Motion Picture Restoration

Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video

Dr Anil Kokaram University of Cambridge Signal Processing and Communications Laboratory Department of Engineering Trumpington Street Cambridge CB2 1PZ

ISBN 978-1-4471-3487-9 ISBN 978-1-4471-3485-5 (eBook) DOI 10.1007/978-1-4471-3485-5

British Library Cataloguing in Publication Data Kokaram, Anil. C. Motion picture restoration : digital algorithms for artefact suppression in degraded motion picture film and video 1.Motion pictures - Conservation and restoration 2.Image processing -Digital techniques 3.Image reconstruction I.Title 621.3'67 ISBN 978-1-4471-3487-9

Library of Congress Cataloging-in-Publication Data
Kokaram, A. C., 1967-Motion picture restoration : digital algorithms for artefact suppression in degraded motion picture film and video / A.C. Kokaram.
p. cm.
Includes bibliographical references.
ISBN 978-1-4471-3487-9
1. Motion picture film--Conservation and restoration. 2. Image
processing--Digital techniques. 3. Signal processing--Digital techniques.
I. Title.
TR886.3.K65 1998
778.5'3'0288--dc21
98-4855

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

© Springer-Verlag London 1998

Originally published by Springer-Verlag Berlin Heidelberg New York in 1998

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Typesetting: Camera ready by author Printed and bound at The Cromwell Press, Trowbridge, Wiltshire, England 34/3830-543210 Printed on acid-free paper To my wife, Stefanie

Preface

The manipulation of pictures and video in digital form has been an established research activity for more than twenty years. It is only recently, however, that digital image and video processing equipment has been accessible to the general public. This is due in part to the rapidly growing economy of the home computer. A major contributing factor has been the marked rise in the presence of the non-academic user on the internet, particularly the World Wide Web (WWW). Manipulating digital imagery has become synonymous with the WWW. It is the drive to present audio and visual media to the home user in an interactive form and to increase the available range of choices, which has encouraged agreements to begin digital video television broadcasting before the turn of the century. With the increased demand for video material, there is a perceived increase in demand for material from archive sources and this has fuelled commercial interest in automatic digital restoration processes. Furthermore there is a continuing effort to design techniques for correcting errors in received compressed video bit streams for the purposes of live communications links over noisy channels e.g. mobile telephones and the internet.

This book introduces the reader to a range of digital restoration activities beyond the well traversed areas of noise reduction and deblurring. It describes a number of problems associated with archived film and video. Particular attention is given to missing data since that applies equally well to correcting packet loss in coded video bit streams. The book should appeal both to those in industry and to academic researchers.

In many ways the book is a culmination of eight years work in the area of video reconstruction. This began in 1989 when I was a Ph.D student in the Signal Processing Laboratory at the Cambridge University Engineering Department and continued as a post-doctoral fellow from 1993–1998. I am grateful for the financial support of Cambridge University, the British Library and Cable and Wireless during the early years and the European Union restoration project AURORA¹ during the last three years.

Many exceptional people influenced my thinking in this time and this book would be incomplete without suitable acknowledgement. I wish to thank Dr. Simon Godsill for many educational discussions about the Bayesian paradigm which led to the design of the JOMBADI algorithm. Much of the research performed would not have been possible were it not for the Ph.D students who gave of their time to help maintain the laboratory network: Pete Wilson, Dr. Adam Tibbalds, Ray Auchterlounie, Dr. Robert Young, Ian Calderbank, Dr. Robin Morris and Dr. M. Lai. I am grateful for many enlightening conversations with Dr. Joan Lasenby, Dr. Bill Fitzgerald, David Elias, Ben Bradshaw, Dr. Julian Magarey, Dr. Adam Tibbalds, Dr. Robin Morris, Dr. Nick Kingsbury and of course my Ph.D supervisor Dr. Peter Rayner who also arranged funding in the early years. The work of many willing proofreaders was essential in creating a coherent manuscript: Steve Armstrong, Adam Tibbalds, Ben Bradshaw, Rebecca Moore (of Springer-Verlag) and my wife, Stefanie. I am especially grateful for helpful comments from Prof. Petar M. Djurić during his short stay at Cambridge. I wish to thank every one of my colleagues in the laboratory for creating a very pleasant atmosphere for interaction.

Thanks are due to several members of the AURORA project for valuable discussions about restoration during my last few years as a post-doctoral fellow: Louis Laborelli and Jean-Hugues Chenot of I.N.A.; John Drewery, Jim Easterbrook and Theodore Vlachos at the BBC; Martin Weston and Stuart Sommerville of Snell and Wilcox and Peter van Roosmalen at Delft University. I am also grateful for the help of David Throup at Quantel (U.K.), Wolfgang Lempp and Amit Gupta at the Computer Film Company, London, for providing source material. Some of the pictures used in Chapters 5 and 8 are provided by INA, Paris, through the help of Jean-Hugues Chenot and I must also thank João Sequeira of RTP (Raotelevisão Portuguesa) for readily providing some of the material used in Chapters 8, 9 and 10.

Finally, I must thank my family in Trinidad for their constant support over the years. I am indebted to my wife for her encouragement, punctuation and patience while my world-view narrowed to these three hundred pages in the last few months.

I am currently in-between worlds as I take up a Lectureship in the Electrical Engineering Dept. of Trinity College, Dublin, Ireland. There I shall continue the work started in this book.

Anil Kokaram Cambridge January 1998

¹AUtomatic Restoration of ORiginal Archives, European Union ACTS Project AC072.

Glossary

2D	Two Dimensional
3D	Three Dimensional
AR	Autoregressive
BBC	British Broadcasting Corporation
ARMA	Autoregressive Moving Average
2DAR	Two Dimensional AR Model
3DAR	Three Dimensional AR Model
WBME	Wiener Based Motion Estimator
MWBME	Multiresolution Wiener Based Motion Estimator
AWBME	Adaptive Wiener Based Motion Estimator
BM	Block Matching
BBM	Boyce Block Matching
MRF	Markov Random Field
JOMBADI	Joint Model Based Detection and Interpolation
MCMC	Markov Chain Monte Carlo
MPEG	Motion Picture Experts Group
pdf	Probability Distribution Function
cdf	Cumulative Distribution Function
ML	Maximum Likelihood
MAP	Maximum a Posteriori
MBD	Model Based Detection
MBI	Model Based Interpolation
LS	Least Squares
SNR	Signal to Noise Ratio
MSE	Mean Square Error
MMSE	Minimum Mean Square Error
MAE	Mean Absolute Error
DFD	Displaced Frame Difference
DPD	Displaced Pixel Difference
ICM	Iterated Conditional Modes
SA	Simulated Annealing
VZO	Temporal zero-order hold interpolation for motion
Pel	Pixel
RMS	Root Mean Squared
SDI	Spike Detection Index
ROD	Rank Order Detector
ROC	Receiver Operating Characteristic
PMSE	Percentage Mean Squared Error
PIMSE	Percentage Improvement in Mean Squared Error
MMF	Multilevel Median Filter
DFT	Discrete Fourier Transform
\mathbf{FFT}	Fast Fourier Transform
IDFT	Inverse Discrete Fourier Transform

Contents

1	Inti	oduct	ion	1
	1.1	A sho	rt history of film and video	4
	1.2	Film a	and video artefacts	6
		1.2.1	Missing data	6
		1.2.2	Noise	7
		1.2.3	Image unsteadiness	7
		1.2.4	Image flicker	8
		1.2.5	Telecine effects	8
	1.3	A rou	gh guide to the book	9
2	Mo	tion E	stimation for Image Sequence Processing: An Over-	_
	viev	v		13
	2.1	Image	sequence modelling: The image centric view	15
		2.1.1	Correspondence matching	16
		2.1.2	Gradient based approaches	18
		2.1.3	Ambiguity in motion estimation: Adaptive solutions and	
			additional constraints	22
	2.2	Block	Matching vs. WBME	25
	2.3	Image	sequence modelling: Alternatives	26
		2.3.1	A stochastic image centric sequence model	28
	2.4	Estima	ating large displacements	32
	2.5	Motio	n prediction.	35
	2.6	A unif	ying theory	36
		2.6.1	Conceptual motion estimation	36
		2.6.2	Quantitative analysis	38

Contents

	2.7	2.6.3 Deriving motion estimators	4 4
3	Thr	ee Dimensional Autoregressive Modelling for Image Se-	
U		nces	1
	2 1	The model	4
	2.1	Parameter actimation	4
	3.2	2.2.1 Estimation of the AP coefficients	4
		3.2.1 Estimation of the Art coefficients	4
	ባባ	5.2.2 Estimating the displacement	4
	ა.ა	2.2.1 Converting three dimensional outcomessions in a second	о ~
		3.3.1 Generating three dimensional autoregressive sequences .	5
		3.3.2 The experiments	5
		3.3.3 Results and observations	5
		3.3.4 Discussion	5
	3.4	Experiments with a more realistic sequence	5
		3.4.1 Experiments	5
		3.4.2 Discussion	6
	3.5	Real sequences	6
	3.6	Discussion	6
	3.7	Adaptive estimation	6
		3.7.1 Experiments	7
		3.7.2 Discussion	7
	3.8	Modelling sequences with large displacements	7
	3.9	Model selection on the pyramid	7
		3.9.1 Experiments and discussion	7
	3.10	The motion parameter in the 3DAR model: Using alternative	_
		estimators	8
	3.11	Final comments	8
4	Ima	ge Sequence Restoration: A Review	8
	4.1	Early techniques for noise reduction in image sequences	8
	4.2	Noise reduction in image sequences	8
		4.2.1 Motion compensated temporal filtering	8
		4.2.2 Motion compensated spatio-temporal filtering	9
	4.3	Removing impulsive noise	9
		4.3.1 Model based missing data reconstruction	9
	4.4	Summary	9
5	Line	e Registration for Jittered Video	9
	5.1	The model	10
	5.2	Displacement estimation	$\frac{10}{10}$
		5.2.1 Increasing stability	10
	5.3	Implementation	10
	0.0	5.3.1 Model parameter estimation and overlapped blocks	10
		5.3.2 Interpolation	10
		5.3.3 Multiresolution	10
			τU

		5.3.4 Enhancing vertical features	108
	5.4	Algorithm flow	108
	5.5	Interframe processing	110
	5.6	Performance	110
	5.7	Real jitter	114
	5.8	Final Comments	117
6	Heu	ristics for Reconstructing Missing Data	119
	6.1	Two step removal	120
	6.2	Heuristics for detecting missing data	122
		6.2.1 The SDI detectors	122
		6.2.2 The ROD detector	124
		6.2.3 Pre-processors	125
		6.2.4 Adaptive detectors	125
	6.3	Motion estimation	126
	6.4	Detector performance	130
	6.5	Motion compensated median filtering	135
		6.5.1 The filters	135
	6.6	An improved spatio-temporal MMF	136
		6.6.1 Motion interpolation	137
		6.6.2 Interpolation performance	142
	6.7	Real degradation	142
	6.8	Final comments	149
7	Mo	del Based Reconstruction for Missing Data	151
7	Mo 7.1	del Based Reconstruction for Missing Data The model for degradation	151 152
7	Mo 7.1 7.2	del Based Reconstruction for Missing Data The model for degradation	151 152 152
7	Mo 7.1 7.2 7.3	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction	151 152 152 153
7	Mo 7.1 7.2 7.3	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction7.3.1	151 152 152 153 154
7	Mo 7.1 7.2 7.3	del Based Reconstruction for Missing DataThe model for degradation	151 152 152 153 154 154
7	Mo 7.1 7.2 7.3	del Based Reconstruction for Missing DataThe model for degradation	151 152 152 153 154 154 155
7	Mo 7.1 7.2 7.3 7.4	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction7.3.1The corruption likelihood7.3.2The original (clean) data likelihoodThe priors7.4.1The motion prior	151 152 153 154 154 155 155
7	Mo 7.1 7.2 7.3 7.4	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction7.3.1The corruption likelihood7.3.2The original (clean) data likelihoodThe priors7.4.1The motion prior7.4.2The priors for corruption and detection	151 152 152 153 154 154 155 155 155
7	Mo 7.1 7.2 7.3 7.4 7.5	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction7.3.1The corruption likelihood7.3.2The original (clean) data likelihoodThe priors7.4.1The motion prior7.4.2The priors for corruption and detectionSolving for the unknowns	151 152 152 153 154 154 155 155 155 155
7	Mo 7.1 7.2 7.3 7.4 7.5	del Based Reconstruction for Missing DataThe model for degradation	151 152 152 153 154 154 155 155 155 155 156 157
7	 Mo 7.1 7.2 7.3 7.4 7.5 	del Based Reconstruction for Missing DataThe model for degradation	151 152 152 153 154 155 155 155 155 156 157
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction7.3.1The corruption likelihood7.3.2The original (clean) data likelihoodThe priors7.4.1The motion prior7.4.2The priors for corruption and detectionSolving for the unknowns7.5.1The Gibbs sampler7.5.2Adaptations to the Gibbs samplerThe JOMBADI algorithm	151 152 152 153 154 154 155 155 155 155 156 157 157 159
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 	del Based Reconstruction for Missing Data The model for degradation	151 152 153 154 154 155 155 155 155 156 157 157 159 160
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 	del Based Reconstruction for Missing Data The model for degradation	151 152 153 154 154 155 155 155 155 156 157 157 159 160 162
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	del Based Reconstruction for Missing DataThe model for degradationThe image data modelA Bayesian framework for joint detection and reconstruction7.3.1The corruption likelihood7.3.2The original (clean) data likelihoodThe priors7.4.1The motion prior7.4.2The priors for corruption and detection7.5.1Solving for the unknowns7.5.2Adaptations to the Gibbs sampler7.6.1The draw for $\mathbf{d}_{n,n-1}$, $\mathbf{d}_{n,n+1}$, \mathbf{a} , σ_e^2 7.6.2Joint sampling for $c(\mathbf{x})$, $I_n(\mathbf{x})$, $b(\mathbf{x})$ Relation to other techniques	151 152 153 154 155 155 155 155 156 157 157 157 159 160 162 162
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	del Based Reconstruction for Missing Data The model for degradation	151 152 152 153 154 155 155 155 155 155 156 157 157 159 160 162 162 163
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	del Based Reconstruction for Missing Data The model for degradation	151 152 152 153 154 155 155 155 155 155 156 157 157 159 160 162 162 163 170
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	del Based Reconstruction for Missing Data The model for degradation	151 152 152 153 154 155 155 155 155 155 156 157 157 159 160 162 162 163 170 172
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	del Based Reconstruction for Missing Data The model for degradation	$\begin{array}{c} \textbf{151}\\ 152\\ 152\\ 153\\ 154\\ 154\\ 155\\ 155\\ 155\\ 155\\ 156\\ 157\\ 159\\ 160\\ 162\\ 162\\ 162\\ 163\\ 170\\ 172\\ 175 \end{array}$
7	 Mo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	del Based Reconstruction for Missing Data The model for degradation	$\begin{array}{c} \textbf{151}\\ 152\\ 152\\ 153\\ 154\\ 154\\ 155\\ 155\\ 155\\ 156\\ 157\\ 157\\ 159\\ 160\\ 162\\ 162\\ 162\\ 162\\ 163\\ 170\\ 172\\ 175\\ 175\\ 175\end{array}$

Contents

	7.8	Fast algorithms	177
		7.8.1 Single site interpolation	181
	7.9	Performance	181
		7.9.1 Interpolation	187
		7.9.2 Real degradation	192
	7.10	Summary comments	198
8	\mathbf{Lar}	ge Area Reconstruction	201
	8.1	An overview of the motion interpolation problem	204
	8.2	Constraints on motion	208
		8.2.1 Local temporal smoothness	209
	8.3	The occlusion prior	210
	8.4	The posterior distribution	211
	8.5	Choosing the most probable motion field interpolant	213
		8.5.1 Modifying the Gibbs sampler	213
		8.5.2 Composition sampling	214
	8.6	The algorithm	215
		8.6.1 Suboptimal MAP estimation	217
	8.7	Considering more severe degradation	218
		8.7.1 Generating motion candidates	218
	8.8	Illustrating performance	218
	8.9	Real degradation	221
	8.10	Final comments	224
9	Line	e Scratch Detection and Removal	227
	9.1	Line features and model for degradation	229
	9.2	Finding suspect lines	
	0.0		230
	9.3	Bayesian refinement	$\begin{array}{c} 230 \\ 233 \end{array}$
	9.3	Bayesian refinement	230 233 233
	9.3 9.4	Bayesian refinement	230 233 233 235
	9.3 9.4 9.5	Bayesian refinement	230 233 233 235 235 238
	9.3 9.4 9.5	Bayesian refinement	230 233 233 235 235 238
10	9.3 9.4 9.5 Nois	Bayesian refinement	 230 233 233 235 238 241
10	 9.3 9.4 9.5 Noi: 10.1 	Bayesian refinement	230 233 233 235 238 241 242
10	 9.3 9.4 9.5 Noi: 10.1 	Bayesian refinement	230 233 235 235 238 241 242 242
10	9.3 9.4 9.5 Noi : 10.1	Bayesian refinement	230 233 235 235 238 241 242 242 242 246
10	 9.3 9.4 9.5 Noi: 10.1 10.2 	Bayesian refinement	230 233 235 238 241 242 242 246 247
10	 9.3 9.4 9.5 Nois 10.1 10.2 10.3 	Bayesian refinement	230 233 235 238 241 242 242 242 246 247 256
10	 9.3 9.4 9.5 Noi: 10.1 10.2 10.3 10.4 	Bayesian refinement	230 233 235 235 238 241 242 242 246 247 256 259
10	 9.3 9.4 9.5 Nois 10.1 10.2 10.3 10.4 10.5 	Bayesian refinement	230 233 235 238 241 242 242 246 247 256 259 259
10	 9.3 9.4 9.5 Nois 10.1 10.2 10.3 10.4 10.5 Ilei 	Bayesian refinement	230 233 235 238 241 242 242 246 247 256 259 259
10	 9.3 9.4 9.5 Nois 10.1 10.2 10.3 10.4 10.5 Usin 11.1 	Bayesian refinement	230 233 233 235 238 241 242 242 242 246 247 256 259 259 259
10	 9.3 9.4 9.5 Nois 10.1 10.2 10.3 10.4 10.5 Usin 11.1 11.2 	Bayesian refinement	230 233 233 235 238 241 242 242 246 247 256 259 259 259 261 261
10	 9.3 9.4 9.5 Noi: 10.1 10.2 10.3 10.4 10.5 Usin 11.1 11.2 11.2 	Bayesian refinement	230 233 233 235 238 241 242 242 246 247 256 259 259 259 259 261 261 262
10	 9.3 9.4 9.5 Noi: 10.1 10.2 10.3 10.4 10.5 Usin 11.1 11.2 11.3 11.4 	Bayesian refinement	230 233 233 235 238 241 242 242 246 247 256 259 259 261 261 261 262
10	 9.3 9.4 9.5 Noii 10.1 10.2 10.3 10.4 10.5 Usin 11.1 11.2 11.3 11.4 	Bayesian refinement	230 233 233 235 238 241 242 242 246 247 256 259 259 261 261 262 263 264

Contents

	11.6 Final comments	267		
12	Parting Remarks	269		
A	Estimating the AR Coefficients for the 3DAR Model 27			
в	The Residual from a Non–Causal AR Model is not White	277		
С	Estimating Displacement in the 3DAR Model C.1 Summary	279 285		
D	Joint Sampling in the JOMBADI Algorithm D.1 Sampling for $\mathbf{a}(\mathbf{x}), \sigma_e^2(\mathbf{x}), \mathbf{d}_{n,n-1}(\mathbf{x}) \dots \dots$	287 288 291		
E	Examining Ill-Conditioning in G ^T G E.1 Condition for singularity E.2 Relating ill-conditioning to the spatial contrast E.3 Ill-conditioning in the general 3DAR solution E.4 Summary	 295 296 298 298 		
F	The Wiener Filter for Image Sequence RestorationF.1F.2The 3D FIR Wiener filterF.3The matrix formulation of the 3D Wiener filter	301 301 303 305		
G	Reducing the Complexity of Wiener FilteringG.1 Efficient Wiener filtering via 2D DFT diagonalizationG.2 An alternative derivationG.3 A final refinement	307 307 310 313		
	References	315		
	Index	331		

xv