Skip to main content

Impact of High-Pressure Processing on Food Quality

  • Chapter
  • First Online:
Effect of Emerging Processing Methods on the Food Quality

Abstract

High-Pressure Processing (HPP) application is increasing at food industries as a possible alternative to heat treatments for food preservation and processing. It is being mainly applied to inactivate microorganisms and enzymes, with lower degradation of flavors and nutrients, minimizing the losses of beneficial ingredients, resulting in distinctive organoleptic properties of foods. Since HPP acts on volume compression, due to the low change in volume on low-molecular compounds, such as vitamins and other functional compounds, the effects of this technology are expected to be minimum on these compounds unlike thermal treatment. Alike, HPP has also a lower effect on flavor and color compounds of food products, compared to the color changes and formation of off-flavors caused by thermal pasteurization. Thus, in this chapter, HPP application on different food products will be addressed, i.e., fruits, vegetables, fish and meat products, milk and cheese, and its effects on the nutritional, textural and sensorial properties will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adapa, S., Schmidt, K. A., & Toledo, R. (1997). Functional properties of skim milk processed with continuous high pressure throttling. Journal of Dairy Science, 80(9), 1941–1948.

    Article  CAS  Google Scholar 

  • Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.

    Article  CAS  Google Scholar 

  • Amanatidou, A., Schlüter, O., Lemkau, K., Gorris, L. G. M., Smid, E. J., & Knorr, D. (2000). Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon. Innovative Food Science & Emerging Technologies, 1(2), 87–98.

    Article  CAS  Google Scholar 

  • Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, 63(1), 39–50.

    Article  CAS  Google Scholar 

  • Arnold, C., Schwarzenbolz, U., & Böhm, V. (2014). Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT – Food Science and Technology, 57(1), 442–445.

    Article  CAS  Google Scholar 

  • Aubourg, S. P., Torres, J. A., Saraiva, J. A., Guerra-Rodríguez, E., & Vázquez, M. (2013). Effect of high-pressure treatments applied before freezing and frozen storage on the functional and sensory properties of Atlantic mackerel (Scomber scombrus). LWT – Food Science and Technology, 53(1), 100–106.

    Article  CAS  Google Scholar 

  • Barrett, D. M., & Lloyd, B. (2012). Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of the Science of Food and Agriculture, 92(1), 7–22.

    Article  CAS  PubMed  Google Scholar 

  • Basak, S., & Ramaswamy, H. S. (1998). Effect of high pressure processing on the texture of selected fruits and vegetables. Journal of Texture Studies, 29(5), 587–601.

    Article  Google Scholar 

  • Baxter, I. A., Easton, K., Schneebeli, K., & Whitfield, F. B. (2005). High pressure processing of Australian navel orange juices: Sensory analysis and volatile flavor profiling. Innovative Food Science & Emerging Technologies, 6(4), 372–387.

    Article  CAS  Google Scholar 

  • Beilken, S. L., Macfarlane, J. J., & Jones, P. N. (1990). Effect of high pressure during heat treatment on the wamer-bratzler shear force values of selected beef muscles. Journal of Food Science, 55(1), 15–18.

    Article  Google Scholar 

  • Blok Frandsen, H., Ejdrup Markedal, K., Martín-Belloso, O., Sánchez-Vega, R., Soliva-Fortuny, R., Sørensen, H., … Sørensen, J. C. (2014). Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli. Polish Journal of Food and Nutrition Sciences, 64(1), 17–25.

    Article  CAS  Google Scholar 

  • Bolumar, T., Skibsted, L. H., & Orlien, V. (2012). Kinetics of the formation of radicals in meat during high pressure processing. Food Chemistry, 134(4), 2114–2120.

    Article  CAS  PubMed  Google Scholar 

  • Calzada, J., Del Olmo, A., Picon, A., Gaya, P., & Nuñez, M. (2013). Proteolysis and biogenic amine buildup in high-pressure treated ovine milk blue-veined cheese. Journal of Dairy Science, 96(8), 4816–4829.

    Article  CAS  PubMed  Google Scholar 

  • Calzada, J., del Olmo, A., Picon, A., & Nuñez, M. (2015). Effect of high pressure processing on the lipolysis, volatile compounds, odour and colour of cheese made from unpasteurized milk. Food and Bioprocess Technology, 8(5), 1076–1088.

    Article  CAS  Google Scholar 

  • Calzada, J., del Olmo, A., Picon, A., Gaya, P., & Nuñez, M. (2014a). Using high-pressure processing for reduction of proteolysis and prevention of over-ripening of raw milk cheese. Food and Bioprocess Technology, 7(5), 1404–1413.

    Article  CAS  Google Scholar 

  • Calzada, J., del Olmo, A., Picon, A., Gaya, P., & Nuñez, M. (2014b). Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 37(2), 64–73.

    Article  CAS  Google Scholar 

  • Calzada, J., del Olmo, A., Picon, A., & Nuñez, M. (2014c). Effect of high-pressure-processing on lipolysis and volatile compounds of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 39(2), 232–239.

    Article  CAS  Google Scholar 

  • Capellas, M., Mor-Mur, M., Sendra, E., & Guamis, B. (2001). Effect of high-pressure processing on physico-chemical characteristics of fresh goats’ milk cheese (Mató). International Dairy Journal, 11(3), 165–173.

    Article  CAS  Google Scholar 

  • Chang, Y.-H., Wu, S.-J., Chen, B.-Y., Huang, H.-W., & Wang, C.-Y. (2017). Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice. Journal of the Science of Food and Agriculture, 97(10), 3166–3172.

    Article  CAS  PubMed  Google Scholar 

  • Cheah, P. B., & Ledward, D. A. (1996). High pressure effects on lipid oxidation in minced pork. Meat Science, 43(2), 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Cheah, P. B., & Ledward, D. A. (1997a). Catalytic mechanism of lipid oxidation following high pressure treatment in pork fat and meat. Journal of Food Science, 62(6), 1135–1139.

    Article  CAS  Google Scholar 

  • Cheah, P. B., & Ledward, D. A. (1997b). Inhibition of metmyoglobin formation in fresh beef by pressure treatment. Meat Science, 45(3), 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., … Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85–94.

    Article  CAS  Google Scholar 

  • Chéret, R., Chapleau, N., Delbarre-Ladrat, C., Verrez-Bagnis, V., & de Lamballerie, M. (2005). Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.). Journal of Food Science, 70(8), e477–e483.

    Article  Google Scholar 

  • Chevalier, D., Le Bail, A., & Ghoul, M. (2001). Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, 34(5), 425–429.

    Article  CAS  Google Scholar 

  • Clariana, M., Guerrero, L., Sárraga, C., Díaz, I., Valero, Á., & García-Regueiro, J. A. (2011). Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innovative Food Science & Emerging Technologies, 12(4), 456–465.

    Article  CAS  Google Scholar 

  • Contador, R., González-Cebrino, F., García-Parra, J., Lozano, M., & Ramírez, R. (2014). Effect of hydrostatic high pressure and thermal treatments on two types of pumpkin purée and changes during refrigerated storage. Journal of Food Processing and Preservation, 38(2), 704–712.

    Article  CAS  Google Scholar 

  • de Oliveira, M. M., Tribst, A. A. L., Leite Júnior, B. R. D. C., de Oliveira, R. A., & Cristianini, M. (2015). Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innovative Food Science & Emerging Technologies, 31, 45–53.

    Article  CAS  Google Scholar 

  • del Olmo, A., Calzada, J., & Nuñez, M. (2014). Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat “lacón”, a cured–cooked pork meat product. Innovative Food Science & Emerging Technologies, 23, 25–32.

    Article  CAS  Google Scholar 

  • Delgado, F. J., González-Crespo, J., Cava, R., & Ramírez, R. (2012). Changes in microbiology, proteolysis, texture and sensory characteristics of raw goat milk cheeses treated by high-pressure at different stages of maturation. LWT – Food Science and Technology, 48(2), 268–275.

    Article  CAS  Google Scholar 

  • Delgado, F. J., Rodríguez-Pinilla, J., Márquez, G., Roa, I., & Ramírez, R. (2015). Physicochemical, proteolysis and texture changes during the storage of a mature soft cheese treated by high-pressure hydrostatic. European Food Research and Technology, 240(6), 1167–1176.

    Article  CAS  Google Scholar 

  • Denoya, G. I., Vaudagna, S. R., & Polenta, G. (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT – Food Science and Technology, 62(1, Part 2), 801–806.

    Article  CAS  Google Scholar 

  • Dhineshkumar, V., Ramasamy, D., & Siddharth, M. (2016). High pressure processing technology in dairy processing: A review. Asian Journal of Dairy and Food Research, 35(2), 87–95.

    Article  Google Scholar 

  • Dörnenburg, H., & Knorr, D. (1998). Monitoring the impact of high-pressure processing on the biosynthesis of plant metabolites using plant cell cultures. Trends in Food Science & Technology, 9(10), 355–361.

    Article  Google Scholar 

  • Erkan, N., Üretener, G., & Alpas, H. (2010). Effect of high pressure (HP) on the quality and shelf life of red mullet (Mullus surmelutus). Innovative Food Science & Emerging Technologies, 11(2), 259–264.

    Article  CAS  Google Scholar 

  • Evert-Arriagada, K., Hernández-Herrero, M. M., Guamis, B., & Trujillo, A. J. (2014). Commercial application of high-pressure processing for increasing starter-free fresh cheese shelf-life. LWT – Food Science and Technology, 55(2), 498–505.

    Article  CAS  Google Scholar 

  • Evert-Arriagada, K., Hernández-Herrero, M. M., Juan, B., Guamis, B., & Trujillo, A. J. (2012). Effect of high pressure on fresh cheese shelf-life. Journal of Food Engineering, 110(2), 248–253.

    Article  CAS  Google Scholar 

  • Figueirêdo, B. C., Bragagnolo, N., Skibsted, L. H., & Orlien, V. (2015). Inhibition of cholesterol and polyunsaturated fatty acids oxidation through the use of annatto and bixin in high-pressure processed fish. Journal of Food Science, 80(8), C1646–C1653.

    Article  PubMed  CAS  Google Scholar 

  • Gao, G., Ren, P., Cao, X., Yan, B., Liao, X., Sun, Z., & Wang, Y. (2016). Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food and Bioproducts Processing, 100, 221–229.

    Article  CAS  Google Scholar 

  • García-Parra, J., González-Cebrino, F., Delgado, J., Cava, R., & Ramírez, R. (2016). High pressure assisted thermal processing of pumpkin purée: Effect on microbial counts, color, bioactive compounds and polyphenoloxidase enzyme. Food and Bioproducts Processing, 98, 124–132.

    Article  CAS  Google Scholar 

  • Garde, S., Arqués, J. L., Gaya, P., Medina, M., & Nuñez, M. (2007). Effect of high-pressure treatments on proteolysis and texture of ewes’ raw milk La Serena cheese. International Dairy Journal, 17(12), 1424–1433.

    Article  CAS  Google Scholar 

  • Gervilla, R., Ferragut, V., & Guamis, B. (2001). High hydrostatic pressure effects on color and milk-fat globule of ewe’s milk. Journal of Food Science, 66(6), 880–885.

    Article  CAS  Google Scholar 

  • Grossi, A., Søltoft-Jensen, J., Knudsen, J. C., Christensen, M., & Orlien, V. (2011). Synergistic cooperation of high pressure and carrot dietary fibre on texture and colour of pork sausages. Meat Science, 89(2), 195–201.

    Article  PubMed  Google Scholar 

  • Gupta, R., Kopec, R. E., Schwartz, S. J., & Balasubramaniam, V. M. (2011). Combined pressure-temperature effects on carotenoid retention and bioaccessibility in tomato juice. Journal of Agricultural and Food Chemistry, 59(14), 7808–7817.

    Article  CAS  PubMed  Google Scholar 

  • Guyon, C., Meynier, A., & de Lamballerie, M. (2016). Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends in Food Science & Technology, 50, 131–143.

    Article  CAS  Google Scholar 

  • Harte, F., Luedecke, L., Swanson, B., & Barbosa-Cánovas, G. V. (2003). Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing. Journal of Dairy Science, 86(4), 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  • Hartyáni, P., Dalmadi, I., Cserhalmi, Z., Kántor, D.-B., Tóth-Markus, M., & Sass-Kiss, Á. (2011). Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innovative Food Science & Emerging Technologies, 12(3), 255–260.

    Article  CAS  Google Scholar 

  • Hayman, M. M., Baxter, I., O’Riordan, P. J., & Stewart, C. M. (2004). Effects of high-pressure processing on the safety, quality, and shelf life of ready-to-eat meats. Journal of Food Protection, 67(8), 1709–1718.

    Article  PubMed  Google Scholar 

  • He, Z., Huang, Y., Li, H., Qin, G., Wang, T., & Yang, J. (2012). Effect of high-pressure treatment on the fatty acid composition of intramuscular lipid in pork. Meat Science, 90(1), 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Carrión, M., Hernando, I., & Quiles, A. (2014). High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innovative Food Science & Emerging Technologies, 26, 76–85.

    Article  CAS  Google Scholar 

  • Homma, N., Ikeuchi, Y., & Suzuki, A. (1994). Effects of high pressure treatment on the proteolytic enzymes in meat. Meat Science, 38(2), 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., & Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8.

    Article  Google Scholar 

  • Huppertz, T., Kelly, A. L., & Fox, P. F. (2002). Effects of high pressure on constituents and properties of milk. International Dairy Journal, 12(7), 561–572.

    Article  CAS  Google Scholar 

  • Hurtado, A., Guàrdia, M. D., Picouet, P., Jofré, A., Ros, J. M., & Bañón, S. (2017). Stabilisation of red fruit-based smoothies by high-pressure processing. Part II: Effects on sensory quality and selected nutrients. Journal of the Science of Food and Agriculture, 97(3), 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Hurtado, J. L., Montero, P., & Borderias, A. J. (2000). Extension of shelf life of chilled hake (Merluccius capensis) by high pressure/Prolongacion de la vida util de merluza (Merluccius capensis) sometida a altas presiones conservada en refrigeracion. Food Science and Technology International, 6(3), 243–249.

    Article  Google Scholar 

  • Jacobo-Velázquez, D. A., Cuéllar-Villarreal, M. d. R., Welti-Chanes, J., Cisneros-Zevallos, L., Ramos-Parra, P. A., & Hernández-Brenes, C. (2017). Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science & Technology, 60, 80–87.

    Article  CAS  Google Scholar 

  • Juan, B., Ferragut, V., Guamis, B., & Trujillo, A.-J. (2008). The effect of high-pressure treatment at 300MPa on ripening of ewes’ milk cheese. International Dairy Journal, 18(2), 129–138.

    Article  CAS  Google Scholar 

  • Jung, L.-S., Lee, S. H., Kim, S., & Ahn, J. (2013). Effect of high hydrostatic pressure on the quality-related properties of carrot and spinach. Food Science and Biotechnology, 22(1), 189–195.

    Article  CAS  Google Scholar 

  • Kaur, L., Astruc, T., Vénien, A., Loison, O., Cui, J., Irastorza, M., & Boland, M. (2016). High pressure processing of meat: Effects on ultrastructure and protein digestibility. Food & Function, 7(5), 2389–2397.

    Article  CAS  Google Scholar 

  • Kebede, B., Grauwet, T., Andargie, T., Sempiri, G., Palmers, S., Hendrickx, M., & Van Loey, A. (2017). Kinetics of Strecker aldehyde formation during thermal and high pressure high temperature processing of carrot puree. Innovative Food Science & Emerging Technologies, 39, 88–93.

    Article  CAS  Google Scholar 

  • Kebede, B. T., Grauwet, T., Mutsokoti, L., Palmers, S., Vervoort, L., Hendrickx, M., & Van Loey, A. (2014). Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International, 56, 218–225.

    Article  CAS  Google Scholar 

  • Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867.

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan, R., Patterson, M. F., & Piggott, J. R. (2005). Effects of high-pressure processing on proteolytic enzymes and proteins in cold-smoked salmon during refrigerated storage. Food Chemistry, 90(4), 541–548.

    Article  CAS  Google Scholar 

  • Landl, A., Abadias, M., Sárraga, C., Viñas, I., & Picouet, P. A. (2010). Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Science & Emerging Technologies, 11(4), 557–564.

    Article  CAS  Google Scholar 

  • Liu, F., Zhang, X., Zhao, L., Wang, Y., & Liao, X. (2016). Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innovative Food Science & Emerging Technologies, 34, 51–58.

    Article  CAS  Google Scholar 

  • López-Fandiño, R., Fuente, M. A. D. L., Ramos, M., & Olano, A. (1998). Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. Journal of Dairy Research, 65(1), 69–78.

    Article  Google Scholar 

  • Ma, H., & Ledward, D. A. (2013). High pressure processing of fresh meat - is it worth it? Meat Science, 95(4), 897–903.

    Article  PubMed  Google Scholar 

  • Ma, H.-J., & Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68(3), 347–355.

    Article  PubMed  Google Scholar 

  • Ma, H. J., Ledward, D. A., Zamri, A. I., Frazier, R. A., & Zhou, G. H. (2007). Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chemistry, 104(4), 1575–1579.

    Article  CAS  Google Scholar 

  • Macfarlane, J. J. (1973). Pre-rigor pressurization of muscle: Effects on pH, shear value and taste panel assessment. Journal of Food Science, 38(2), 294–298.

    Article  CAS  Google Scholar 

  • Marcos, B., Aymerich, T., Dolors Guardia, M., & Garriga, M. (2007). Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Science, 76(1), 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Marcos, B., Kerry, J. P., & Mullen, A. M. (2010). High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 85(1), 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Marszałek, K., Woźniak, Ł., Kruszewski, B., & Skąpska, S. (2017). The Effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences, 18(2). https://doi.org/10.3390/ijms18020277

    Article  PubMed Central  CAS  Google Scholar 

  • Martínez-Onandi, N., Castioni, A., San Martín, E., Rivas-Cañedo, A., Nuñez, M., Torriani, S., & Picon, A. (2017). Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 241, 298–307.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Onandi, N., Rivas-Cañedo, A., Nuñez, M., & Picon, A. (2016). Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Science, 111, 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Rodríguez, Y., Acosta-Muñiz, C., Olivas, G. I., Guerrero-Beltrán, J., Rodrigo-Aliaga, D., & Sepúlveda, D. R. (2012). High hydrostatic pressure processing of cheese. Comprehensive Reviews in Food Science and Food Safety, 11(4), 399–416.

    Article  CAS  Google Scholar 

  • McArdle, R., Marcos, B., Kerry, J. P., & Mullen, A. (2010). Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Science, 86(3), 629–634.

    Article  CAS  PubMed  Google Scholar 

  • Medina-Meza, I. G., Barnaba, C., & Barbosa-Cánovas, G. V. (2014). Effects of high pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, 22, 1–10.

    Article  CAS  Google Scholar 

  • Miguel-Pintado, C., Nogales, S., Fernández-León, A. M., Delgado-Adámez, J., Hernández, T., Lozano, M., … Ramírez, R. (2013). Effect of hydrostatic high pressure processing on nectarine halves pretreated with ascorbic acid and calcium during refrigerated storage. LWT – Food Science and Technology, 54(1), 278–284.

    Article  CAS  Google Scholar 

  • Moltó-Puigmartí, C., Permanyer, M., Castellote, A. I., & López-Sabater, M. C. (2011). Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chemistry, 124(3), 697–702.

    Article  CAS  Google Scholar 

  • Montiel, R., De Alba, M., Bravo, D., Gaya, P., & Medina, M. (2012). Effect of high pressure treatments on smoked cod quality during refrigerated storage. Food Control, 23(2), 429–436. https://doi.org/10.1016/j.foodcont.2011.08.011

    Article  Google Scholar 

  • Morton, J. D., Pearson, R. G., Lee, H. Y.-Y., Smithson, S., Mason, S. L., & Bickerstaffe, R. (2017). High pressure processing improves the tenderness and quality of hot-boned beef. Meat Science, 133, 69–74.

    Article  PubMed  Google Scholar 

  • Murchie, L. W., Cruz-Romero, M., Kerry, J. P., Linton, M., Patterson, M. F., Smiddy, M., & Kelly, A. L. (2005). High pressure processing of shellfish: A review of microbiological and other quality aspects. Innovative Food Science & Emerging Technologies, 6(3), 257–270.

    Article  Google Scholar 

  • O’Reilly, C. E., Kelly, A. L., Murphy, P. M., & Beresford, T. P. (2001). High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science & Technology, 12(2), 51–59.

    Article  Google Scholar 

  • Oey, I., Van der Plancken, I., Van Loey, A., & Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science & Technology, 19(6), 300–308.

    Article  CAS  Google Scholar 

  • Okpala, C. O. R., Piggott, J. R., & Schaschke, C. J. (2010). Influence of high-pressure processing (HPP) on physico-chemical properties of fresh cheese. Innovative Food Science & Emerging Technologies, 11(1), 61–67.

    Article  CAS  Google Scholar 

  • Orlien, V., Hansen, E., & Skibsted, L. H. (2000). Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: Critical working pressure in relation to oxidation mechanism. European Food Research and Technology, 211(2), 99–104.

    Article  CAS  Google Scholar 

  • Ortea, I., Rodríguez, A., Tabilo-Munizaga, G., Pérez-Won, M., & Aubourg, S. P. (2010). Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. European Food Research and Technology, 230(6), 925–934.

    Article  CAS  Google Scholar 

  • Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT – Food Science and Technology, 68, 98–104.

    Article  CAS  Google Scholar 

  • Pasha, I., Saeed, F., Sultan, M. T., Khan, M. R., & Rohi, M. (2014). Recent developments in minimal processing: A tool to retain nutritional quality of food. Critical Reviews in Food Science and Nutrition, 54(3), 340–351.

    Article  CAS  PubMed  Google Scholar 

  • Patras, A., Brunton, N., Da Pieve, S., Butler, F., & Downey, G. (2009). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, 10(1), 16–22.

    Article  CAS  Google Scholar 

  • Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313.

    Article  CAS  Google Scholar 

  • Picouet, P. A., Hurtado, A., Jofré, A., Bañon, S., Ros, J.-M., & Guàrdia, M. D. (2016). Effects of thermal and high-pressure treatments on the microbiological, nutritional and sensory quality of a multi-fruit smoothie. Food and Bioprocess Technology, 9(7), 1219–1232.

    Article  CAS  Google Scholar 

  • Plaza, L., Sánchez-Moreno, C., De Ancos, B., Elez-Martínez, P., Martín-Belloso, O., & Cano, M. P. (2011). Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT – Food Science and Technology, 44(4), 834–839.

    Article  CAS  Google Scholar 

  • Ramirez-Suarez, J. C., & Morrissey, M. T. (2006). Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science & Emerging Technologies, 7(1), 19–27.

    Article  CAS  Google Scholar 

  • Rivas-Cañedo, A., Fernández-García, E., & Nuñez, M. (2009). Volatile compounds in fresh meats subjected to high pressure processing: Effect of the packaging material. Meat Science, 81(2), 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Rux, G., Schlüter, O., Geyer, M., & Herppich, W. B. (2017). Characterization of high hydrostatic pressure effects on fresh produce cell turgor using pressure probe analyses. Postharvest Biology and Technology, 132, 188–194.

    Article  CAS  Google Scholar 

  • Ruxton, C. H. S., Calder, P. C., Reed, S. C., & Simpson, M. J. A. (2005). The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews, 18(1), 113–129.

    Article  CAS  PubMed  Google Scholar 

  • Saldo, J., Fernández, A., Sendra, E., Butz, P., Tauscher, B., & Guamis, B. (2003). High pressure treatment decelerates the lipolysis in a caprine cheese. Food Research International, 36(9), 1061–1068.

    Article  CAS  Google Scholar 

  • Saldo, J., McSweeney, P. L. H., Sendra, E., Kelly, A. L., & Guamis, B. (2002). Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. International Dairy Journal, 12(1), 35–44.

    Article  CAS  Google Scholar 

  • Sánchez, C., Baranda, A. B., & Martínez de Marañón, I. (2014). The effect of high pressure and high temperature processing on carotenoids and chlorophylls content in some vegetables. Food Chemistry, 163, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreno, C., de Ancos, B., Plaza, L., Elez-Martínez, P., & Cano, M. P. (2009). Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Critical Reviews in Food Science and Nutrition, 49(6), 552–576.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreno, C., Plaza, L., De Ancos, B., & Cano, M. P. (2003). Vitamin C, provitamin A carotenoids, and other carotenoids in high-pressurized orange juice during refrigerated storage. Journal of Agricultural and Food Chemistry, 51(3), 647–653.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.

    Article  PubMed  CAS  Google Scholar 

  • Sandra, S., Stanford, M. A., & Goddik, L. M. (2004). The use of high-pressure processing in the production of Queso Fresco cheese. Journal of Food Science, 69(4), FEP153–FEP158.

    Article  CAS  Google Scholar 

  • Sazonova, S., Galoburda, R., & Gramatina, I. (2017). Application of high-pressure processing for safety and shelf-life quality of meat – a review. Presented at the Baltic Conference on Food Science and Technology FOODBALT “Food for consumer well-being.” https://doi.org/10.22616/FoodBalt.2017.001

  • Sequeira-Munoz, A., Chevalier, D., LeBail, A., Ramaswamy, H. S., & Simpson, B. K. (2006). Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innovative Food Science & Emerging Technologies, 7(1), 13–18.

    Article  CAS  Google Scholar 

  • Sikes, A., Tornberg, E., & Tume, R. (2010). A proposed mechanism of tenderising post-rigor beef using high pressure–heat treatment. Meat Science, 84(3), 390–399.

    Article  PubMed  Google Scholar 

  • Sikes, A. L., & Warner, R. (2016). Application of high hydrostatic pressure for meat tenderization. In K. Knoerzer, P. Juliano, & G. Smithers (Eds.), Innovative food processing technologies: Extraction, separation, component modification and process intensification (pp. 259–290), Woodhead Publishing, Cambridge.

    Google Scholar 

  • Souza, C. M., Boler, D. D., Clark, D. L., Kutzler, L. W., Holmer, S. F., Summerfield, J. W., … Killefer, J. (2011). The effects of high pressure processing on pork quality, palatability, and further processed products. Meat Science, 87(4), 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X. D., & Holley, R. A. (2010). High hydrostatic pressure effects on the texture of meat and meat products. Journal of Food Science, 75(1), R17–R23.

    Article  CAS  PubMed  Google Scholar 

  • Tamm, A., Bolumar, T., Bajovic, B., & Toepfl, S. (2016). Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl. Innovative Food Science & Emerging Technologies, 36, 294–302.

    Article  CAS  Google Scholar 

  • Teixeira, B., Fidalgo, L., Mendes, R., Costa, G., Cordeiro, C., Marques, A., … Nunes, M. L. (2013). Changes of enzymes activity and protein profiles caused by high-pressure processing in sea bass (Dicentrarchus labrax) fillets. Journal of Agricultural and Food Chemistry, 61(11), 2851–2860.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, B., Marques, A., Mendes, R., Gonçalves, A., Fidalgo, L., Oliveira, M., … Nunes, M. L. (2014). Effects of high-pressure processing on the quality of sea bass (Dicentrarchus labrax) fillets during refrigerated storage. Food and Bioprocess Technology, 7(5), 1333–1343.

    Article  Google Scholar 

  • Tewari, S., Sehrawat, R., Nema, P. K., & Kaur, B. P. (2017). Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. Journal of Food Biochemistry, 41(1), e12319. https://doi.org/10.1111/jfbc.12319

    Article  CAS  Google Scholar 

  • Torres, B., Tiwari, B. K., Patras, A., Cullen, P. J., Brunton, N., & O’Donnell, C. P. (2011). Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innovative Food Science & Emerging Technologies, 12(2), 93–97.

    Article  CAS  Google Scholar 

  • Trejo Araya, X. I., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., & John Mawson, A. (2007). Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. Journal of Food Engineering, 80(3), 873–884.

    Article  Google Scholar 

  • Tribst, A. A. L., Leite Júnior, B. R. D. C., de Oliveira, M. M., & Cristianini, M. (2016). High pressure processing of cocoyam, Peruvian carrot and sweet potato: Effect on oxidative enzymes and impact in the tuber color. Innovative Food Science & Emerging Technologies, 34, 302–309.

    Article  CAS  Google Scholar 

  • Trujillo, A. J., Castro, N., Quevedo, J. M., Argüello, A., Capote, J., & Guamis, B. (2007). Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine colostrum. Journal of Dairy Science, 90(2), 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., & Guamis, B. (2002). Applications of high-hydrostatic pressure on milk and dairy products: A review. Innovative Food Science & Emerging Technologies, 3(4), 295–307.

    Article  Google Scholar 

  • Valdramidis, V. P., Graham, W. D., Beattie, A., Linton, M., McKay, A., Fearon, A. M., & Patterson, M. F. (2009). Defining the stability interfaces of apple juice: Implications on the optimisation and design of High Hydrostatic Pressure treatment. Innovative Food Science & Emerging Technologies, 10(4), 396–404.

    Article  CAS  Google Scholar 

  • Van Hekken, D. L., Tunick, M. H., Farkye, N. Y., & Tomasula, P. M. (2013). Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco. Journal of Dairy Science, 96(10), 6147–6160.

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Gutiérrez, J. L., Quiles, A., Hernando, I., & Pérez-Munuera, I. (2011). Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharvest Biology and Technology, 61(2), 137–144.

    Article  CAS  Google Scholar 

  • Voigt, D. D., Chevalier, F., Qian, M. C., & Kelly, A. L. (2010). Effect of high-pressure treatment on microbiology, proteolysis, lipolysis and levels of flavour compounds in mature blue-veined cheese. Innovative Food Science & Emerging Technologies, 11(1), 68–77.

    Article  CAS  Google Scholar 

  • Wang, C.-Y., Huang, H.-W., Hsu, C.-P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540.

    Article  PubMed  Google Scholar 

  • Wang, Q., Zhao, X., Ren, Y., Fan, E., Chang, H., & Wu, H. (2013). Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat. Meat Science, 94(4), 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Ding, S., Hu, X., Liao, X., & Zhang, Y. (2016). Effects of high hydrostatic pressure on chlorophylls and chlorophyll–protein complexes in spinach. European Food Research and Technology, 242(9), 1533–1543.

    Article  CAS  Google Scholar 

  • Wolbang, C. M., Fitos, J. L., & Treeby, M. T. (2008). The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Science & Emerging Technologies, 9(2), 196–200.

    Article  CAS  Google Scholar 

  • Yagiz, Y., Kristinsson, H. G., Balaban, M. O., & Marshall, M. R. (2007). Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Journal of Food Science, 72(9), C509–C515.

    Article  CAS  PubMed  Google Scholar 

  • Yagiz, Y., Kristinsson, H. G., Balaban, M. O., Welt, B. A., Ralat, M., & Marshall, M. R. (2009). Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, 116(4), 828–835.

    Article  CAS  Google Scholar 

  • Yang, H., Khan, M. A., Yu, X., Zheng, H., Han, M., Xu, X., & Zhou, G. (2016). Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing. Meat Science, 121, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Ye, A., Anema, S. G., & Singh, H. (2004). High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk. Journal of Dairy Science, 87(12), 4013–4022.

    Article  CAS  PubMed  Google Scholar 

  • Yi, J., Kebede, B. T., Hai Dang, D. N., Buvé, C., Grauwet, T., Van Loey, A., … Hendrickx, M. (2017). Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT, 75, 85–92.

    Article  CAS  Google Scholar 

  • Yi, J., Feng, H., Bi, J., Zhou, L., Zhou, M., Cao, J., & Li, J. (2016). High hydrostatic pressure induced physiological changes and physical damages in asparagus spears. Postharvest Biology and Technology, 118, 1–10.

    Article  CAS  Google Scholar 

  • Zamri, A. I., Ledward, D. A., & Frazier, R. A. (2006). Effect of combined heat and high-pressure treatments on the texture of chicken breast muscle (Pectoralis fundus). Journal of Agricultural and Food Chemistry, 54(8), 2992–2996.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., … Zhao, X. (2011). Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126(1), 254–260.

    Article  CAS  Google Scholar 

  • Zhang, F., Dong, P., Feng, L., Chen, F., Wu, J., Liao, X., & Hu, X. (2012). Textural changes of yellow peach in pouches processed by high hydrostatic pressure and thermal processing during storage. Food and Bioprocess Technology, 5(8), 3170–3180.

    Article  CAS  Google Scholar 

  • Zhao, G., Zhang, R., & Zhang, M. (2017). Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. International Journal of Food Science & Technology, 52(1), 3–12.

    Article  CAS  Google Scholar 

  • Zhou, C.-L., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., … Li, Q.-H. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical–chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies, 21, 24–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Saraiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, M.D. et al. (2019). Impact of High-Pressure Processing on Food Quality. In: Roohinejad, S., Koubaa, M., Greiner, R., Mallikarjunan, K. (eds) Effect of Emerging Processing Methods on the Food Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-18191-8_4

Download citation

Publish with us

Policies and ethics