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Abstract. The hardness of formulas at the solubility phase transition of
random propositional satisfiability (SAT) has been intensely studied for
decades both empirically and theoretically. Solvers based on stochastic
local search (SLS) appear to scale very well at the critical threshold, while
complete backtracking solvers exhibit exponential scaling. On industrial
SAT instances, this phenomenon is inverted: backtracking solvers can
tackle large industrial problems, where SLS-based solvers appear to stall.
Industrial instances exhibit sharply different structure than uniform ran-
dom instances. Among many other properties, they are often heteroge-
neous in the sense that some variables appear in many while others
appear in only few clauses.

We conjecture that the heterogeneity of SAT formulas alone already
contributes to the trade-off in performance between SLS solvers and com-
plete backtracking solvers. We empirically determine how the run time of
SLS vs. backtracking solvers depends on the heterogeneity of the input,
which is controlled by drawing variables according to a scale-free distri-
bution. Our experiments reveal that the efficiency of complete solvers
at the phase transition is strongly related to the heterogeneity of the
degree distribution. We report results that suggest the depth of satis-
fying assignments in complete search trees is influenced by the level of
heterogeneity as measured by a power-law exponent. We also find that
incomplete SLS solvers, which scale well on uniform instances, are not
affected by heterogeneity. The main contribution of this paper utilizes
the scale-free random 3-SAT model to isolate heterogeneity as an impor-
tant factor in the scaling discrepancy between complete and SLS solvers
at the uniform phase transition found in previous works.

1 Introduction

The worst-case time complexity of propositional satisfiability (SAT) entails that
no known algorithm can solve it in polynomial time [12]. Nevertheless, many
large industrial SAT instances can be solved efficiently in practice by modern
solvers. So far, this discrepancy is not well-understood.

Studying random SAT instances provides a way to explain this discrepancy
between theory and practice as it replaces the worst case with the average case.
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A large amount of both theoretical and experimental research effort focuses
almost exclusively on the uniform random distribution. Uniform random SAT
instances are generated by choosing, for each clause, the variables included in this
clause uniformly at random among all variables. Uniform random formulas are
easy to construct, and are comparatively more accessible to probabilistic analysis
due to their uniformity and the stochastic independence of choices. The analysis
of this model can provide valuable insights into the SAT problem in general and
has led to the development of tools that are useful also in other areas. However,
considering the average-case complexity of solving uniform random formulas
cannot explain why SAT solvers work well in practice: in the interesting case that
the clause-variable ratio is close to the satisfiability threshold (i.e., the formulas
are not trivially satisfiable or trivially unsatisfiable), SAT solvers that perform
well on industrial instances struggle to solve the randomly generated formulas
fast and algorithms tuned for random formulas perform poorly on industrial
instances [14,27,33].

The comparative efficiency of existing solvers on real-world SAT instances
is somewhat surprising given not only worst-case complexity theoretic results,
but also the apparent hardness of uniform random formulas sampled from the
critically-constrained regime [8,31]. Katsirelos and Simon [26] comment that
even though the ingredients for building a good SAT solver are mostly known, we
still currently cannot explain their strong performance on real-world problems.

This picture is further complicated by the fact that solvers based on stochas-
tic local search (SLS) appear to scale polynomially in the critically constrained
region of uniform random SAT, whereas complete backtracking solvers scale
exponentially on these formulas [32]. We are interested in identifying structural
aspects of formulas that do not occur in uniform random instances, but can
somehow be exploited by solvers.

Industrial SAT instances are complex, and possess many structural charac-
teristics. Among these are modularity [4], heterogeneity [2], self-similarity [1],
and locality [22]. Modularity measures how well the formula (when modeled as a
graph representing the inclusion relation between variables and clauses) can be
separated into communities with many internal and few external connections. It
is generally assumed that the high modularity of industrial instances is one of
the main reasons for the good performance of SAT solvers. Though it is possible
to develop models that generate formulas with high modularity [21,35], there
is, however, no established model with this property. Enforcing high modularity
can lead to complicated stochastic dependencies, making analysis difficult.

Heterogeneity measures the imbalance in distribution of variables over the
clauses of the formula. A highly heterogeneous formula contains only few vari-
ables that appear in many clauses and many variables appearing in few clauses.
Many industrial instances, particularly from formal verification, exhibit a high
heterogeneity. Ansótegui, Bonet, and Levy [3] proposed a number of non-uniform
models that produce heterogeneous instances. One such model they introduced
was the scale-free model. Often, the degree distribution (the degree of a vari-
able is the number of clauses containing it as a literal) roughly follows a
power-law [2], i.e., the number of variables of degree d is proportional to d−β .
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Fig. 1. Empirical cumulative degree distributions on power-law formulas for different
β, n = 10000, and hardware model checking instances from SAT 2017 competition.
Power-law distributions appear as a line on a log-log plot with slope determined by β.
As β increases, we observe the power-law distributions converging to uniform (β = ∞).

Here β is the power-law exponent. Figure 1 illustrates a number of empirical
cumulative degree distributions for both industrial and synthetic power-law for-
mulas. The industrial formulas come from the SAT-encoded deep bound hard-
ware model checking instance benchmarks submitted to the 2017 SAT competi-
tion [7] that had measured empirical power law exponents below 5.

A degree distribution that follows a power law is only a sufficient condition
for heterogeneity. Nevertheless, we argue that the scale-free model allows for
fine-tuned parametric control over the extent of heterogeneity in the form of the
power-law exponent β (see Proposition 1).

No single one of the above properties (e.g., heterogeneity, modularity, local-
ity, etc.) can completely characterize the scaling effects observed on industrial
instances vs. uniform random instances. However, a first step toward explain-
ing the performance of SAT solvers in different environments is to isolate these
features and determine what kinds of structural properties do influence the run
time of different solvers. Our goal in this paper is to empirically determine the
impact of heterogeneity (as produced by a scale-free degree distribution) on the
run time of SLS-based vs. complete backtracking solvers.1

Though it seems natural that a more realistic model is better suited to explain
the run times observed in practice, it is unclear whether the heterogeneity is

1 A solver is complete if it always finds a solution or a proof that no solution exists.
In contrast, SLS-based solvers only terminate if they find a solution.
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actually even a relevant factor. It might as well be that other mentioned proper-
ties, such as modularity, or self-similarity lead to good run times independent of
the degree distribution. The experiments Ansótegui et al. [3] performed on their
different models indicate that the heterogeneity in fact helps solvers that also
perform well on industrial instances. However, these experiments did not address
the phenomenon observed by Mu and Hoos [32] where SLS solvers outperform
complete solvers. Our goal is to demonstrate that heterogeneity of the degree
distribution has a strong positive impact on the scaling of complete solvers, but
not on SLS-based solvers.

To study this impact, we perform large-scale experiments on scale-free ran-
dom 3-SAT instances with varying power-law exponents β. We note that small
power-law exponents lead to heterogeneous degree distributions while increas-
ing β makes the instances more and more homogeneous; see Fig. 1. In fact, for
β → ∞, scale-free random 3-SAT converges to the uniform random 3-SAT model.
Thus, it can be seen as a generalization of the uniform model with a parameter
β that directly adjusts the heterogeneity.

Our experiments clearly show a distinct crossover in performance with respect
to a set of complete backtracking (CDCL- and DPLL-based) SAT solvers and
a set of SLS-based solvers as we interpolate between highly heterogeneous
instances and uniform random instances. Moreover, the performance of SLS-
based solvers remain relatively unaffected by the degree distribution. These
results might partially explain the effect observed on uniform random instances
by Mu and Hoos [32]. In this case, complete backtracking solvers scale poorly
on random instances with a homogeneous degree distribution, while SLS-based
solvers perform best.

2 Scale-Free Formulas and Heterogeneity

A random 3-SAT formula Φ on n Boolean variables x1, . . . , xn and m clauses is a
conjunction of m clauses Φ := C1∧C2∧· · ·∧· · ·∧Cm where Ci := (�i,1∨�i,2∨�i,3)
is a disjunction of exactly three literals. A literal is a possibly negated variable. A
formula Φ is satisfiable if there is exists variable assignment for which Φ evaluates
to true.

The canonical distribution for random 3-SAT formulas is the uniform distri-
bution, which is the uniform measure taken over all formulas with n variables
and m clauses. The uniform 3-SAT distribution is sampled by selecting uniformly
m 3-sets of variables and negating each variable with probability 1/2 to form
the clauses of the formula. The scale-free random 3-SAT distribution is similar,
except the degree distribution of the variables is not homogeneous.

In the scale-free model introduced by Ansótegui, Bonet and Levy [3], a for-
mula is constructed by sampling each clause independently at random. In con-
trast to the classical uniform random model, however, the variable probabilities
pi := Pr(X = xi) to choose a variable xi are non-uniform. In particular, a
scale-free formula is generated by using a power-law distribution for the variable
distribution. To this end, we assign each variable xi a weight wi and sample it
with probability pi := Pr(X = xi) = wi∑

j wj
. To achieve a power-law distribution,
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we use the following concrete sequence of weights.

wi :=
β − 2
β − 1

(n

i

) 1
β−1

(1)

for i = 1, 2 . . . , n, which is a canonical choice for power-law weights, cf. [9]. This
sequence guarantees

∑
j wj → n for n → ∞ and therefore

pi → 1
n

β − 2
β − 1

(n

i

) 1
β−1

. (2)

To draw Φ, we generate each clause Ci as follows. (1) Sample three variables
independently at random according to the distribution pi. Repeat until no vari-
ables coincide. (2) Negate each of the three variables independently at random
with probability 1/2.

Note that Ansótegui et al. [3] use α instead of β as the power-law exponent
and define β := 1/(α−1). We instead follow the notational convention of Chung
and Lu, cf. [9].

As already noted in the introduction, the power-law exponent β can be seen
as a measure of how heterogeneous the resulting formulas are. This can be for-
malized as follows.

Proposition 1. For a fixed number of variables, scale-free random 3-SAT con-
verges to uniform random 3-SAT as β → ∞.

Proof. First observe that, for any fixed n and β → ∞, the weights wi as defined
in Eq. (1) converge to 1. When generating a scale-free random 3-SAT instance,
variables are chosen to be included in a clause with probability proportional to
wi. Thus, for β → ∞, each variable is chosen with the same probability 1/n as
it is the case for uniform random 3-SAT. ��

We note that the model converges rather quickly: The difference between the
weights is maximized for w1 and wn (with w1 being the largest and wn being
the smallest). By choosing β = c log n, the maximum weight difference w1 − wn

converges to the small constant e1/c −1 for growing n. Thus, when choosing β ∈
ω(log n) (i.e., β grows asymptotically faster than log n), this difference actually
goes to 0 for n → ∞, leading to the uniform model. This quick convergence can
also be observed in Fig. 1 where the difference between β = 8 and the uniform
case (β = ∞) is rather small.

2.1 The Solubility Phase Transition

The constraint density of a distribution of formulas on n variables and m clauses
is measured as the ratio of clauses to variables m/n. A phase transition in a
random satisfiability model is the phenomenon of a sharp transition as a function
of constraint density between formulas that are almost surely satisfiable and
formulas that are almost surely not satisfiable. The location of such a transition
is called the critical density or threshold.
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Threshold phenomena in the uniform random model have been studied for
decades. The satisfiability threshold conjecture maintains that if Φ is a formula
drawn uniformly at random from the set of all k-CNF formulas with n variables
and m clauses, there exists a real number rk such that

lim
n→∞ Pr{Φ is satisfiable} =

{
1 m/n < rk;
0 m/n > rk.

This transition is sharp [18] in the sense that the probability of satisfiability as
a function of constraint density m/n approaches a unit step function as n → ∞.
For k = 2, the location of the transition is known exactly to be r2 = 1 [10]. For
k ≥ 3, bounds asymptotic in k [11] and exact results for large constant k [16]
are now known.

The phenomenon of a sharp solubility transition is also interesting from
the perspective of computational complexity and algorithm engineering, since
it appears to coincide with a regime of formulas that are particularly difficult to
solve by complete SAT solvers [31].

In the scale-free model, the location of the critical threshold rk(β) is a func-
tion of power-law exponent β. In the case of k = 2, it was proved that the critical
density is bounded as r2(β) ≤ (β−1)(β−3)

(β−2)2 [19]. Recently, Levy [28] proved this
bound for k = 2 is tight. Similar to the uniform model, the critical density rk(β)
for k > 2 seems to be more elusive.

2.2 Characterizing the Scale-Free Phase Transition

Ansótegui et al. [3] empirically located the phase transition of the scale-free 3-
SAT model and noted that the critical density for very low β was small, and
the threshold approaches the critical point of the uniform model at ≈4.26 as
β → ∞.2 They report the critical threshold values as a function of β by testing
200 formulas at each value of β in the set {2, 7/3, 3, 5,∞}.

Nevertheless, a number of details about the nature of the scale-free phase
transition is still lacking from this picture. First, the sharpness of the phase
transition as β evolves is not immediately clear. Furthermore, even though most
previous work assumes the hardest instances are located at the phase transition
region [3, Section 4], it is not obvious what the shape and extent of an easy-
hard-easy transition (if it even exists) would be for scale-free formulas, nor is
it known how the effect is influenced by β. Finally, previous works have so far
not addressed the curious phenomenon of SLS solvers and complete solvers that
seem to scale so differently on uniform random and industrial problems. We
tackle this issue in the next section.

To better characterize the phase transition in the scale-free model, we gen-
erated formulas as follows. For any particular n and β, taking a sequence of 300
equidistant values αi ∈ [2, 5] for i ∈ {1, . . . , 300}, we sample 100 formulas from

2 We are translating the term they refer to as β to the term we refer to as β, as
mentioned above.
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Fig. 2. Proportion of satisfiable formulas (n = 500) as a function of constraint density
m/n for various power-law exponents β. Threshold approaches the critical density of
the uniform random 3-SAT model: r3 ≈ 4.26.

the scale-free distribution with n variables, power-law exponent β, and density
αi (i.e., m = αin). In other words, each value of n and β corresponds to 30000
formulas at various densities.

To estimate the location of the critical threshold, we decide the satisfiability
of each formula with the DPLL-based solver march hi [25]. We then find the
density αi yielding half the formulas satisfiable. This is the approach for locating
the threshold in the uniform model [13]. However, in the case of the random
scale-free model, the threshold depends on β.

Using this approach, we generated sets of formulas at the phase transition
varying both n and β. For each n ∈ {500, 600, 700}, we generated formulas with
β ∈ {2.5, 2.6, . . . , 5.0}. We find the run times of the complete solvers exhibit
a strong positive correlation with β. This is consistent with complete solvers
performing poorly on uniform random (β = ∞) problems of even modest sizes,
but it unfortunately restricts us to more modest formula sizes. To determine the
effect of very large power-law exponents, we also generated formulas for n = 500,
β ∈ {5, 6, 7, 8}.

The sharpness of the transition appears to evolve with β. Figure 2 reports
the proportion of satisfiable formulas as a function of constraint density with
n = 500. As β → ∞, the solubility transition shifts toward the supposed critical
density of the uniform random 3-SAT model, i.e., r3 ≈ 4.26. This is consistent
with previous work on this model, but we also can see from this that the transi-
tion becomes steeper with increasing β, despite the fact that n is held constant.
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Fig. 3. Median solver times for march hi on formulas of size n = 700 as β evolves
toward the uniform distribution. Red triangles ( ) mark the exact density at which
empirical threshold was determined. (Color figure online)

On the uniform random model, the hardest formulas for complete backtrack-
ing solvers lie at the solubility phase transition because they produce deeper
search trees [31]. We also observe this so-called easy-hard-easy pattern for the
scale free model in the trends for median time for march hi to solve formulas of
size n = 700 in Fig. 3. Moreover, the power-law exponent β is strongly correlated
with the height of the hardness peak and we conjecture that the complexity of
the resulting search tree is strongly coupled to the heterogeneity of the degree
distribution. The empirically determined critical point, indicated in the figure
with a red triangle ( ) tightly corresponds with the hardness peaks.

3 Scaling Across Solver Types

Our main goal is to understand the influence of the heterogeneity of the degree
distribution at the phase transition on SLS-based solvers and complete back-
tracking solvers. The original paper by Mu and Hoos [32] investigated three
DPLL-based SAT solvers: kcnfs [15], march hi [25], and march br [24]; and three
SLS-based solvers: WalkSAT/SKC [34], BalancedZ [29], and ProbSAT [5]. They
found the three DPLL-based solvers scaled exponentially at the uniform critical
threshold and the SLS-based solvers did not. To investigate the role of hetero-
geneity in this context, we used the same solvers as the original Mu and Hoos
paper.
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Fig. 4. Median solver time at the phase transition for all solvers on formulas with
n = 700. Top of plot corresponds to one hour cutoff.

In addition to the DPLL solvers, we tested MiniSAT [17], and the MiniSAT-
based CDCL solver MapleCOMSPS [30]. These choices are motivated by a num-
ber of reasons. First, MiniSAT has performed well in industrial categories in
previous SAT competitions, as has MapleCOMSPS on the Applications Bench-
mark at the SAT 2016 competition and the Main Track and No Limit Track at
the SAT 2017 competition. Second, we want to know if architectural decisions
such as branching heuristic, look-ahead, backtracking strategy, or clause learn-
ing has any effect. We also supplemented the SLS-based solvers with YalSAT [6],
which won first place in the Random Track of the SAT 2017 competition.

SLS-based solvers are incomplete in the sense that they can only decide sat-
isfiability. Studies that involve such solvers need to be constrained to satisfiable
formulas [20,32,36]. We use the standard rejection sampling approach to filtering
for satisfiable formulas. For each n and β value, we filtered out the unsatisfiable
formulas at the phase transition located as described above. For each of these
formulas, we ran each of the above SLS-based and complete solvers to compare
the required CPU time until a solution was determined. We imposed a solver
cutoff time of one hour. In Fig. 4, we chart the median solution time on formulas
of size n = 700 at the phase transition as a function of power law exponent β. For
low β (highly heterogeneous) formulas, the complete solvers outpace the SLS-
based solvers (though solution time for both is fast). We observe a crossover
point around β = 3.5 where the required time for complete solvers begins to
dominate the median time for the SLS techniques.
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Fig. 5. Median solver time at the phase transition for all solvers on formulas with β =
3 ( ) and β = 4 ( ).

Figure 4 reveals that the CDCL-based solvers MiniSAT and MapleCOM-
SPS had worse performance degradation with decreasing heterogeneity than the
DPLL-based solvers. Moreover, YalSAT seems to perform worse on highly het-
erogeneous formulas. This is interesting behavior, as YalSAT implements vari-
ants of ProbSAT with a Luby restart strategy and is conjectured to be identical
to ProbSAT on uniform random instances [6]. Our results confirm that YalSAT
and ProbSAT are indistinguishable as β increases, but we have evidence that the
restart schedule might somehow affect performance on heterogeneous formulas.

To better quantify the influence of scaling with n, we consider the median
solver time as a function of n for two representative values of β (3 and 4) in
Fig. 5. To obtain a clearer picture, we repeated the formula generation process
for smaller formulas (n = 100, 200, . . .). The exponential scaling in complete
solvers with large β (dashed lines) is easy to observe in this plot. On smaller β
(solid lines), the complete solvers scale more efficiently.

To take variance into account, we compare solver performance in Fig. 6.3

Here we have removed the CDCL-based solvers and YalSAT for clarity. This is
therefore the solver set originally investigated by Mu and Hoos [32]. We again
can identify a distinct crossover point at β = 3.5. Figure 7 repeats the results for
n = 500. For this size of formula, the small β regime is extremely easy, and the
results are somewhat obscured. However, these formulas are small enough that

3 In all box blots, the boxes show the interquartile range, the bold line is the median,
and the whiskers extend to 3/2 · IQR below (respectively, above) the 25th (respec-
tively, the 75th) percentile. All points beyond this are outliers.
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Fig. 6. CPU time to solve formulas at the scale-free phase transition with n = 700.

Fig. 7. CPU time to solve formulas at the scale-free phase transition with n = 500.
Rightmost group (β = ∞) denotes satisfiable uniform random formulas with n = 500
and m = 2131.



128 T. Bläsius et al.

we are able to consistently solve high β formulas, and we report the results up
to β = 8. The rightmost group of the figure represents filtered uniform random
formulas with n = 500 and m = 2131. To estimate the correct critical density
for the uniform formulas, we used the parametric model from [32, Eq. (3)].

4 Effect of Heterogeneity on Search Trees

The discrepancy in solver efficiency across different levels of heterogeneity
observed in the preceding section suggests that the degree distribution strongly
affects the decisions of a wide range of solvers in a systematic way. We hypothe-
size that, for fixed n and m, heterogeneous 3-SAT formulas have more satisfying
assignments on average, and these assignments tend to be more quickly reach-
able, because partial assignments tend to produce more implied literals.

Even for small formulas, it is infeasible to enumerate all satisfying assign-
ments. Propositional model counting offers a technique in the form of an exhaus-
tive extension to DPLL in which the branchpoint after a satisfying assignment
is followed [23]. When a branch corresponding to a partial assignment of t fixed
variables is marked as satisfiable at depth d, it is already possible to conclude
that there are 2n−t solutions at depth at least d. Using this technique, we can
count the satisfying assignments to formulas generated by the scale-free model
to measure the influence of heterogeneity on the solution count. The left panel of
Fig. 8 reports the number of satisfying assignments found in satisfiable scale-free
formulas generated at each β value.

Fig. 8. Left: count of satisfying assignments on satisfiable scale-free formulas at each
power-law exponent at the phase transition. For each β ∈ {2.5, 3.0, . . . , 4.5, ∞}, we
filter from 1000 generated random formulas at the phase transition with n = 100.
Right: empirical degree distributions reporting the proportion of solutions at depth
equal or greater than x aggregated over all formulas at each β value.
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To obtain a more detailed picture, we plot the empirical cumulative distribu-
tion functions of solution depth on the right panel of Fig. 8. The curves represent
the proportion P (x) of solutions at a depth equal or greater than x.

As mentioned above, shallower solutions arise from the abundance of implied
literals. We find that highly heterogeneous formulas tend to have many more con-
straint propagations leading to either satisfying assignments or contradictions.
We recorded this data and display it in Fig. 9.

Fig. 9. Number of constraint propagations leading to a satisfying assignment or con-
tradiction as a function of β.

4.1 Relaxed Bounded Model Checking Instances

Our aim has been to isolate heterogeneity as an impacting factor in the relative
performance discrepancy between SLS solvers and complete solvers. Neverthe-
less, we also conjecture that the behavior of complete solvers on synthetic scale-
free formulas is comparable to their behavior on certain industrial instances with
power-law degree distributions. To investigate this, we compare the complexity of
the remaining formula after selecting a branching literal during runs of march hi,
which was the highest performing backtracking solver for our data. Each solid
line in Fig. 10 displays the average remaining formula complexity measured as
clauses not yet satisfied as a percentage of original formula size. These run aver-
age are taken over all satisfiable powerlaw formulas of n = 500 for different values
of β. Note that some early averages exceed 100%, which likely occurs because
march hi also adds binary resolvents during the solving process. Moreover, the
complexity may increase during the run, as complete solvers utilize backtracking.
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We compare this with the well-known BMC DIMACS benchmark set from
CMU4. Our motivation for this choice was to utilize a widely available set of
bounded model checking formulas of reasonable size. To provide a fair com-
parison to the filtered scale-free formulas, we “relaxed” each BMC formula by
iteratively removing a single clause at random until the first time it was sat-
isfiable. This preserves the statistical characteristics of the degree distribution
while producing a satisfiable formula.

Fig. 10. Average complexity of the remaining formula depending on the percentage of
already made branching decisions in a run. Reported are runs of march hi on scale-free
formulas of varying β, and satisfiable real-world model checking formulas: uniform ( ),
industrial ( ), and synthetic ( ).

The profile of the industrial bounded model checking formulas closely
matches the solver behavior on the heterogeneous scale-free formulas, whereas
the solver behavior on the uniform suite corresponds to the behavior on more
homogeneous formulas. We conjecture that the power-law degree distribution in
the bounded model checking formulas (cf. Fig. 1) affect the search tree in similar
ways.

5 Conclusions

We have investigated a parameterized distribution over propositional formulas
that allows us to carefully control the heterogeneity (via the power-law expo-
nent) to interpolate smoothly between highly heterogeneous random formulas
4 http://fmv.jku.at/bmc/.

http://fmv.jku.at/bmc/
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and nearly-uniform random formulas. This allows us to observe the exact influ-
ence of this kind of heterogeneity on hardness for two different solver classes. Our
empirical analysis uncovers an interesting crossover effect in the performance of
SLS-based vs. complete backtracking solvers, depending on the heterogeneity.

We summarize our main findings as follows. (1) Complete solvers tuned for
industrial instances perform significantly better on heterogeneous formulas than
uniform formulas. This is likely due to the fact that the search space of highly
heterogeneous formulas have more solutions, and solutions tend to be shallower
in the decision tree. (2) Incomplete SLS-based solvers, which are typically recog-
nized for their performance on uniform random k-SAT, do not benefit much (if
at all) from heterogeneity. (3) Random instances (even heterogeneous ones) close
to the satisfiability threshold are harder to solve than many industrial instances.

The first two insights are a step towards understanding the disaccording run-
time behaviors of different solvers on industrial and random instances. More-
over, these findings suggest that the behavior of SLS-based solvers are rela-
tively heterogeneity-invariant, whereas complete solvers are far more sensitive
to the homogeneous degree distributions of uniform random formulas. This may
explain, at least in part, the exponential scaling of complete solvers at the uni-
form phase transition observed by Mu and Hoos [32].

On the other hand, the third insight shows that heterogeneity alone cannot
explain why industrial instances can be solved so fast in practice. On the upside,
this means that random scale-free formulas chosen close to the satisfiability
threshold can serve as hard benchmark instances. It would be interesting to see
whether incomplete solvers can be tuned to catch up to (or even outperform)
complete solvers on heterogeneous instances. Due to the similarities between
heterogeneous random formulas and industrial instances with respect to run-
time behavior, we believe that tuning solvers for heterogeneous random formulas
can actually lead to techniques that also help solving industrial instances faster.

The behavior of solvers on uniform random formulas is well-studied. How-
ever, there is no obvious reason to believe that solver performance near the
scale-free phase transition is identical to performance near the uniform phase
transition. Our work suggests that there is some kind of structure in formu-
las with heavy-tailed degree distributions that is being exploited by complete
solvers. It is important to stress that a scale-free degree distribution alone is not
enough to characterize the complex structure of real problems. Our results pro-
vide context by isolating heterogeneity (as realized by the power-law exponent)
as an important feature impacting the performance of state-of-the-art CDCL-
and DPLL-based SAT solvers. Other non-uniform models exist, and a future
avenue of work is to investigate such models, especially the Popularity-Similarity
model recently introduced by Giráldez-Cru and Levy [22], which can generate
formulas with both a scale-free degree distribution and high modularity.
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