
Developing Agent-based Smart Objects
for IoT Edge Computing:

Mobile Crowdsensing Use Case

Teemu Leppänen1, Claudio Savaglio2, Lauri Lovén1,
Wilma Russo2, Giuseppe Di Fatta3, Jukka Riekki1, Giancarlo Fortino2

1 Center for Ubiquitous Computing, University of Oulu, Finland
teemu.leppanen@oulu.fi, lauri.loven@oulu.fi, jukka.riekki@oulu.fi

2 Department of Informatics, Modelling, Electronics and Systems,
University of Calabria, Italy

csavaglio@dimes.unical.it, w.russo@unical.it, g.fortino@unical.it
3 Department of Computer Science, University of Reading, United Kingdom

g.difatta@reading.ac.uk

Abstract. Software agents have been exploited to handle the inherent
dynamicity in the Internet of Things (IoT) systems, as agents are ca-
pable of autonomous, reactive and proactive operation in response to
changes in their local environment. Agents, operating at the network
edge, enable leveraging cloud resources into the proximity of the user
devices. However, poor interoperability with the existing IoT systems
and the lack of a systematic methodology for IoT system development
with the agent paradigm have hindered the utilization of software agent
technologies in IoT. In this paper, we describe the development process
and the system architecture of a mobile crowdsensing service, provided
by an agent-based smart object that comprises agents in both edge and
user devices. Mobile crowdsensing is an example of such an application
that relies on large-scale participatory sensor networks, where partici-
pants have active roles in producing information about their environ-
ment with their smartphones. This scheme introduces challenges in han-
dling dynamic opportunistic resource availability, due to mobility and
unpredicted actions of the participants. We present how ACOSO-Meth
(Agent-oriented Cooperative Smart Object-Methodology) guidelines the
development process systematically from the analysis to the actual agent-
based implementation of a crowdsensing service. The implementation is
done with the ROAgent framework that utilizes resource-oriented ar-
chitecture and REST principles to integrate agent-based smart objects
seamlessly with the programmable Web.

Keywords: Smart Object · Edge computing · Internet of Things ·Agent-
based computing · Programmable Web

1 Introduction

The Internet of Things (IoT) vision of a seamless integration of the cyber and
physical worlds can be realized with Smart Objects (SO) as the fundamental



2 Leppänen et al.

building blocks [1]. These are common objects of any context (industry, enter-
tainment, healthcare, etc.) able to interact with conventional computer systems,
human users and the physical environment, thanks to their embedded sensing,
processing, communication and actuation units. Moreover, SOs exhibit intel-
ligence, autonomy, reactivity, proactivity and social skills in their operation,
thus enabling, in theory, straightforward provision of advanced, decentralized,
and cyberphysical services. In practice, however, the development of SO’s re-
quires established, effective and flexible metaphors, techniques, methods and
tools for systematically conceptualizing, designing and implementing complex,
autonomous and interactive SOs. In addition, interoperability is required be-
tween the SOs and the existing IoT systems.

The SO features listed above can be achieved with the agent-based computing
paradigm [2]. Agents are natively autonomous, reactive, proactive, social and, in
some cases, mobile, being able to relocate themselves at runtime. With agents’
capabilities, SOs can observe their operational environment, react to changes
and interact with other components and with each other as a multiagent sys-
tem (MAS). In such a way, agent-based SOs are enabled to concretely bring
smartness, autonomy and interactivity into the operation of IoT systems [3].

Recently, edge computing [4] brings computational power and data storage
into the proximity of user devices. The aim is to improve IoT application ex-
ecution by reducing latencies and providing more bandwidth locally. Benefits
are seen in robustness and security, and also, data traffic on the backbone net-
work is reduced. However, such a decentralized model requires capabilities for
autonomy, interoperability and smartness in application execution that takes the
local circumstances into account. Here, agent-based SO’s can be exploited in the
development and implementation of such distributed applications. Mobile crowd-
sensing [5] is an example of a distributed IoT application, which is beneficial to
leverage into the edge and where agent-based SO enables context-aware oper-
ation between the edge and user devices. Application components in the edge
perform computationally heavy tasks and interact with resource-constrained user
devices, i.e., smartphones, that perform data collection in dynamic and oppor-
tunistic settings as guided by agents.

In this paper, we analyze, design and implement a mobile crowdsensing SO
as an IoT edge application. We tackle the methodology and interoperability
challenges by following the guidelines provided by the agent-oriented IoT devel-
opment methodology ACOSO-Meth [6] and the resource-oriented architecture
(ROA) [7] principles. We utilize the ROAgent framework [8,9,10] to develop the
agent-based SO, where the functionality is distributed as a MAS across the edge
devices and user devices. The SO exposes a service on the edge platform that,
first, provides a set of smartphones that meet specific criteria for participation
into crowdsensing campaigns and, second, interacts with mobile agents in the
smartphones to execute the campaign, as in [11]. The analysis, design and im-
plementation of such a multiagent-based SO leads to a real-world prototype.

The rest of the paper is organized as follows. In Section 2, we describe the
operation of crowdsensing SO as a MAS. In Section 3, we present how the crowd-



Developing Agent-based Smart Objects for IoT Edge Computing 3

Fig. 1: System architecture of crowdsensing SO with the ROAgent framework.

sensing SO is developed accordingly exploiting both the ACOSO-Meth agent-
oriented approach and ROA resource-oriented paradigm. Section 4 then discusses
implications of the approach and concludes the paper.

2 Agent-based Crowdsensing System

Crowdsensing frameworks are typically cloud-based and centrally-controlled [5].
However, by following such a model, it is difficult to react to changes in the
opportunistic environment and to the participants’ behavior, possibly result-
ing in a significant reduction of data quality. Conversely, as shown in previous
works, e.g., [11,12,13], agents and MAS can be effectively exploited to address
the dynamicity in crowdsensing applications. In fact, agent-based development
also allows enhancing privacy and energy efficiency in context-aware way, par-
ticularly beneficial for resource-constrained devices, such as smartphones [11].

Figures 1 and 2 present the agent-based crowdsensing SO system architecture
within the ROAgent framework. The framework fully complies with ROA and
the fundamental idea is to facilitate Representational state transfer (REST) prin-
ciples [7] for agent-based applications in IoT in a standardized way [8,9,10]. As
discussed in [10], the ROA approach can be optimized for resource-constrained
IoT devices, while still enabling agent operations and interactions with other
system components. The main abstraction is a resource that can be anything
that has a value, e.g., an IoT device, its sensors and data, an edge device in the
network infrastructure running VMs, an external data source (e.g., a Web ser-
vice), or a software agent. The resources are accessed through a RESTful uniform
interface that is based on the combined semantics of HTTP methods, resource
URLs and HTTP response codes. The ROAgent framework extends this uni-
form interface to agent operations and interactions. In addition, the framework
follows FIPA specifications that enable a standardized way to integrate agents
into a MAS. A set of FIPA components are implemented, i.e., Directory Facili-
tator (DF), Agent Management System (AMS) and Message Transport System
(MTS). The DF is implemented as Distributed Resource Directory (DRD) [14].



4 Leppänen et al.

Fig. 2: The SO components in the system devices.

The framework operation requires system devices to register their resources into
the DRD, which enables runtime lookup for available resources in a given loca-
tion. MTS is enabled through a Web server with HTTP as the communication
and interaction protocol that implements the uniform interface.

Figure 2 illustrates the agent-based crowdsensing SOs internal architecture
and depicts the agents interactions as a MAS. Both Flock and Phone agents
are implemented with the ROAgent platform [10]. The Flock agent platform is
implemented within a Edge Virtual Machine (VM), which enables typical edge
computing operations to instantiate and transfer the platform between edge
devices. In the smartphones, the ROAgent platform runs an AMS to enable
agent operations in the device and provides a database (DB) for data storage
including agent knowledge base, i.e., SO data, and its interaction results. In
detail, the agent’s roles are the following. First, the Flock agent detects suitable
participants, with the required sensor type, in a given area from the list its
connected phones provided by the Wi-Fi access points (AP in Figure 1) and the
DRD. Flocks of participants, with similar behavior, can be detected from these
data that meet the campaign requirements. For example, a set of participants
moving into the same direction can be utilized to provide data with better quality
than with a single participant. Moreover, movement patterns of participants
can be detected, to get information about their performance and to control
participation. Second, the Flock agent and Phone agents, in the participants
smartphones, interact as a MAS to execute the campaign aiming to fulfill its
goals and reacting to participants’ behaviors.

3 Systematic approach to Crowdsensing SO development

In this section, we apply the ACOSO-Meth [6] with ROA general guidelines
[7] for the development of ROAgent-based crowdsensing SO. Initially, ACOSO-
Meth and the ROAgent framework have been conceptually integrated in [15] by
re-engineering the ROAgent framework according to the methodology.



Developing Agent-based Smart Objects for IoT Edge Computing 5

Fig. 3: Crowdsensing SO High-Level metamodel of the analysis phase.

We provide an actual real-world development of an agent- and SO-based
crowdsensing service according to ACOSO-Meth and ROAgent framework guide-
lines. Regarding the service functionality, crowdsensing campaign participants
are recruited based on their reputation, that can be monitored by an agent [11].
However, integrating participation into the existing traveling routes improves
possibilities of participation [16], which justifies the presented crowdsensing ser-
vice. In this paper, our focus is not on developing novel methods for agent-based
crowdsensing participant recruitment nor for flock detection, e.g., [17,18].

3.1 Analysis phase

At the analysis phase, the ACOSO-Meth exploits of the SO High-Level meta-
model to specify SO basic features and information. This is a very general meta-
model, supporting the preliminary SO description regardless of any technological
or behavioral specification. Indeed, the SO High-Level metamodel outlines how
the SO can be identified, the provided services with related composing operations
and needed augmentation devices (e.g., sensors, actuators, processing units), and
who are the SO users [19,20].

The SO High-Level metamodel instantiated on the Crowdsensing SO is shown
in Figure 3. The SO provides the SmartMobility Service for crowdsensing Cam-
paigners as the users, who launch campaigns and need to recruit Participants
meeting the campaign-specific requirements. For example, participants need to
be in the target location in a specified timeframe. The SmartMobility Service is
realized through two Operations: IndividualMobility to get the movement trace



6 Leppänen et al.

of an individual participant and FlockMobility to detect participant flocks in the
specified area. As service content, the SO provides a list containing timeseries
of movement traces of individual participants and detected flocks that meet the
campaign parameters. This list provides the campaigners a selection of possi-
ble participants to recruit. The quality of SmartMobility Service is expressed in
terms of two metrics or Quality of Service (QoS) Indicators: the detection accu-
racy of the individual trace and the similarity of participants’ movements within
a flock. In order to provide SmartMobility Service, the Crowdsensing SO lever-
ages augmentation devices such as smartphones (Sensing Device), the Edge VM
and Wi-Fi APs (Computer Device). The lists of APs in the target area and their
currently connected smartphones constitute the Crowdsensing SO Status. The
distinctive SO information are reported by its FingerPrint : the SO is identified
by its resource URL as the unique identifier and the service creator. Physical
Location is in the premises of the Center for Ubiquitous Computing, University
of Oulu, Finland, and the SO Coverage Area (Physical Property) is the center
zone of city of Oulu (about 1 km x 1 km).

3.2 Design phase

At the design phase, the ACOSO-Meth guides the refinement of the SO High-
Level Metamodel with the goal of obtaining a design metamodel. This, indepen-
dently of technological specifications or low level details, highlights the functional
components the SO, including communication, augmentation, service provision
and information management, and their interactions, through the adopted com-
puting paradigms and enabling mechanisms. By complying with the ROAgent
framework design specifications [8,9,10], the SO High-Level Metamodel has been
refined in the the ROA SO Metamodel [15].

The instantiated ROA SO Metamodel on the Crowdsensing SO is shown
in Figure 4. Following the ROAgent framework, the Crowdsensing SO is based
on a lightweight and platform-neutral agent. The agent functionality is defined
through resource abstractions, interactions realized via RESTful uniform inter-
face and the agent operations are event-driven.

The Crowdsensing SO lifecycle is specified in terms of Behaviors. A Behavior
consists of one or more Tasks, which are coordinated by the Crowdsensing SO
Manager. The tasks refer either to internal system operations (SystemTask)
or to SO application-specific functionalities (ServiceTask). The latter category
contains IndividualTrace tasks that provide individual movement traces, and the
FlockTrace task that provides flock movement traces. Both tasks acquire input
through the uniform interface and resource URLs, which guarantees transparent
access regardless of resource type and location, according to ROA.

Within the ROAgent framework, each Resource is identified with a URL
that is registered to the DRD. Resources needed for the presented crowdsens-
ing application are listed in Table 1. With respect to the Crowdsensing SO, the
resources are: (i) Internal Resources which are logically located within the de-
vices hosting the SO ROAgents and their internal components, i.e. Edge VMs
host the Flock agent and the smartphones host the Phone agents, (ii) External



Developing Agent-based Smart Objects for IoT Edge Computing 7

Fig. 4: Crowdsensing SO ROA Metamodel of the design phase.

Resources which are physically hosted in devices that are not part of the Crowd-
sensing SO, i.e., smartphones’ sensors, or other devices co-located within the
smart city infrastructure (i.e., DRD and Wi-Fi APs), and (iii) Device Resources
which are SO sensors, actuators, and computing units, i.e., smartphones as agent
platforms and their sensors. The SO ROAgentKB contains the current results
of the agent programs, the agent’s internal data, and the campaign parameters
including required sensor data type, area, timeframe and the ending criteria.

The SO service resources in Table 1, including the resources provided by
agents, are utilized as follows. The DRD, through the resource drd, allows re-
trieving a list of APs and information about individual devices connected to
the framework. The WI-Fi APs, through the resource wifi, provide real-time in-
formation of smartphone availability, namely lists of their currently connected
smartphones. The Flock Agent provides participant and flock movement traces,
through the resource flock. The Phone Agents, through the resource phone, en-
able control the campaign execution. Smartphone sensors, through the resource
sensor type, provide requested sensor data for the campaigners.

As illustrated in Figure 4, each resource request arriving to the SO through
the uniform Interface, the Crowdsensing SO Manager executes the operation
defined in the request URL and transports the obtained data through a specific
Event. Individual trace retrievals and flock detections are notified through the
corresponding Trace and Flock ServiceEvents. The retrievals of Internal, Ex-
ternal and Device resources (e.g., information about Crowdsensing SO status
or smartphone availability) is performed through corresponding InternalEvent,
ExternalEvent and DeviceEvent events.

Internal Flock agent architecture follows ROAgent specifications [8,9,10] as
illustrated in Table 2. The architecture comprises four elements. The agent name
is derived from the resource listing (URL) to be flock. The agent programs, that
implement the SO functionality, are defined as flock and trace. The resources
that agent utilizes as data sources or to interact with are defined as local, i.e.,



8 Leppänen et al.

Table 1: The resources for the Crowdsensing SmartMobility Service.
External Resource

/drd/{sensor type} Lookup for particular sensor in the DRD Infrastructure
/wifi/devices Connected devices (MAC addresses) in an AP Infrastructure

Internal Resource

/trace/{MAC addr} Movement traces Edge VM
/flock List of detected flocks Edge VM
/flock/map Visualization of detected flocks in a map Edge VM
/flock/{flock id} List of phones in the identified flock Edge VM
/flock/{flock id}/trace Movement trace of the identified flock Edge VM
/phone Control phone operation Smartphone

Device Resource

/{sensor type} Specific sensor and its data Smartphone

Table 2: The Flock agent architecture.
Agent name flock

Code flock Agent program code
trace Agent program code

Resource Remote wifi List of AP URLs
phone List of Phone agent URLs

State Knowledge base campaign Campaign parameters
Service content flock List of detected flocks

trace List of individual traces

in the hosting device, or remote, i.e., in other system component. Lastly, the
agent state exposes the results of the agent program, e.g., flocks. The Phone
agent architecture is similar as in [10], containing the agent program to process
the sensor data for the particular campaign task, where the local resource is the
utilized phone sensor.

3.3 Implementation phase

At the implementation phase, ACOSO-Meth guides the exploitation of a meta-
model that can elicit the programming paradigms and technology solutions which
concretely realize the designed SO functionalities of communication, augmenta-
tion, service provision and information management. The ROA SO Metamodel
of the design phase is implemented with regard to the heterogeneous ROAgent
platforms, resulting in the ROAgent-based SO metamodel. Its instantiation on
the Crowdsensing SO is shown in Figure 5.

The Edge VM hosting the Crowdsensing SO is implemented with Ubuntu
16.04 LTS, where MySQL database is installed for the ROAgentKB and Node.js
provides the ROAgent platform and a Web server for interactions. The Flock
agent program is implemented with Python, which is run in Node.js using the
library Python-shell. The Phone agents also follow the ROAgent architecture



Developing Agent-based Smart Objects for IoT Edge Computing 9

Fig. 5: Crowdsensing SO ROAgent Metamodel of the implementation phase.

and are implemented for the particular campaign task with Python for Android
platform, as described in [11].

In addition to Figure 4, the Figure 5 reports the ServiceConfigurationTask
that allows interacting with the ROAgents in the smartphones and Edge VM,
for example, in order to set the campaign parameters. The SOConfigurationTask
allows setting the Crowdsensing SO internal parameters, such as its resource
URL as the identifier. The ROAgent platform AMS implements the uniform
interface, presented in Table 1, for utilizing both internal and external resources
in the service execution.

The SO REST-based uniform interface is implemented with HTTP, com-
plying with the generic agent uniform interface presented in [8,9,10]. HTTP
method GET is used to retrieve resource representations, i.e., state, where the
content-type is a JSON object. The method POST is used to control sen-
sors in smartphones, e.g., turn on/off and set sampling rates, as in [11]. For
example, to get a list of APs in given area, the request is following: GET
<drd IP address>://drd/wifi?area=..., which returns a JSON object contain-
ing list of AP URLs. To get the movement trace of a flock #123, the request is
the following: GET <so IP address>://flock/123/trace, which returns a JSON
object containing a list of APs in order that the smartphones in this flock have
been connected to. Figure 6 illustrates, atop Google Maps, a set of flocks detected
at given time by analysing smartphone connection patterns.

In this paper, the SO service part is implemented, but the actual campaign
execution with agents (studied in [11]) is not considered. To provide data for
movement trace and flock detection, we utilized the existing smart city infras-
tructure [21] that includes a set of 1300 Wi-Fi APs and their data of connected
devices during the years 2007-2015 in the city of Oulu. This dataset provides
information about Wi-Fi connection data from the APs, containing a list of



10 Leppänen et al.

(a) JSON object (b) Google Maps visualization

Fig. 6: Illustration of the SmartMobility Service results.

smartphone MAC addresses of connected devices for each AP as time series. A
subset of 100 traces during one day (February 3rd, 2015) in the city centre area
was imported for the Crowdsensing SO. The data was pre-filtered to remove out-
liers, i.e., APs with strong signal strength, which appeared in almost all traces
across the city.

The Crowdsensing SO service provides the following content to campaigners
to assist in campaign implementation: (i) the flocks, consisting in movement
patterns of participants, i.e., individual smartphones, which behave similarly
for a period in the target area. This data are dynamic, i.e., flocks appear and
disappear and their participants may change any time, and (ii) the movement
traces of individual participants retrieved from the APs data in the target area.
To detect flocks, the algorithm presented in [18] was used. A strict threshold of
85% similarity was used between the individual traces to be considered a flock.
Individual traces have low accuracy due to original data collected from APs that
cover a large area. The flock detection and trace accuracy could be improved
with Wi-Fi AP signal strength data from the smartphones, as in [18].

4 Discussion and conclusion

Within the open and dynamic IoT edge computing scenario, the agent paradigm
has been found useful [2]. Indeed, the paradigm allows exhibiting autonomous
smart behavior in the collaborative execution of distributed IoT applications
with both conventional computers and resource-constrained devices [10]. In mo-
bile crowdsensing, data collection is a strictly coordinated effort in which the
participants behaviors, such as unexpected actions or departures, can signifi-
cantly affect the achievable results. The agent paradigm provides an approach



Developing Agent-based Smart Objects for IoT Edge Computing 11

to handle such situations in runtime, while aiming to save resources in the par-
ticipating devices.

However, the lack of systematic methodology, that leads from initial analysis
to actual agent-based implementation, has been an obstacle in agent-based IoT
application development. Another obstacle has been poor interoperability, in
general with the variety of existing system infrastructure, but also from the ex-
isting agent framework point-of-view. To address these both issues, we integrated
the ROAgent framework with the development methodology ACOSO-Meth. As
result, the ROAgent framework provides in a systematic way for interoperability
through a programming language- and platform-independent agent architecture
and exposing the agent as a Web service with standardized Web technologies.

Overall, this paper contributed to the full-fledged development of an agent-
based SO under the form of a MAS. Jointly exploiting agent-oriented and resource-
oriented paradigms, the ROAgent framework enabled heterogeneous, resource-
constrained agent-based SOs interoperating in IoT systems in a standardized
way. This made the agent-based SOs’ resources and services browsable and
searchable within the Internet as for any non-agent based service, integrating
the agent-based SO’s into the programmable Web for machines as well. The
ACOSO-Meth approach drove the SO development across the phases of analysis,
design and implementation through a set of metamodels, featured by different
levels of abstraction and aimed at seamlessly supporting IoT developers in such
a complex process.

Our future work aims at developing further the agent-based SO concepts
for programmable Web under the umbrella of the integrated ACOSO-Meth and
ROAgent framework.

Acknowledgments. This work has been carried out under the framework of
INTER-IoT, Research and Innovation action - Horizon 2020 European Project,
Grant Agreement #687283, financed by the European Union.

References

1. Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D.: Smart objects as build-
ing blocks for the internet of things. IEEE Internet Computing, 14(1), pp. 44-51
(2010).

2. Savaglio, C., Fortino, G., Ganzha, M., Paprzycki, M., Badica, C., and Ivanovic, M.:
Agent-Based Computing in the Internet of Things: A Survey, In: Intl. Symposium
on Intelligent and Distributed Computing, pp. 307-320 (2017), Springer, Cham.

3. Savaglio, C., and Fortino, G.: Autonomic and cognitive architectures for the Internet
of Things, In: Intl. Conf. on Internet and Distributed Computing Systems, pp. 39-47
(2015), Springer, Cham.

4. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges.
IEEE Internet of Things Journal 3(5), 637-646 (2016).

5. Liu, J., Shen, H., Narman, H. S., Chung, W., Lin, Z.: A survey of mobile crowdsens-
ing techniques: A critical component for the internet of things. ACM Transactions
on Cyber-Physical Systems 2(3) (2018).



12 Leppänen et al.

6. Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-Oriented Co-
operative Smart Objects: From IoT System Design to Implementation, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-18 (2017)
https://doi.org/10.1109/TSMC.2017.2780618

7. Richardson, L., Ruby, S.: RESTful Web services. O’Reilly (2008).
8. Leppänen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Närhi, P., et

al.: Mobile Agents for Integration of Internet of Things and Wireless Sensor Net-
works. In: IEEE Intl. Conf. on Systems, Man and Cybernetics, pp. 14-21 (2013).
https://doi.org/10.1109/SMC.2013.10

9. Leppänen T., Riekki J., Liu M., Harjula E., Ojala T.: Mobile Agents-Based Smart
Objects for the Internet of Things. In: Fortino G., Trunfio P. (eds) Internet of Things
Based on Smart Objects, 29-48, Springer (2014). https://doi.org/10.1007/978-3-319-
00491-4 2

10. Leppänen, T.: Resource-oriented mobile agent and software framework for the In-
ternet of Things. Doctoral dissertation, University of Oulu, Finland, ISBN 978-952-
62-1813-7 (2018).

11. Leppänen, T., Álvarez Lacasia, J., Tobe, Y., Sezaki, K., Riekki, J.: Mobile Crowd-
sensing with Mobile Agents. Auton Agent Multi-Agent Syst 31(1), 1-35 (2017).
https://doi.org/10.1007/s10458-015-9311-7

12. Bosse, S., Pournaras, E.: An Ubiquitous Multi-Agent Mobile Platform for Dis-
tributed Crowd Sensing and Social Mining. In: 5th IEEE Intl. Conf. on Future
Internet of Things and Cloud, pp. 280-287 (2017).

13. Hu, X., Liu, Q., Zhu, C., Leung, V., Chu, T. H., Chan, H. C.: A mobile crowdsensing
system enhanced by cloud-based social networking services. In: First Intl. Workshop
on Middleware for Cloud-enabled Sensing, no. 3 (2013).

14. Liu, M., Leppänen, T., Harjula, E., Ou, Z., Ramalingam, A., Ylianttila, M., et al.:
Distributed resource directory architecture in Machine-to-Machine communications.
In: IEEE 9th Intl. Conf. on Wireless and Mobile Computing, Networking and Com-
munications, pp. 319-324 (2013). https://doi.org/10.1109/WiMOB.2013.6673379

15. Savaglio, C., Russo, W., Fortino, G., Leppänen, T., Riekki, J.: Re-engineering IoT
systems through ACOSO-Meth: the IETF CoRE based agent framework case study,
In: 19th Workshop from Objects to Agents (WOA 2018), June 28-29, Italy, 2018.

16. Chon, Y., Lane, N., Kim, Y., Zhao, F., Cha, H.: Understanding the coverage and
scalability of place-centric crowdsensing. In: Proceedings of the 2013 ACM Intl. joint
Conf. on Pervasive and ubiquitous computing, pp. 3-12 (2013).

17. Kjaergaard, M. , Wirz, M., Roggen, D., Tröster, G.: Mobile sensing of pedestrian
flocks in indoor environments using wifi signals. In: IEEE Intl. Conf. on Pervasive
Computing and Communications, pp. 95-102 (2012).

18. Álvarez Lacasia, J., Leppänen, T., Iwai, M., Kobayashi, H., Sezaki, K.: A method
for grouping smartphone users based on Wi-Fi signal strength. In: Forum on Infor-
mation Technology 12(3), 449-452 (2013).

19. Fortino, G., Rovella, A., Russo, W., Savaglio, C.: Towards cyberphysical digital
libraries: integrating IoT smart objects into digital libraries. Management of Cyber
Physical Objects in the Future Internet of Things, pp. 135-156. Springer 2016.

20. Fortino, G., Gravina, R., Russo, W., Savaglio, C.: Modeling and simulating
internet-of-things systems: a hybrid agent-oriented approach. In: Computing in Sci-
ence & Engineering, 19(5), pp. 68-76 (2017).

21. Kostakos, V., Ojala, T., Juntunen, T.: Traffic in the smart city: Exploring city-wide
sensing for traffic control center augmentation. IEEE Internet Computing, 17(6),
22-29 (2013).

https://doi.org/10.1109/TSMC.2017.2780618
https://doi.org/10.1109/SMC.2013.10
https://doi.org/10.1007/978-3-319-00491-4_2
https://doi.org/10.1007/978-3-319-00491-4_2
https://doi.org/10.1007/s10458-015-9311-7
https://doi.org/10.1109/WiMOB.2013.6673379

	Developing Agent-based Smart Objectsfor IoT Edge Computing:Mobile Crowdsensing Use Case

