Skip to main content

Surface Plasmon Enhanced Solid-State Light-Emitting Devices

  • Chapter
  • First Online:
Nanoscale Photonics and Optoelectronics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 9))

Abstract

A novel method to enhance light emission efficiencies from solid-state materials was developed by the use of surface plasmon (SP). A 17-fold increase in the photoluminescence (PL) intensity along with a 7-fold increase in the internal quantum efficiency (IQE) of light emission from InGaN/GaN quantum wells (QWs) was obtained when nanostructured silver layers were deposited 10 nm above the QWs. A 32-fold increase in the spontaneous emission rate of InGaN/GaN at 440 nm probed by the time-resolved PL measurements was also observed. Likewise, both light emission intensities and rates were enhanced for organic materials, CdSe-based nanocrystals, and also Si/SiO2 nanostructures. These enhancements should be attributed to the SP coupling. Electron–hole pairs in the materials couple to electron vibrations at the metal surface and produce SPs instead of photons or phonons. This new path increases the spontaneous emission rate and the IQEs. The SP-emitter coupling technique would lead to super bright and high-speed solid-state light-emitting devices that offer realistic alternatives to conventional fluorescent light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)

    Google Scholar 

  2. Shalaev, V.M., Kawata, S.: Nanophotonics with Surface Plasmons. Elsevier, Amsterdam (2007)

    Google Scholar 

  3. Brongersma, M.L., Kik, P.G.: Surface Plasmon Nanophotonics. Springer, Berlin (2007)

    Book  Google Scholar 

  4. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Google Scholar 

  5. Barnes, W. L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  Google Scholar 

  6. Dostalek, J., Homola, J., Jiang, S., Ladd, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Google Scholar 

  7. Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    Article  CAS  Google Scholar 

  8. Kawata, S.: Near-Field Optics and Surface Plasmon Polaritons. Springer, Berlin (2001)

    Book  Google Scholar 

  9. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  CAS  Google Scholar 

  10. Atwater, H.A.: The promise of plasmonics. Scientific American, pp. 56–63 (April 2007)

    Google Scholar 

  11. Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., Iwasa, N.: P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes, Jpn. J. Appl. Phys. 32, L8 (1993)

    Article  CAS  Google Scholar 

  12. Nakamura, S., Fasol, G.: The Blue Laser Diode: GaN Based Light Emitting Diode and Lasers. Springer, Berlin (1997)

    Google Scholar 

  13. Yamada, M., Mitani, T., Narukawa, Y., Shioji, S., Niki, I., Sonobe, S., Deguchi, K., Sano, M., Mukai, T.: InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode, Jpn. J. Appl. Phys. 41, L1431–L1433 (2002)

    Article  CAS  Google Scholar 

  14. Mukai, T., Takekawa, K., Nakamura, S.: InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates, Jpn. J. Appl. Phys. 37, L839–L841 (1998)

    Article  CAS  Google Scholar 

  15. Walterelt, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., Ploog, K.H.: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000)

    Article  Google Scholar 

  16. Köck, A., Gornik, E., Hauser, M., Beinstingl, M.: Strongly directional emission from AlGaAs/GaAs light-emitting diode. Appl. Phys. Lett. 57, 2327–2329 (1990)

    Article  Google Scholar 

  17. Hecker, N.E., Hopfel, R.A., Sawaki, N., Maier, T., Strasser, G.: Surface plasmon-enhanced photoluminescence from a single quantum well. Appl. Phys. Lett. 75, 1577–1579 (1999)

    Article  CAS  Google Scholar 

  18. Barnes, W.L.: Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Light. Tech. 17, 2170–2182 (1999)

    Article  Google Scholar 

  19. Hobson, P.A., Wedge, S., Wasey, J.A.E., Sage, I., Barnes, W.L.: Surface plasmon mediated emission from organic light emitting diodes. Adv. Mater. 14, 1393–1396 (2002)

    Article  CAS  Google Scholar 

  20. Vuckovic, J., Loncar, M., Scherer, A.: Surface plasmon enhanced light-emitting diode. IEEE J. Quantum Electron 36, 1131–1144 (2000)

    Article  CAS  Google Scholar 

  21. Gontijo, I., Borodisky, M., Yablonvitch, E., Keller, S., Mishra, U.K., DenBaars, S.P.: Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 60, 11564–11567 (1999)

    Article  CAS  Google Scholar 

  22. Neogi, A., Lee, C.-W., Everitt, H.O., Kuroda, T., Tackeuchi, A., Yablonvitch, E.: Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002)

    Article  Google Scholar 

  23. Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., Scherer, A.: Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004)

    Article  CAS  Google Scholar 

  24. Okamoto, K., Niki, I., Narukawa, Y., Mukai, T., Kawakami, Y., Scherer, A.: Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 97, 071102 (2005)

    Article  Google Scholar 

  25. Barnes, W.L.: Light-emitting devices: Turning the tables on surface plasmons. Nat. Mater. 3, 588–589 (2004)

    Article  CAS  Google Scholar 

  26. Nomura, W., Ohtsu, M., Yatsui, T.: Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86, 181108 (2005)

    Article  Google Scholar 

  27. Yeh, D.-M., Huang, C.-F., Chen, C.-Y., Lu, Y.-C., Yanga, C.C.: Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl. Phys. Lett. 91, 171103 (2007)

    Article  Google Scholar 

  28. Kwon, M.-K., Kim, J.-Y., Kim, B.-H., Park, I.-K., Cho, C.-Y., Byeon, C.C., Park, S.-J.: Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 20, 1253–1257 (2008)

    Article  CAS  Google Scholar 

  29. Okamoto, K., Niki, I., Shvartser, A., Maltezos, G., Narukawa, Y., Mukai, T., Kawakami, Y., Scherer, A.: Surface plasmon enhanced bright light emission from InGaN/GaN. Phys. Stat. Sol. (a) 204, 2103–2107 (2007)

    Article  CAS  Google Scholar 

  30. Paiella, R.: Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement. Appl. Phys. Lett. 87, 111104 (2005)

    Article  Google Scholar 

  31. Neal, T.D., Okamoto, K., Scherer, A.: Surface plasmon enhanced emission from dye doped polymer layers. Opt. Express 13, 5522–5527 (2005)

    Article  CAS  Google Scholar 

  32. Neal, T.D., Okamoto, K., Scherer, A., Liu, M.S., Jen, A.K-Y.: Time-resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers. Appl. Phys. Lett. 89, 221106 (2006)

    Article  Google Scholar 

  33. Liu, M.S., Jiang, X., Herguth, P., Jen, A.K.-Y.: Efficient cyano-containing electron-transporting polymers for light-emitting diodes. Chem. Mater. 13, 3820–3822 (2001)

    Article  CAS  Google Scholar 

  34. Shu, C.-F., Dodda, R., Wu, F.-I., Liu, M.S., Jen, A.K.-Y.: Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups. Macromolecules 36, 6698–6703 (2003)

    Article  CAS  Google Scholar 

  35. Colvin, V.L., Schlamp, M.C., Ailvisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994)

    Article  CAS  Google Scholar 

  36. Dabbousi, B.O., Bawendi, M.G., Onitsuka, O., Rubner, M.F.: Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 3116–3118 (1995)

    Article  Google Scholar 

  37. Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  CAS  Google Scholar 

  38. Chan, W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Article  CAS  Google Scholar 

  39. Okamoto, K., Vyawahare, S., Scherer, A.: Surface plasmon enhanced bright emission from CdSe quantum dots nanocrystal. J. Opt. Soc. Am. B 23, 1674–1678 (2006)

    Article  CAS  Google Scholar 

  40. Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U., Artemyev, M.: Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2, 1449–1452 (2002)

    Article  CAS  Google Scholar 

  41. Song, J.-H., Atay, T., Shi, S., Urabe, H., Nurmikko, A.V.: Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett. 5, 1227–1561 (2005)

    Article  Google Scholar 

  42. Gryczynski, I., Malicka, J., Jiang, W., Fischer, H., Chan, W.C.W., Gryczynski, Z., Grudzinski, W., Lakowicz, J.R.: Surface-plasmon-coupled emission of quantum dots. J. Phys. Chem. B 109, 1088–1093 (2005)

    Article  CAS  Google Scholar 

  43. Cullis, A.G., Canham, L.T.: Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991)

    Article  CAS  Google Scholar 

  44. Brongersma, M.L., Polman, A., Min, K.S., Boer, E., Tambo, T., Atwater, H.A.: Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72, 2577–2579 (1998)

    Article  CAS  Google Scholar 

  45. Steigmeier, E.F., Morf, R., Grützmacher, D., Auderset, H., Delley, B., Wessicken, R.: Light emission from a silicon quantum well. Appl. Phys. Lett. 69, 4165–4167 (1996)

    Article  CAS  Google Scholar 

  46. Kanemitsu, Y., Sato, H., Nihonyanagi, S., Hirai, Y.: Efficient radiative recombination of indirect excitons in silicon nanowires. Phys. Stat. Sol. (a) 190, 755–758 (2002)

    Article  CAS  Google Scholar 

  47. Okamoto, K., Scherer, A., Kawakami, Y.: Surface plasmon enhanced light emission from semiconductor materials. Phys. Stat. Sol. c, 5, 2822–2824 (2008)

    Article  CAS  Google Scholar 

  48. Zacharias, M., Heitmann, J., Scholz, R., Kahler, U., Schmidt, M., Bläsing, J.: Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002)

    Article  CAS  Google Scholar 

  49. Biteen, J.S., Pacifici, D., Lewis, N.S., Atwater, H.A.: Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. Nano Lett. 5, 1768–1773 (2005)

    Article  CAS  Google Scholar 

  50. Kalkman, J., Gersen, H., Kuipers, L., Polman, A.: Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory. Phys. Rev. B 73, 075317 (2006)

    Article  Google Scholar 

  51. Brongersma, M.L., Kik, P.G., Polman, A., Min, K.S., Atwater, H.A.: Size-dependent electron-hole exchange interaction in Si nanocrystals. Appl. Phys. Lett. 76, 351–353 (2000)

    Article  CAS  Google Scholar 

  52. Kovalev, D., Heckler, H., Polisski, G., Koch, F.: Optical properties of Silicon nanocrystals. Phys. Stat. Sol. (b) 215, 871–932 (1999)

    Article  CAS  Google Scholar 

  53. Timoshenko, V.Yu, Lisachenko, M.G., Shalygina, O.A., Kamenev, B.V., Zhigunov, D.M., Teterukov, S.A., Kashkarov, P.K., Heitmann, J., Schmidt, M., Zacharias, M.: Comparative study of photoluminescence of undoped and erbium-doped size-controlled nanocrystalline Si/SiO2 multilayered structures. J. Appl. Phys. 96, 2254–2260 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor Y. Kawakami (Kyoto University) and Professor A. Scherer (Caltech) for valuable discussions and support. The author also thanks Mr. A. Shavartser, Dr. T. D. Neal, and Dr. S. Vyawahare for collaboration and help. InGaN/GaN materials were provided by Mr. I. Niki, Dr. Y. Narukawa, and Dr. T. Mukai (Nichia Co.). A part of this study was supported by the Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Okamoto, K. (2010). Surface Plasmon Enhanced Solid-State Light-Emitting Devices. In: Wang, Z., Neogi, A. (eds) Nanoscale Photonics and Optoelectronics. Lecture Notes in Nanoscale Science and Technology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7587-4_2

Download citation

Publish with us

Policies and ethics