerable
to, or being targeted on, a specific type of traffic, resulting in
a significant increase in their risk for the corresponding type
of traffic. In particular, this could represent at DDoS attack on
these two hosts.

We run multiple experiments providing the framework
increasing numbers of starting paths between source and
destination (from the priming procedure) to determine the
impact on the solution quality.

Our implementation was built in Python 3.6 using the
Gurobi 8.1 optimization library [54]. The experiments were
run on a machine running Ubuntu 18.04 and equipped with
an Intel Core i9-8950HK processor operating at 2.90 GHz with
a 12 MB Cache and 32 GB of physical memory.

V. EVALUATION/RESULTS

We begin with the model’s resolution on the above scenario
using the 10 shortest paths per source and destination pair to
prime the optimization. We assume equal demand for each of
the 60 flows and two high risk hosts (in red in Figure 4). In the
first iteration, the functional layer of the framework generates
a candidate topology and passes this solution to the security
layer. The security layer then calculates the network risk and
deploys firewalls (represented with rectangles).

In the first iteration, the gateway on the right serves both
low risk (shown in green) and high risk hosts (shown in red).
Deploying a firewall on this gateway significantly reduces
the network risk and is the output of the security layer.
Importantly, this results in collateral damage as flows to low
risk hosts are blocked. In total, the first iteration through the
framework deploys 3 firewalls which block 12 flows, 8 of
which are high risk.

Iteratively, the security layer proposes separation of these
collateral nodes from the high-risk nodes. The solution of the
last framework iteration (493 candidates cuts are proposed,
40 prove beneficial) is shown on the right. This configuration
routes all high risk flows through one core switch where a
firewall is now deployed. Meanwhile, all the low risk flows
access the gateways through a separate core switch.

Overall we conducted six experiments modifying only the
number of paths ({10, 20, 30, 40, 50, 100}) being used to prime
the functional layer for each source-destination pair. Complete
experimental results are shown in Table I. Ultimately, this
process will be dynamic and use column-generation. A few
observations are in order:
• The overall objective reflects both the functional and se-

curity layers. The other objective rows refer to each layer
objective individually. The network risk rows quantify the

risks and their change as the optimization proceeds. For
instance, for the 10 paths benchmark, the risk degrades
from 10425 to 11646 or 11.7% as a result of supporting
an additional 4 good flows.

• The “nodes explored” rows indicate of the size of the
branch and bound tree and remains quite modest through-
out.

• Within each experiment we observe a meaningful search,
as seen by numerous cuts sent back to the functional
layer, to segregate high and low risk flows.

• All runs blocked all flows that contain a high risk host
while preserving the low risk flows. All experiments
delivered final configurations that preserved the same
low-risk flows. We therefore hypothesize that a column-
generation would quickly settle down and prove that no
additional path can improve the quality of the solution.
It is nonetheless interesting that adding more paths does
not negatively impact the overall runtime.

• The objective functions of the functional and security
layers use “scores” meant to ease the interplay between
the two. Yet, it is wise to consult the raw properties of the
solutions to appreciate the impact of the optimization. In
particular, the number of flows blocked and the network
risks. What is readily apparent is that improving function-
ality induces a slight degradation in the network risks,
underlying the conflicting nature of the two objectives.
The individual objective scores while moving in the
correct direction are not to be viewed as stand alone
metrics to determine solution quality but rather inter layer
communications indicating improvement or decline from
a functional or security perspective.

• The objective scores vary across our experiments due
to the stochasticity introduced by our heuristic-driven
feedback module (see Section III-D for discussion). For
instance, the functional objecive in the 30 path experi-
ment is slightly worse than it is in other runs, but this
difference does not impact the number of serviced flows
in the final configuration.

• The variance in time, iterations and number of cuts
produced by each experiment is due to symmetries in
the formulation. Solutions that are symmetric in the
functional layer may not be symmetric in the security
layer and induce slightly different solutions there. This is
especially true for a Fat-tree network due to its built in
redundancy/symmetry.

• Beneficial cuts reflects the number of segregation pro-
posals from the security layers that are adopted by
the functional layer (these cuts remove the current best
feasible solution). harmful cuts are segregation proposals
that do not “cut” the current best feasible solution or
worsen the functional solution.

VI. CONCLUSION

Our framework is portable with respect to network risk as-
sessment. Since the risk calculation/analysis is decoupled from
the optimization model, the framework can be combined with



Fig. 4. Illustration of the Fat-Tree network after the first pass through both layers of the framework (left) and the final solution (right).
Note: Firewalls are depicted with rectangles, red nodes represent high risk nodes, green nodes represent nodes that are initially blocked and
recovered in the final solution, utilizing the updated routes shown in dashed lines. The modification of the logical topology allows for more
intelligent firewall placement balancing both functionality and security.

10 paths 20 paths 30 paths 40 paths 50 paths 100 paths
Initial Flows Blocked 12 12 12 12 12 12
Final Flows Blocked 8 8 8 8 8 8
Initial Functional Objective 2012 2012 2012 2012 2012 2012
Final Functional Objective 2014 2014 2014 2015 2014 2015
Cut Reward -8450 -4260 -7210 -4900 -5540 -3840
Initial Security Objective 13735 13724 13729 13723 13696 13726
Final Security Objective 13356 13356 13356 13356 13356 13348
Initial Network Risk 10425 10414 10419 10413 10386 10416
Final Network Risk 11646 11646 11646 11646 11646 11638
Functional Nodes Explored 370 55 206 83 510 46
Security Nodes Explored 1922 1650 152 30 28 19
Beneficial Cuts 40 20 34 23 26 18
Harmful Cuts 453 70 237 81 68 74
Iterations Needed 494 91 272 105 95 93
Time in Model (s) 283 40 319 112 76 273

TABLE I
EXPERIMENTAL RESULTS FROM APPLYING THE DOCSDN FRAMEWORK TO AN ORDER 4 FAT-TREE. EACH COLUMN REFERS TO A SEPARATE EXPERIMENT
WHERE THE NUMBER OF PATHS PER SOURCE-DESTINATION PAIR GIVEN TO THE FRAMEWORK WERE VARIED. NOTE THAT THE FUNCTIONAL OBJECTIVE
VALUES IN THIS TABLE ARE CALCULATED WITHOUT THE CUT REWARD, THE SECOND TERM IN EQUATION 8, IN ORDER TO FACILITATE COMPARISONS

ACROSS COLUMNS.

any procedure that calculates risk on a per path basis. Along
with this procedure, the other requirements for implementing
a different risk mechanism:
• A way of evaluating how risk changes due to the deploy-

ment of network defenses
• The ability to propose candidate cuts that can be passed

to the functional layer.
Our results show it is possible to effectively, automatically,

and quickly find a network configuration that meets multiple
conflicting properties. Our framework is modular, enabling
integration of new desired properties. DOCSDNwill allow
network administrators to effectively prioritize and choose
their desired properties. The efficiency of DOCSDN is enabled
by the feedback/interplay between the functional and security
optimization layers.
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