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Abstract. The paper presents a new theory of invariants to Gaussian
blur. Unlike earlier methods, the blur kernel may be arbitrary oriented,
scaled and elongated. Such blurring is a semi-group action in the image
space, where the orbits are classes of blur-equivalent images. We propose
a non-linear projection operator which extracts blur-insensitive compo-
nent of the image. The invariants are then formally defined as moments
of this component but can be computed directly from the blurred image
without an explicit construction of the projections. Image description by
the new invariants does not require any prior knowledge of the particular
blur kernel shape and does not include any deconvolution. Potential ap-
plications are in blur-invariant image recognition and in robust template
matching.
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1 Introduction

One of the most common degradations in image processing is blur. Capturing
an ideal scene f by an imaging device with the blurring point-spread function
(PSF) h, the observed image g can be modeled as a convolution of both

g = f ∗ h . (1)

This linear image formation model is a reasonably accurate approximation of
many imaging devices and acquisition scenarios. In this paper, we concentrate
our attention to the case when the PSF is a general anisotropic Gaussian function
with unknown parameters.

Gaussian blur appears whenever the image has been acquired through a tur-
bulent medium and the acquisition/exposure time is by far longer than the period
of Brownian motion of the particles in the medium. Ground-based astronomi-
cal imaging through the atmosphere, taking pictures through a fog, underwater
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imaging, and fluorescence microscopy are typical examples of such situation (in
some cases, the blur may be coupled with a contrast decrease). Gaussian blur is
also introduced into the images as the sensor blur which is due to a finite size of
the sampling pulse. Gaussian blur may be sometimes applied intentionally, for
instance due to an on-chip denoising.

A complete recovering of f from Eq. (1) is an ill-posed inverse problem, whose
solution, regardless of the particular method used, is ambiguous, unstable and
time consuming [1, 2, 13, 14].

If our goal is an object classification, a complete knowledge of f is not nec-
essary. Highly compressed information about the object, even if it has been
extracted from a blurred image without any restoration, could be sufficient pro-
vided that the features used for object description are not much affected by blur.
This idea was originally proposed by Flusser et al. [4, 5, 6, 12] who introduced
so-called blur invariants with respect to non-parametric centrosymmetric and
N -fold symmetric h. For Gaussian blur, first heuristically derived blur invariants
were proposed by Liu and Zhang [10]. Later on, Zhang et al. [15] proposed a dis-
tance measure between two images which is independent of a circular Gaussian
blur. Most recently, Flusser et al. [3] introduced a complete set of moment-based
Gaussian blur invariants for the case that the Gaussian PSF has a diagonal
covariance matrix.

In this paper, we substantially generalize the invariants proposed in [3]. While
in [3] the Gaussian kernel must be in the axial position (which is constrained by
the diagonal form of its covariance matrix), here we resolve the general case of an
anisotropic arbitrary oriented Gaussian blurring kernel with a general covariance
matrix. This allows to apply the invariants directly without testing the blur
kernel orientation (which is in fact not feasible in practice).

2 Group-theoretic viewpoint

In this Section, we establish the necessary mathematical background which will
be later used for designing the invariants. The new blur invariants are defined
by means of nonlinear projection operators.

By image function (or just image for short) f(x) we understand any function
from L1(R2) space the integral of which is nonzero. 2D Gaussian GΣ is defined
as

GΣ(x) =
1

2π
√
|Σ|

exp

(
−1

2
xTΣ−1x

)
, (2)

where x ≡ (x, y)T and Σ is a 2× 2 regular covariance matrix which determines
the shape of the Gaussian (the eigenvectors of Σ define the axes of the Gaussian
and the ratio of the eigenvalues determines its elongation).

The set S of all Gaussian blurring kernels is

S = {aGΣ(x)|a > 0, Σ positive definite} . (3)

For the sake of generality, we consider un-normalized kernels to be able to model
also the change of the image contrast and/or brightness. The basic properties of



the set S, among which the closure properties play the most important role in
deriving invariants, are listed below.

Proposition 1: S ⊂ L1 since
∫
aGΣ = a. However, S is not a linear vector

space because the sum of two different Gaussians is not a Gaussian.
Proposition 2: Convolution closure. S is closed under convolution as

a1GΣ1 ∗ a2GΣ2 = aGΣ ,

where a = a1a2 and Σ = Σ1 +Σ2.
Proposition 3: Multiplication closure. S is closed under point-wise multiplica-

tion as
a1GΣ1

· a2GΣ2
= aGΣ ,

where
a =

a1a2

2π
√
|Σ1 +Σ2|

and Σ = (Σ−11 +Σ−12 )−1.
Proposition 4: Fourier transform closure. Fourier transform of a function from

S always exists, lies in S and is given by

F(aGΣ) =
a

2π
√
|Σ|

GΣ1
,

where

Σ1 =
1

4π2
Σ−1 .

Proposition 2 says that (S, ∗) is a commutative semi-group (when considering
δ-function to be an additional element of S). Hence, convolution with a function
from S is a semi-group action on L1.

Orbits of this semi-group action are formed by Gaussian-blur equivalent im-
ages. We say that f and g are Gaussian blur equivalent (f ∼ g), if and only
if there exist h1, h2 ∈ S such that h1 ∗ f = h2 ∗ g. The orbits (i.e. the blur-
equivalent classes) can be described by their “origins” – the images, that are
not blurred versions of any other images. We are going to show that each orbit
contains only one such element. We are going to find these “origins” (we will
call them primordial images) and describe them by means of properly chosen
descriptors – invariants of the orbits. For instance, set S itself forms an orbit
with δ being its primordial image. The invariants should stay constant within
the orbit while should distinguish any two images belonging to different orbits.
Such invariance is in fact the invariance w.r.t. arbitrary Gaussian blur. The main
trick, which makes this theory practically applicable, is that the invariants can
be calculated from the given blurred image without explicitly constructing the
primordial image.

In next Section, we define a projection operator that “projects” each image
on S. The primordial images and, consequently, Gaussian blur invariants are
constructed by means of this projection operator.



3 Projection operators and invariants

The main idea is the following one. We try to construct a proper image projection
onto the set S, eliminate somehow the Gaussian component of the image and
define the invariants in the complement. However, since S is not a vector space,
such projection cannot be linear.

Let us define the projection operator P such that it projects image f onto the
nearest un-normalized Gaussian, where the term “nearest” means the Gaussian
having the same integral and covariance matrix as the image f itself. So, we
define

Pf = m00GC , (4)

where

C =
1

m00

(
m20 m11

m11 m02

)
,

and mpq is a centralized image moment

mpq =

∫ ∫
(x− c1)p(y − c2)qf(x, y) dx dy (5)

with (c1, c2) being the image centroid.
Clearly, P is well defined for all images of non-zero integral of regular C.

Actually, Pf ∈ S for any such f . Although P is not linear, it can still be called
projection operator, because it is idempotent P 2 = P . In particular, P (aGΣ) =
aGΣ . By means of P , any function f can be uniquely expressed as f = Pf + fn,
where Pf is a Gaussian component and fn can be considered a “non-Gaussian”
component of f .

A key property of P , which will be later used for construction of the invari-
ants, is that it commutes with a convolution with a Gaussian kernel. It holds,
for any f and GΣ ,

P (f ∗GΣ) = Pf ∗GΣ . (6)

Now we can formulate the main Theorem of this paper.

Theorem 1. Let f be an image function. Then

I(f) =
F(f)

F(Pf)

is an invariant to Gaussian blur, i.e. I(f) = I(f ∗ h) for any h ∈ S.

The proof follows immediately from Eq. (6). Note that I(f) is well defined on
all frequencies because the denominator is non-zero everywhere.

The following Theorem says that invariant I(f) is complete, which means the
equality I(f1) = I(f2) occurs if and only if f1 and f2 belong to the same orbit.

Theorem 2. Let f1 and f2 be two image functions and I(f) be the invariant
defined in Theorem 1. Then I(f1) = I(f2) if and only if there exist h1, h2 ∈ S
such that h1 ∗ f1 = h2 ∗ f2.



The proof is straightforward by setting h1 = Pf2 and h2 = Pf1. The com-
pleteness guarantees that I(f) discriminates between the images from different
orbits, while stays constant inside an orbit due to the invariance property.

Invariant I(f) is a ratio of two Fourier transforms which may be interpreted
as a deconvolution in frequency domain. Having an image f , we seemingly “de-
convolve” it by the kernel P (f), which is in fact the Gaussian component of im-
age f . This deconvolution always sends the Gaussian component to δ-function.
We call the result of this seeming deconvolution the primordial image

fr = F−1 (I(f)) .

Hence, I(f) can be viewed as its Fourier transform, although fr may not exist in
L1 or may even not exist at all. Note that fr is actually the “maximally possible”
deconvolved non-Gaussian component of f plus δ-function and creates the origin
of the respective orbit. It can be viewed as a kind of normalization (or canonical
form) of f w.r.t. arbitrary Gaussian blurring (see Fig. 1 for illustration).

Fig. 1. Projection operator P divides each image into its Gaussian component Pf ,
which is projected onto S and a non-Gaussian component. The orbits are symbolically
depicted as cones with the primordial image in the vertex. The primordial image rep-
resents the orbit, its non-Gaussian component provides discriminative description of
the orbit.



4 The invariants in the image domain

Although I(f) itself could serve as an image descriptor, its direct usage brings
certain difficulties and disadvantages. On high frequencies, we divide by small
numbers which may lead to precision loss. This effect is even more severe if f is
noisy. This problem could be overcome by suppressing high frequencies by a low-
pass filter, but such a procedure would introduce a user-defined parameter (the
cut-off frequency) which should be set up with respect to the particular noise
level. Another disadvantage is that we would have to actually construct F(Pf)
in order to calculate I(f). That is why we prefer to work directly in the image
domain, where moment-based invariants equivalent to I(f) can be constructed
and evaluated without an explicit calculation of Pf .

First of all, we recall that geometric moments of an image are Taylor coeffi-
cients (up to a constant factor) of its Fourier transform

F(f)(u) =
∑
p≥0

(−2πi)|p|

p!
m(f)

p up (7)

(we use the multi-index notation). Theorem 1 can be rewritten as

F(Pf)(u) · I(f)(u) = F(f)(u) .

All these three Fourier transforms can be expanded similarly to (7) into abso-
lutely convergent Taylor series

∑
p≥0

(−2πi)|p|

p!
m(Pf)

p up ·
∑
p≥0

(−2πi)|p|

p!
Mpup =

∑
p≥0

(−2πi)|p|

p!
m(f)

p up . (8)

Comparing the coefficients of the same powers of u we obtain, for any p,

∑
k≤p

(−2πi)|k|

k!

(−2πi)|p−k|

(p− k)!
m

(Pf)
k Mp−k =

(−2πi)|p|

p!
m(f)

p , (9)

which can be read as ∑
k≤p

(
p

k

)
m

(Pf)
k Mp−k = m(f)

p . (10)

In 2D, Eq. (10) reads as

p∑
m=0

q∑
n=0

(
p

m

)(
q

n

)
m(Pf)
mn Mp−m,q−n = m(f)

pq . (11)

Since Pf = m
(f)
00 GC , where C is given by the second-order moments of f , we

can express its moments m
(Pf)
mn without actually constructing the projection Pf .



Clearly, m
(Pf)
mn = 0 for any odd m + n due to the centrosymmetry of GC . For

any even m+ n, m
(Pf)
mn can be expressed in terms of the moments of f as

m
(Pf)
mn

m00
=

bm2 c∑
i=0

i∑
j=0

j≥m−n
2

(−1)i−j
(
m

2i

)(
i

j

)
(m+ n− 2i− 1)!!(2i− 1)!!·

·
(
m11

m00

)m−2j (
m20

m00

)j (
m02

m00

)n−m
2 +j

.

(12)

The above formula was obtained by substituting our particular C into the general
formula for moments of a 2D Gaussian.

Now we can isolate Mpq on the left-hand side and obtain the recurrence

Mpq =
m

(f)
pq

m00
−

p∑
l=0

q∑
k=0

l+k 6=0,
l+k even

(
p

l

)(
q

k

) b k2 c∑
i=0

i∑
j=0

j≥ k−l
2

(−1)i−j
(
k

2i

)(
i

j

)
(2i− 1)!!·

· (l + k − 2i− 1)!!

(
m11

m00

)k−2j (
m20

m00

) l−k
2 +j (

m02

m00

)j
Mp−l,q−k . (13)

This recurrence formula defines Gaussian blur invariants in the image domain.
Since I(f) has been proven to be invariant to Gaussian blur, all coefficients Mpq

must also be blur invariants. The Mpq’s can be understood as the moments of the
primordial image fr. The power of Eq. (13) lies in the fact that we can calculate
them directly from the moments of f , without constructing the primordial image
explicitly either in frequency or in the spatial domain and also without any prior
knowledge of the blurring kernel shape and orientation.

Thanks to the uniqueness of Fourier transform, the set of all Mpq’s carries
the same information about the function f as I(f) itself, so the cumulative
discrimination power of all Mpq’s equals to that of I(f).

Some of the invariants (13) are always trivial. Regardless of f , we have M00 =
1,M10 = M01 = 0 because we work in centralized coordinates, andM20 = M11 =
M02 = 0 since these three moments had been already used for the definition of
Pf .

Note that the joint null-space of all Mpq’s except M00 equals the set S, which
is implied by the fact that P (aGΣ) = aGΣ and fr = δ.

5 Experiments

5.1 Verification on public datasets

This basic experiment is a verification of the invariance of functionals Mpq from
Eq. (13). We used two public-domain image databases, which contain series of
Gaussian-blurred images (see Fig. 2 for examples).



Fig. 2. An example of a Gaussian-blurred image series from the CSIQ database.

We used 30 series (original and five blurred instances of various extent) from
the CID:IQ dataset [11] and 23 series from the CSIQ dataset [9]. For each of
them, we calculated the invariants up to the 9th order. The relative error of
all invariants on each image series was always between 10−4 and 10−3, which
illustrates a perfect invariance. The fluctuation within a single series is so small
that in no way diminishes the ability to discriminate two different originals, as
is illustrated in Fig. 3.

Fig. 3. The values of a single invariant calculated over 23 series (from left to right)
consisting of six blurred instances (from front to back). The value is always almost
constant on an individual series while significantly different for distinct images.



5.2 Influence of the kernel orientation

In this experiment, we used elongated Gaussian kernel in the axial position
(the quotient of its eigenvalues was 2) and we rotated it gradually from 0 to
π radians by one degree. We blurred standard Lena image by each rotated kernel,
calculated the invariants from [3] and those given by Eq. (13) up to the 8th
order, compared them to the same invariants calculated from the original sharp
image, and plotted their mean relative errors (see Fig. 4). While the MRE of
the new invariants only slightly oscillates around 10−8 due to sampling errors
(which means the MRE is sufficiently small and basically does not depend on
the kernel orientation), the behavior of the invariants from [3] is different. Their
MRE is around 10−3 for most kernel orientations and exhibits narrow drops to
10−8 for the axes orientation close to 0, π/2 and π. This is because for these axes
orientations, both invariant sets are exactly equivalent. The most remarkable fact
is that even for very small deviations from the “horizontal/vertical” orientation
of the Gaussian, the MRE grows up quickly by several orders. This illustrates
that the new invariants are actually a significant improvement and generalization
of the method from [3].
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Fig. 4. Mean relative errors of the Gaussian blur invariants from [3] (red curve, top)
and the same of the proposed ones (blue curve, bottom) as functions of the kernel
orientation.



Fig. 5. Sample face images used in the experiments: clear database faces (top row),
blurred (middle) and noisy (bottom).

5.3 Recognition of blurred faces

In the last experiment we show the performance of the proposed invariants in face
recognition applied on blurred photographs. We compare our method with the
approach proposed by Gopalan et al. [8], which is probably the most relevant
competitor. Gopalan et al. derived invariants to image blurring and claimed
they are suitable particularly for face recognition. They did not employ any
parametric form of the blur kernel when constructing invariants (in that sense,
their method is more general than ours which is restricted to Gaussian blur) but
assumed the knowledge of its support size.

We used 38 distinct human faces from the Extended Yale Face Database B [7]
(the same database was used in [8]). This database contains only sharp faces, so
we created the blurred and noisy query images artificially (see Fig. 5 for some
examples). In all tests, moment invariants up to the 9th order were used. The
results are summarized in Table 1.



First, we tested the recognition rate with respect to the blur size. The blurred
query image was always classified against the clear 38-image database. While mo-
ment invariants are 100% successful even for relatively large blurs, the Gopalan’s
method does not reach any comparable results and the success rate drops very
rapidly with the increasing blur size, even if we provided the correct blur size as
the input parameter of the algorithm.

Then, we tested the noise robustness of both methods. We corrupted the
probe images with AWGN of SNR from 50 to 5. The success rate of moment
invariants remains 100 %, but the Gopalan’s method appears to be very vulnera-
ble. This can be explained by the fact that the moments, being integral features,
average-out the noise while the Gopalan’s invariants do not have this property.

Finally, we compared the speed of both methods, again for various image
size. The data in the table are related to a single query, they do not comprise
pre-calculations on the database images. The moment method is much faster
because the invariants up to the 9th order are a highly-compressed image repre-
sentation (but still sufficient for recognition) while the Gopalan’s method works
with a complete pixel-wise representation to construct invariants.

Blur size MI GM

7× 7 100 65.79
11× 11 100 23.68
15× 15 100 5.26

SNR MI GM

50 100 92.11
20 100 71.05
15 100 57.89
10 100 42.11
5 100 28.95

Image size MI GM

32× 28 0.00258 7.89
40× 35 0.00261 50

196× 168 0.00842 n/a

Table 1. The recognition rate [%] of the moment invariants (MI) and of the Gopalan’s
method (GM) for various blur size (left table) and for various SNR (middle table). The
CPU time [s] comparison of both algorithms for various image sizes (right table).

6 Conclusion

We proposed new invariants w.r.t. Gaussian blur. Unlike all earlier works, we do
not assume the blurring kernel to be circularly symmetric or in axial position.
Still, we found a non-linear projection operator by means of which the invariants
are defined in the Fourier domain. Equivalently, the invariants can be calculated
directly in the image domain, without an explicit construction of the projections.
We proved by experiments superior recognition abilities, stability and robustness,
at least on simulated data that follow the assumed degradation model.
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exponent Lévy stable laws. SIAM Journal on Applied Mathematics 63(2),
593–618 (2003)

[2] Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur es-
timation. IEEE Transactions on Pattern Analysis and Machine Intelligence
20(7), 699–716 (1998)
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