Skip to main content

Bacteriophage Taxonomy: An Evolving Discipline

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1693))

Abstract

While taxonomy is an often-unappreciated branch of science it serves very important roles. Bacteriophage taxonomy has evolved from a mainly morphology-based discipline, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the holistic approach that is taken today. The Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a comprehensive approach to classifying prokaryote viruses measuring overall DNA and protein identity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with NCBI and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradley DE (1963) The structure of coliphages. J Gen Microbiol 31:435–445. https://doi.org/10.1099/00221287-31-3-435

    Article  CAS  PubMed  Google Scholar 

  2. Bradley DE (1966) The fluorescent staining of bacteriophage nucleic acids. J Gen Microbiol 44:383

    Article  CAS  PubMed  Google Scholar 

  3. Ackermann H-W (1998) Tailed bacteriophages: the order caudovirales. Adv Virus Res 51:135–201. https://doi.org/10.1016/S0065-3527(08)60785-X

    Article  CAS  PubMed  Google Scholar 

  4. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96:2192–2197. https://doi.org/10.1073/pnas.96.5.2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535. https://doi.org/10.1128/JB.184.16.4529-4535.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casjens SR, Hendrix RW (2015) Bacteriophage lambda: early pioneer and still relevant. Virology. https://doi.org/10.1016/j.virol.2015.02.010

  7. Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414. https://doi.org/10.1016/j.resmic.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  8. Kropinski AM, Borodovsky M, Carver TJ, Cerdeño-Tárraga AM, Darling A, Lomsadze A, Mahadevan P et al (2009) In silico identification of genes in bacteriophage DNA. In bacteriophages – methods and protocols, volume 2. Mol Appl Aspects 502:57–89. https://doi.org/10.1007/978-1-60327-565-1

    CAS  Google Scholar 

  9. Zafar N, Mazumder R, Seto D (2002) CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinformatics 3:12. https://doi.org/10.1186/1471-2105-3-12

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kovalyova IV, Kropinski AM (2003) The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida – evidence for close relationship to the T7 group. Virology 311:305–315. https://doi.org/10.1016/S0042-6822(03)00124-7

    Article  CAS  PubMed  Google Scholar 

  11. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224. https://doi.org/10.1186/1471-2180-9-224

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adriaenssens EM, Edwards R, Nash JH, Mahadevan P, Seto D, Ackermann HW, Lavigne R, Kropinski AM (2015) Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 477:144–154. https://doi.org/10.1016/j.virol.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  13. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garrity GM (2016) A genomics driven taxonomy of Bacteria and Archaea: are we there, yet? J Clin Microbiol. https://doi.org/10.1128/JCM.00200-16

  15. Ashelford KE, Fry JC, Bailey MJ, Jeffriesand AR, Day MJ (1999) Characterization of six bacteriophages of Serratia liquefaciens CP6 isolated from the sugar beet phytosphere. Appl Environ Microbiol 65:1959–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Deveau H, Labrie SJ, Chopin MC, Moineau S (2006) Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72:4338–4346. https://doi.org/10.1128/AEM.02517-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krylov V, Pleteneva E, Bourkaltseva M, Shaburova O, Volckaert G, Sykilinda N, Kurochkina L, Mesyanzhinov V (2003) Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway. Res Microbiol. https://doi.org/10.1016/S0923-2508(03)00070-6

  18. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. https://doi.org/10.1371/journal.pone.0011147

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8:134. https://doi.org/10.1186/1743-422X-8-134

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277. https://doi.org/10.1016/j.cocis.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  21. Brodie R, Roper RL, Upton C (2004) JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 20:279–281. https://doi.org/10.1093/bioinformatics/btg406

    Article  CAS  PubMed  Google Scholar 

  22. Elnitski L, Riemer C, Schwartz S, Hardison R, Miller W (2003) PipMaker: a world wide web server for genomic sequence alignments. Curr Protoc Bioinformatics Chapter 10:Unit 10.2. https://doi.org/10.1002/0471250953.bi1002s00

    PubMed  Google Scholar 

  23. Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028. https://doi.org/10.1093/bioinformatics/btm039

    Article  CAS  PubMed  Google Scholar 

  24. Cowley LA, Beckett SJ, Chase-Topping M, Perry N, Dallman TJ, Gally DL, Jenkins C (2015) Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages. BMC Genomics 16:271. https://doi.org/10.1186/s12864-015-1470-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adriaenssens EM, Ackermann HW, Anany H, Blasdel B, Connerton IF, Goulding D, Griffiths MW et al (2012) A suggested new bacteriophage genus: “Viunalikevirus”. Arch Virol 157:2035–2046. https://doi.org/10.1007/s00705-012-1360-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith DL, Rooks DJ, Fogg PCM, Darby AC, Thomson NR, McCarthy AJ, Allison HE (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13:311. https://doi.org/10.1186/1471-2164-13-311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abbasifar R, Griffiths MW, Sabour PM, Ackermann HW, Vandersteegen K, Lavigne R, Noben JP et al (2014) Supersize me: Cronobacter sakazakii phage GAP32. Virology 460–461:138–146. https://doi.org/10.1016/j.virol.2014.05.003

    Article  PubMed  Google Scholar 

  28. Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView comparison tool. BMC Genomics 13:202. https://doi.org/10.1186/1471-2164-13-202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cresawn SG, Pope WH, Jacobs-Sera D, Bowman C, Russell D, Dedrick RM, Adair T et al (2015) Comparative genomics of cluster of mycobacteriophages. PLoS One 10:e0118725. https://doi.org/10.1371/journal.pone.0118725

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hatfull GF (2014) Molecular genetics of mycobacteriophages. Microbiol Spectr 2:1–36. https://doi.org/10.1128/microbiolspec.MGM2-0032-2013.Correspondence

    PubMed  PubMed Central  Google Scholar 

  31. Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF (2015) Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. elife 4:e06416. https://doi.org/10.7554/eLife.06416

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kleppen HP, Nes IF, Holo H (2012) Characterization of a Leuconostoc bacteriophage infecting flavor producers of cheese starter cultures. Appl Environ Microbiol 78(18):6769–6772. https://doi.org/10.1128/AEM.00562-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kot W, Hammer K, Neve H, Vogensen FK (2013) Identification of the receptor-binding protein in lytic Leuconostoc pseudomesenteroides bacteriophages. Appl Environ Microbiol 79(10):3311–3314. https://doi.org/10.1128/AEM.00012-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bao Y, Chetvernin V, Tatusova T (2014) Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification. Arch Virol 159:3293–3304. https://doi.org/10.1007/s00705-014-2197-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One:9. https://doi.org/10.1371/journal.pone.0108277

  36. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  PubMed  Google Scholar 

  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  38. Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0

    Article  CAS  PubMed  Google Scholar 

  39. Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468:421–443. https://doi.org/10.1016/j.virol.2014.08.024

    Article  PubMed  Google Scholar 

  40. Cochrane G, Karsch-Mizrachi I, Takagi T (2016) The international nucleotide sequence database collaboration. Nucleic Acids Res 44:D48–D50. https://doi.org/10.1093/nar/gkv1323

    Article  CAS  PubMed  Google Scholar 

  41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  42. Brister JR, Ako-Adjei D, Bao Y, Blinkova O (2015) NCBI viral genomes resource. Nucleic Acids Res 43:D571–D577. https://doi.org/10.1093/nar/gku1207

    Article  CAS  PubMed  Google Scholar 

  43. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/nar/gkv1189

    Article  PubMed  Google Scholar 

  44. Ågren J, Sundström A, Håfström T, Segerman B (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One:7. https://doi.org/10.1371/journal.pone.0039107

  45. Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK, Sullivan MB, Rumnieks J, Prangishvili D et al (2016) Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 161:1095–1099

    Article  CAS  PubMed  Google Scholar 

  46. Turner D, Reynolds D, Seto D, Mahadevan P (2013) CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes. BMC Res Notes 6:140. https://doi.org/10.1186/1756-0500-6-140

    Article  PubMed  PubMed Central  Google Scholar 

  47. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552

    Article  PubMed  Google Scholar 

  48. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD (2010) Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 7:292. https://doi.org/10.1186/1743-422X-7-292

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jamalludeen N, Kropinski AM, Johnson RP, Lingohr E, Harel J, Gyles CL (2008) Complete genomic sequence of bacteriophage. EcoM-GJ1, a novel phage that has myovirus morphology and a podovirus-like RNA polymerase. Appl Environ Microbiol 74:516–525. https://doi.org/10.1128/AEM.00990-07

    Article  CAS  PubMed  Google Scholar 

  50. Born Y, Fieseler L, Marazzi J, Lurz R, Duffy B, Loessner MJ (2011) Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae Phages. Appl Environ Microbiol 77:5945–5954. https://doi.org/10.1128/AEM.03022-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuzenkova J, Nechaev S, Berlin J, Rogulja D, Kuznedelov K, Inman R, Mushegian A, Severinov K (2003) Genome of Xanthomonas oryzae bacteriophage Xp10: an odd T-odd phage. J Mol Biol 330:735–748. https://doi.org/10.1016/S0022-2836(03)00634-X

    Article  CAS  PubMed  Google Scholar 

  52. Ahern SJ, Das M, Bhowmick TS, Young R, Gonzalez CF (2014) Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J Bacteriol 196:459–471. https://doi.org/10.1128/JB.01080-13

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hulo C, Masson P, Mercier PL, Toussaint A (2014) A structured annotation frame for the transposable phages: a new proposed family “Saltoviridae” within the Caudovirales. Virology. https://doi.org/10.1016/j.virol.2014.10.009

  54. Rodney BJ, Mercier PL, Hu JC (2012) Microbial virus genome annotation-mustering the troops to fight the sequence onslaught. Virology. https://doi.org/10.1016/j.virol.2012.09.027

  55. Hopkins M, Kailasan S, Cohen A, Roux S, Tucker KP, Shevenell A, Agbandje-McKenna M, Breitbart M (2014) Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein. ISME J 8:1–11. https://doi.org/10.1038/ismej.2014.43

    Article  Google Scholar 

  56. Roux S, SJ Hallam, TWoyke, and MB Sullivan. 2015. Viral dark matter and virus – host interactions resolved from publicly available microbial genomes. eLife 4: 1–20. doi:https://doi.org/10.7554/eLife.08490

  57. Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A, Ford ME, Gonda RM et al (2006) Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:0835–0847. https://doi.org/10.1371/journal.pgen.0020092

    Article  CAS  Google Scholar 

  58. Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Bustamante CG, Boyle MM, Petrova ZO et al (2012) On the nature of mycobacteriophage diversity and host preference. Virology. https://doi.org/10.1016/j.virol.2012.09.026

  59. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grazziotin AL, Koonin EV, Kristensen DM (2016) Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw975

  61. Lopes A, Tavares P, Petit M-A, Guérois R, Zinn-Justin S (2014) Automated classification of tailed bacteriophages according to their neck organization. BMC Genomics 15:1027. https://doi.org/10.1186/1471-2164-15-1027

    Article  PubMed  PubMed Central  Google Scholar 

  62. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42. https://doi.org/10.1093/nar/gkt1226

Download references

Acknowledgement

This work was supported in part by the Intramural Research Program of the National Institutes of Health, National Library of Medicine to I.T. and J.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Kropinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tolstoy, I., Kropinski, A.M., Brister, J.R. (2018). Bacteriophage Taxonomy: An Evolving Discipline. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 1693. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7395-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7395-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7394-1

  • Online ISBN: 978-1-4939-7395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics