Skip to main content

Abstract

A widespread occurrence of melatonin in plant kingdom has been reported. The circadian rhythm in the level of melatonin observed in both unicellular algae and higher plants, suggests a role in regulation of photoperiodic and rhythmic phenomena, i.e. a similar function for melatonin in both plants and animals. Evidence has been obtained for a role of melatonin in plant morphogenesis, but more research is needed to ascertain other suggested physiological roles in higher plants (seed dormancy regulation, radical scavenger activity, interaction with calmodulin) as well the ecological significance of the high melatonin levels recorded in alpine plants. Setting-up more reliable analytical methods for melatonin detection and quantification is a basic requirement to get more insight into melatonin roles in plant physiology and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. West, Tryptamines in edible fruitsJ. Pharm. Pharmacol. 10589–590 (1958).

    Article  CAS  Google Scholar 

  2. S. Undenfriend, W. Lovenberg, A. Sjoerdsma, Physiologically active amines in common fruits andvegetables Arch. Biochem. Biophys.85, 487–490 (1959).

    Article  Google Scholar 

  3. I. Balzer and R. Hardeland,. Photoperiodism and effects of indoleamines in a unicellular algaGonyaulax polyedra. Science 253795–797 (1991)

    Article  CAS  Google Scholar 

  4. A. Hattori, H. Migitaka, I. Masayaki, M. Itoh, M. Yamamoto, R. Ohtani-Kaneko, M. Hara, I. Suzuki, R.J. Reiter, Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebratesBiochem. Mol. Biol. Int. 35627–634 (1995).

    PubMed  CAS  Google Scholar 

  5. L. C. Manchester, D.X. Tan, R. J. Reiter, W. Park, K. Monis, W. Qi, High melatonin levels in the seeds of edible plants: possible function in germ cell protectionLife Sci. 673023–3029 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. S. J. Murch, C.B. Simmons, P. K. Saxena, Melatonin in feverfew and other medicinal plantsThe Lancet 3501598–1599 (1997).

    Article  CAS  Google Scholar 

  7. C. Tettamanti, B. Cerabolini, P. Gerola, A. Conti, Melatonin identification in medicinal plantsActa Phytotherapeutica III137–144 (2000).

    Google Scholar 

  8. R.J. Reiter, Melatonin: that ubiquitously acting pineal hormoneNew Physiolol. Sci. 6223–227 (1991).

    CAS  Google Scholar 

  9. B. Poeggeler, I. Balzer, R. Hardeland, A. Lerch!, Pineal hormone melatonin oscillates also in the dinotlagellateGonyaulax polyedra. Naturewissenschaften 78268–269 (1991).

    Article  CAS  Google Scholar 

  10. J. Kolar, I. Machackova, J. Eder, E. Prinsen, W. Van Dongen, H. Van Onckelen, H. Illerova. Melatonin: occurrence and daily rhythm inChenopodium rubrum. Phylochemislry 441407–1414 (1997).

    Article  CAS  Google Scholar 

  11. R. Hardeland, A. Coto-Montes, S. Burkhardt, B. K. Zsizsik, Circadian rhythms and oxydative stress in nonvertebrate organism. In:The redox state and cicardian rhythms edited by T.V.D. e. al., (Kluwer Academic Publishers, The Netherlands, 2000). pp. 121–140.

    Google Scholar 

  12. B. Poeggeler, R.J. Reiter, D.X. Tan, L.D. Chen, L.C. Manchester, Melatonin, hydroxyl radical-mediated oxidative damage and aging, A hypotesisJ. Pin. Res. 14151–168 (1993).

    Google Scholar 

  13. D. L. Van Tassel, J. Li, S.D. O’Neill. Melatonin: identification of a potential dark signal in plantsPlant Physiol. 102659 (1993).

    Google Scholar 

  14. J. Kolar, I. Machackova, Melatonin: does it regulate rhythmicity and photoperiodism also in higher plants?Flower. Newsl. 1753–54 (1994).

    Google Scholar 

  15. R. Hardeland and B. Fuhrberg, Ubiquitous melatonin: presence and effects in unicells, plant and animalsTrends Comp. Biochem. Physiol. 225–45 (1996).

    CAS  Google Scholar 

  16. R. J. Reiter. Melatonin: lowering the high price of free radicalsNews Physiol. Sci. 15246–250 (2000).

    PubMed  CAS  Google Scholar 

  17. D. L. Van Tassel, J. Li, S. D. O’Neill, Putative regulatory molecules in plants: evaluating melatoninJ. Pineal Res. 311–7 (2001).

    Article  PubMed  Google Scholar 

  18. D. L. Van Tassel. Identification and quantification of melatonin in higher plants, Ph D. Dissertation, University of California, Davis, CA. (1995)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caniato, R., Filippini, R., Piovan, A., Puricelli, L., Borsarini, A., Cappelletti, E.M. (2003). Melatonin in Plants. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_68

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics