Quarks and Leptons Cargèse 1979

NATO ADVANCED STUDY INSTITUTES SERIES

A series of edited volumes comprising multifaceted studies of contemporary scientific issues by some of the best scientific minds in the world, assembled in cooperation with NATO Scientific Affairs Division.

Series B. Physics

Recent Volumes in this Series

- Volume 53 Atomic and Molecular Processes in Controlled Thermonuclear Fusion edited by M. R. C. McDowell and A. M. Ferendeci
- Volume 54 Quantum Flavordynamics, Quantum Chromodynamics, and Unified Theories edited by K. T. Mahanthappa and James Randa
- Volume 55 Field Theoretical Methods in Particle Physics edited by Werner Rühl
- Volume 56 Vibrational Spectroscopy of Molecular Liquids and Solids edited by S. Bratos and R. M. Pick
- Volume 57 Quantum Dynamics of Molecules: The New Experimental Challenge to Theorists edited by R. G. Woolley
- Volume 58 Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity edited by Peter G. Bergmann and Venzo De Sabbata
- Volume 59 Recent Developments in Gauge Theories edited by G. 't Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer, and R. Stora
- Volume 60 Theoretical Aspects and New Developments in Magneto-Optics Edited by Jozef T. Devreese
- Volume 61 Quarks and Leptons: Cargèse 1979 edited by Maurice Lévy, Jean-Louis Basdevant, David Speiser, Jacques Weyers, Raymond Gastmans, and Maurice Jacob
- Volume 62 Radiationless Processes edited by Baldassare Di Bartolo
- Volume 63 Characterization of Crystal Growth Defects by X-Ray Methods edited by Brian K. Tanner and D. Keith Bowen

This series is published by an international board of publishers in conjunction with NATO Scientific Affairs Division

- A Life Sciences
- **B** Physics
- C Mathematical and Physical Sciences
- D Behavioral and Social Sciences
- E Applied Sciences

Plenum Publishing Corporation London and New York

D. Reidel Publishing Company Dordrecht, Boston and London

Sijthoff & Noordhoff International Publishers

Alphen aan den Rijn, The Netherlands, and Germantown, U.S.A.

Quarks and Leptons Cargèse 1979

Edited by

Maurice Lévy and Jean-Louis Basdevant

Laboratory of Theoretical Physics and High Energies Université Pierre et Marie Curie Paris, France

David Speiser and Jacques Weyers

Institute of Theoretical Physics Université Catholique de Louvain Louvain-la-Neuve, Belgium

Raymond Gastmans

Institute of Theoretical Physics Katholieke Universiteit Leuven Leuven, Belgium

and

Maurice Jacob

Theory Division C.E.R.N. Genève, Switzerland

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging in Publication Data

Cargèse Summer Institute on Quarks and Leptons, 1979. Quarks and Leptons, Cargèse 1979.

(Nato advanced study institutes series: Series B, Physics; v. 61) "Published in cooperation with NATO Scientific Affairs Division." Held in Cargesè, Corsica, July 9-29, 1979.

"Organized by the Université Pierre et Marie Curie, Paris... the Université Catholique de Louvain... and the Katholieke Universiteit te Leuven."

Includes bibliographical references and index.

1. Quarks-Congresses. 2. Leptone (Nuclear physics)-Congresses. 3. Quantum chromody-
namics-Congresses. I. Lévy, Maurice, 1922-
II. North Atlantic Treaty Organization.
Division of Scientific Affairs. III. Université Pierre et Marie Curie. IV. Louvain. Université
catholique. V. Katholieke Universiteit te Leuven. VI. Title. VII. Series.
QC793.5.Q2522C37 1979
S39.7'21
S39.7'21
S0-25583
ISBN 978-1-4684-7199-1
ISBN 978-1-4684-7197-7 (eBook)
DOI 10.1007/978-1-4684-7197-7

Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, held in Cargèse, Corsica, July 9-29, 1979.

© 1980 Springer Science+Business Media New York Originally published by Plenum Press, New York Softcover reprint of the Hardcover 1st edition 1980 A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher PREFACE

The 1979 Cargèse Summer Institute on Quarks and Leptons was organized by the Université Pierre et Marie Curie, Paris (M. LEVY and J.-L. BASDEVANT), CERN (M. JACOB), the Université Catholique de Louvain (D. SPEISER and J. WEYERS), and the Katholieke Universiteit te Leuven (R. GASTMANS), who, like in 1975 and 1977, had joined their efforts and worked in common. It was the 20th Summer Institute held at Cargèse and the 5th one organized by the two institutes of theoretical physics at Leuven and Louvain-la-Neuve.

This time, the school was dominated by the impressive advances which were made in the field of perturbative quantum chromodynamics and its applications to high energy phenomena involving strongly interacting particles. The unification of weak and electromagnetic interactions being well established, a new picture in particle physics emerges wherein a possible unification of weak, electromagnetic, and strong forces is put forward. Its consequences were also discussed in detail. Finally, to complete the picture of the present status of high energy physics, experimentalists from the major laboratories around the world reported on the latest developments in electron-positron scattering, neutrino induced reactions, and hadron collisions.

We owe many thanks to all those who have made this Summer Institute possible!

Thanks are due to the Scientific Committee of *NATO* and its President for a generous grant and especially to the head of *the Scientific Affairs Division*, Dr. M. DI LULLO for his constant help and encouragements.

We also thank the "Délégation Générale à la Recherche Scientifique et Technique", the "Centre National de la Recherche Scientifique" and the "Institut National de Physique Nucléaire et de Physique des Particules" (France) as well as the National Science Foundation (USA) for their financial assistance.

Special thanks are due to the Université de Nice for having put at our disposal the facilities of the Institut de Cargèse, and the Université Pierre et Marie Curie, Paris, and the K.U. Leuven for their secretarial assistance and financial support.

It is a real pleasure to thank Ms. M.-F. HANSELER and C. DETROYE and all others from Paris, Leuven, Louvain-La-Neuve and especially Cargèse for their secretarial assistance.

We thank Ms. M.-A. JENNES for typing the manuscript, and MM. P. DE CAUSMAECKER, J. GERIS, and R. PHILIPPE for their help in correcting proofs and Dr. K. DERHAM (Plenum Press) for his collaboration.

Finally, the financial contributions from the Kredietbank, International Business Machines of Belgium, Esso Belgium, and the Generale Bankmaatschappij are gratefully acknowledged. They helped to give this Summer Institute a broader international audience.

Mostly, however, we would like to thank all lecturers and participants who came from 24 different countries: the willingness of the former to answer all questions and the keen interest of the latter provided the stimulus which made (we hope) this Institute a success.

> M. LEVY J.-L. BASDEVANT M. JACOB

- D. SPEISER
- J. WEYERS
- R. GASTMANS

RADIATIVE CORRECTIONS TO WEAK AND ELECTROMAGNETIC PROCESSES

M. Veltman	1
Introduction	1
The model	3
Self energies	3
Fitting parameters	7
Solving parameter equations	9
Calculation of observable effects	10
The unitarity limit	12
Unitarity limits and screening theorem	17
Calculation of radiative corrections	18
One-loop integrals	18
The two-point function	20
The functions F; and G;	25
Miscellaneous remarks	26
References	27

THE	BOUND	STATE	PROBLEM	IN	QED-TAMING	AND	THE
BETH	HE-SALE	PETER I	EQUATION				
	D.H	R. Yenr	nie				

Abstract	29
General remarks	29
Primer on the Bethe-Salpeter equation	36
The Salpeter equation	38
The Gross equation	43

29

	References	51
QED	AT HIGH ENERGIES	50
	R. Gastmans	23
	I. Introduction	53
	II. Virtual radiative corrections	55
	Example: the vertex correction	55
	Vacuum polarization effects	63
	Other corrections	65
	III. Soft photon bremsstrahlung	65
	Infrared factor	65
	The soft photon integrals	67
	$e^+e^- \rightarrow hadrons$	70
	IV. Hard photon cross sections	71
	A simple case	71
	$e^+e^- \rightarrow \mu^+\mu^-\gamma$	73
	$e^+e^- \rightarrow e^+e^-\gamma$	74
	e ⁺ e ⁻ → γγγ	75
	V. Phase space	76
	Experimental cuts	76
	Peaking regions	78
	Integration	81
	Numerical results	81
	VI. Comparison with experiment	83
	Appendix	87
	Footnotes and references	89

e ⁺ e ⁻ COLLIDING BEAMS AND THEIR CONTRIBUTIONS TO THE KNOWLEDGE OF QUARKS AND LEPTONS	
H.L. Lynch	91
Preface	91
$R = \sigma_{hadron} / \sigma_{uu}$	91
The ψ family characteristics	95

Related cc states, not $J^{PC} = 1^{}$	104
D-states characteristics	112
F-states characteristics	126
au: the other side of QCD, and an indication of more to come	131
The T`family characteristics	135
Recent PETRA results	138
R	138
Inclusive distributions	139
Jet structure and relation to new physics	141
What is to come?	152
References	152
SELECTED TOPICS IN e e PHYSICS RESULTS J.E. Augustin	155
Introduction	155
Experiments on e e collisions	155
e e storage rings	155
Luminosity and backgrounds	156
Detectors and their limitations	158
Formalism of e^+ annihilation	165
General formalism and inclusive cross-sections	165
Two-body final states	167
Total cross-section and R	168
Vector mesons	170
Main results in low energy e^+e^- annihilation	174
The ρ^{O} and the pion form factor	174
$e^+e^- \rightarrow \pi^+\pi^-\pi^0$: the $\omega - \phi$ system	175
Kaon form factors	177
Proton form factor in the time-like region	179
Four pions: TTTT and TTT T	179
Search for vector meson recurrences	181
R and R_{K} below 3 GeV	183

ix

Photon-photon collisions results	185
General formalism	185
Experiments without electron tagging	186
Tagged photon-photon experiments	191
Polarization in e ⁺ e ⁻ rings	194
Natural radiative polarization	194
Depolarization	195
Experiments on beam polarization	198
e ⁺ e ⁻ collisions with transverse polarization	198
Longitudinal polarization. Polarization at LEP	201
Weak interactions in e^+e^- collisions	203
References	209
PARITY NON-CONSERVATION IN INELASTIC ELECTRON	
M. Borghini	211
Conclusion	218
References	218
NEUTRINO INTERACTIONS: A REVIEW OF RECENT EXPERIMENTAL	
H. Wahl	221
Beams and detectors	222
Neutrino reactions	233
Inverse muon decay	233
Neutrino-electron scattering	235
Semileptonic interactions and the quark-parton	
Mucr relevization	239
Muon polarization	241
Total cross-sections	241
Average structure functions	247
Sea-quark distributions	251
The Callan-Gross relation	254
Structure functions and scale breaking	257

Moment analysis of xF_2	266
Gluon moments and x distribution	273
Semileptonic neutral currents	274
References	281
QUANTUM CHROMODYNAMICS AND ITS APPLICATIONS J. Ellis and C.T. Sachrajda	285
1. Introduction	285
1.1. The theory and its motivations	285
1.2. Renormalization	290
1.3. The renormalization group equations	294
1.4. Asymptotic freedom	298
1.5. Application to e^+e^- annihilation	301
2. Deep inelastic scattering	303
2.1. Basic formalism	303
2.2. Light-cone behaviour	306
2.3. Moment sum rules	309
2.4. Q^2 dependences of moments	314
2.5. Phenomenology of non-singlet moments	319
2.6. Probabilistic interpretation of the leading-order predictions	321
3. Higher order calculations	324
3.1. Introduction	324
3.2. Calculation of the ingredients necessary to make predictions which include the higher order corrections	324
3.3. Results and an ambiguity	330
3.4. β_2 is independent of the definition of α	330
2. The the effects of the bight under connections	عر ر
3.5. Are the effects of the higher order corrections measurable?	333
3.6. Higher order corrections to singlet combinations of structure functions	337
3.7. Comments	340
4. Hard scattering processes	341
4.1. Introduction	341

4.2. Diagrammatic approach to deep inelastic lepton-hadron scattering	342
4.2.1. Equivalence of the light-cone results and the summation of leading logarithms	343
4.2.2. Which regions of phase space give the leading logarithms?	345
4.2.3. Some low-order diagrams	349
4.2.4. Higher order diagrams and the asymptotic results	354
4.3. Asymptotic predictions for other hard scattering processes	359
4.3.1. The Drell-Yan process	359
4.3.2. Inclusive production of particles and jets with large transverse momenta	364
5. Beyond leading logarithms	369
5.1. Introduction	369
5.2. A simple example: the longitudinal structure function	369
5.3. General discussion	373
5.4. Interactions involving "spectator" partons	375
6. Exclusive processes	382
6.1. Introduction	382
6.2. Pion form factor in QCD	385
6.3. Form factors of other hadrons	391
6.4. Sudakov form factor	394
6.5. Elastic scattering at fixed angle	395
7. Jets	398
7.1. Introduction	398
7.2. Jets in QCD perturbation theory	399
7.3. Widths of QCD jets	404
7.4. Looking for QCD-jet effects	407
7.5. Jets in resonance decays	414
7.6. QCD jets in other processes	418
7.6.1. Deep inelastic eN, μ N, or ν N scattering	418
7.6.2. Hadron-hadron collisions at large p_{η}	419
7.7. Inside QCD jets	421

xii

	7.7.1. Longitudinal momentum distributions	421
	7.7.2. Transverse momentum distributions	424
	7.8. How can one really test QCD?	425
	7.8.1. Vector gluons	426
	7.8.2. Three-gluon vertex	426
	7.8.3. Asymptotic freedom	426
	References	427
NEW	QUARKS AND LEPTONS M.K. Gaillard and L. Maiani	433
	1. Introduction: a glimpse of quark and lepton history	433
	2. Elementary properties of quarks and leptons	435
	2.1. What do we really know?	435
	2.2. Renormalizable gauge theories	446
	2.3. The fermion mass matrix and the structure of the weak currents),5),
	3. Weak interactions of b and t quarks	4)4)150
	3.1. The weak mixing angles	459
	3.2. Bounds on the weak mixing angles	460
	3.3. Weak decays of b and t	469
	3.4. Multilepton configurations in b and t decays	473
	4. Grand unified theories	478
	4.1. The unification of weak, electromagnetic and strong interactions	478
	4.2. The minimal model: SU(5)	485
	4.3. Fermion masses and constraints on the number of generations	490
	4.4. Proton decay	494
	4.5. Bounds on the t-quark mass	501
	5. Conclusions and outlook	501
	References	510

THE SPECTRUM OF LEPTONS AND QUARKS	
J. Weyers	515
I. The Higgs sector	515
II. Masses of the quarks	523
The mass parameters in the QCD Lagrangian	523
Quark masses in QCD	527
III. Natural symmetry	531
Natural flavour conservation	533
IV. Models for masses and mixing angles	534
S. Weinberg	534
H. Fritzsch	536
M. de Crombrugghe, H. Fritzsch	538
G. Segré et al.	541
References	545
POTENTIAL MODELS OF NEW PARTICLES	,
A. Martin	549
Historical background	549
Physical background	549
Theorems and near theorems for the Schrödinger equation	553
Two applications	555
References	556
HADRON PROCESSES AT HIGH ENERGIES	
H. Bøggild	559
I. Introduction	559
II. High p_m and jet physics	560
1. Examples of high p_m experiments	563
2. Inclusive π° spectra	566
3. Correlations	570
3.1. x_{-} -distributions	573
3.2. Internal jet p_m and p_m balance	576

3.3. Symmetric triggers	580
3.4. Trigger side and resonances	581
3.5. Quantum number correlations	585
4. Jets	592
4.1. The jet cross section	594
4.2. Beam ratios	596
4.3. An example of jet analysis in pp \rightarrow jet + X	596
5. Production of direct photons	607
III. Heavy quarks and lepton pairs	612
1. Heavy quarks, charm and beauty	612
1.1. Direct charm observation	613
1.2. Indirect observations	615
1.3. Direct observation in mass distributions	615
1.4. Beauty-meson production	618
2. Lepton pairs and "onia"	621
3. Lepton pairs and the Drell-Yan process	623
4. Lepton pairs at large p_{T}	630
IV. Conclusion	633
References	634

HYPERON DECAYS AND QCD J.M. Gaillard	639
Non-leptonic decays of strange particles and QCD	639
$\Delta I = 1/2$ rule and $\Omega \rightarrow \Xi \pi$ decays	640
Parity violation in Ω^- decays	640
The Ω^- experiment	643
Ω^- trigger and decay measurement	645
The main Ω^{-} decay modes	645
Conclusions	652
References	652

RECENT OBSERVATIONS OF CHARMED BARYONS AND THEIR IMPLICATIONS FOR HADRONIC PRODUCTION PROCESSES F. Muller 653

x٧

CONT	ENTS	
------	------	--

Introduction		653	
	l.	Prehistory of charmed baryons	653
		Theoretical Framework	653
		Masses	653
		Decay schemes	656
		Production	656
		Early coincidences for charmed baryons	657
		Neutrino interactions	657
		Photoproduction	657
		Hadronic interactions	660
		Conclusion	660
	2.	Recent (1979) observations of charmed baryons	661
		Neutrino interactions	661
		Hadronic collisions	665
		e ⁺ e ⁻ annihilation	679
	3.	Remarks on hadronic production processes of charmed particles	680
	Re	ferences	685
THE	FU	FURE OF ELEMENTARY PARTICLE PHYSICS	
		S.L. Glashow	687
	Pro	ologue	687
	The	e scenario of the seventeen parameters	688
	Uni	ification	693
	Let	the desert bloom!	705
	Epi	ilogue	711
	Ret	ferences	712
INI	DEX		715

xvi