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Foreword
by Lev Beklemishev, Moscow

The field of mathematical logic—evolving around the notions of logical
validity, provability, and computation—was created in the first half of the
previous century by a cohort of brilliant mathematicians and philosophers
such as Frege, Hilbert, Gödel, Turing, Tarski, Malcev, Gentzen, and some
others. The development of this discipline is arguably among the highest
achievements of science in the twentieth century: it expanded mathe-
matics into a novel area of applications, subjected logical reasoning and
computability to rigorous analysis, and eventually led to the creation of
computers.

The textbook by Professor Wolfgang Rautenberg is a well-written in-
troduction to this beautiful and coherent subject. It contains classical
material such as logical calculi, beginnings of model theory, and Gödel’s
incompleteness theorems, as well as some topics motivated by applica-
tions, such as a chapter on logic programming. The author has taken
great care to make the exposition readable and concise; each section is
accompanied by a good selection of exercises.

A special word of praise is due for the author’s presentation of Gödel’s
second incompleteness theorem, in which the author has succeeded in
giving an accurate and simple proof of the derivability conditions and
the provable Σ1-completeness, a technically difficult point that is usually
omitted in textbooks of comparable level. This work can be recommended
to all students who want to learn the foundations of mathematical logic.
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Preface
The third edition differs from the second mainly in that parts of the
text have been elaborated upon in more detail. Moreover, some new
sections have been added, for instance a separate section on Horn formulas
in Chapter 4, particularly interesting for logic programming. The book
is aimed at students of mathematics, computer science, and linguistics.
It may also be of interest to students of philosophy (with an adequate
mathematical background) because of the epistemological applications of
Gödel’s incompleteness theorems, which are discussed in detail.

Although the book is primarily designed to accompany lectures on a
graduate level, most of the first three chapters are also readable by under-
graduates. The first hundred twenty pages cover sufficient material for an
undergraduate course on mathematical logic, combined with a due por-
tion of set theory. Only that part of set theory is included that is closely
related to mathematical logic. Some sections of Chapter 3 are partly
descriptive, providing a perspective on decision problems, on automated
theorem proving, and on nonstandard models.

Using this book for independent and individual study depends less on
the reader’s mathematical background than on his (or her) ambition to
master the technical details. Suitable examples accompany the theorems
and new notions throughout. We always try to portray simple things
simply and concisely and to avoid excessive notation, which could divert
the reader’s mind from the essentials. Line breaks in formulas have been
avoided. To aid the student, the indexes have been prepared very carefully.
Solution hints to most exercises are provided in an extra file ready for
download from Springer’s or the author’s website.

Starting from Chapter 4, the demands on the reader begin to grow. The
challenge can best be met by attempting to solve the exercises without
recourse to the hints. The density of information in the text is rather high;
a newcomer may need one hour for one page. Make sure to have paper and
pencil at hand when reading the text. Apart from sufficient training in
logical (or mathematical) deduction, additional prerequisites are assumed
only for parts of Chapter 5, namely some knowledge of classical algebra,
and at the very end of the last chapter some acquaintance with models of
axiomatic set theory.

vii



viii Preface

On top of the material for a one-semester lecture course on mathemat-
ical logic, basic material for a course in logic for computer scientists is
included in Chapter 4 on logic programming. An effort has been made to
capture some of the interesting aspects of this discipline’s logical founda-
tions. The resolution theorem is proved constructively. Since all recursive
functions are computable in PROLOG, it is not hard to deduce the un-
decidability of the existence problem for successful resolutions.

Chapter 5 concerns applications of mathematical logic in mathematics
itself. It presents various methods of model construction and contains the
basic material for an introductory course on model theory. It contains in
particular a model-theoretic proof of quantifier eliminability in the theory
of real closed fields, which has a broad range of applications.

A special aspect of the book is the thorough treatment of Gödel’s incom-
pleteness theorems in Chapters 6 and 7. Chapters 4 and 5 are not needed
here. 6.11 starts with basic recursion theory needed for the arithmeti-
zation of syntax in 6.2 as well as in solving questions about decidability
and undecidability in 6.5. Defining formulas for arithmetical predicates
are classified early, to elucidate the close relationship between logic and
recursion theory. Along these lines, in 6.5 we obtain in one sweep Gödel’s
first incompleteness theorem, the undecidability of the tautology problem
by Church, and Tarski’s result on the nondefinability of truth, all of which
are based on certain diagonalization arguments. 6.6 includes among other
things a sketch of the solution to Hilbert’s tenth problem.

Chapter 7 is devoted mainly to Gödel’s second incompleteness theo-
rem and some of its generalizations. Of particular interest thereby is the
fact that questions about self-referential arithmetical statements are al-
gorithmically decidable due to Solovay’s completeness theorem. Here and
elsewhere, Peano arithmetic (PA) plays a key role, a basic theory for the
foundations of mathematics and computer science, introduced already in
3.3. The chapter includes some of the latest results in the area of self-
reference not yet covered by other textbooks.

Remarks in small print refer occasionally to notions that are undefined
and direct the reader to the bibliography, or will be introduced later.
The bibliography can represent an incomplete selection only. It lists most
1 This is to mean Section 6.1, more precisely, Section 1 in Chapter 6. All other boldface
labels are to be read accordingly throughout the book.



Preface ix

English textbooks on mathematical logic and, in addition, some original
papers mainly for historical reasons. It also contains some titles treating
biographical, historical, and philosophical aspects of mathematical logic
in more detail than this can be done in the limited size of our book. Some
brief historical remarks are also made in the Introduction. Bibliographical
entries are sorted alphabetically by author names. This order may slightly
diverge from the alphabetic order of their citation labels.

The material contained in this book will remain with high probability
the subject of lectures on mathematical logic in the future. Its streamlined
presentation has allowed us to cover many different topics. Nonetheless,
the book provides only a selection of results and can at most accentuate
certain topics. This concerns above all Chapters 4, 5, 6, and 7, which go
a step beyond the elementary. Philosophical and foundational problems
of mathematics are not systematically discussed within the constraints of
this book, but are to some extent considered when appropriate.

The seven chapters of the book consist of numbered sections. A ref-
erence like Theorem 5.4 is to mean Theorem 4 in Section 5 of a given
chapter. In cross-referencing from another chapter, the chapter number
will be adjoined. For instance, Theorem 6.5.4 means Theorem 5.4 in
Chapter 6. You may find additional information about the book or con-
tact me on my website www.math.fu-berlin.de/~raut. Please contact me
if you propose improved solutions to the exercises, which may afterward
be included in the separate file Solution Hints to the Exercises .

I would like to thank the colleagues who offered me helpful criticism
along the way. Useful for Chapter 7 were hints from Lev Beklemishev
and Wilfried Buchholz. Thanks also to Peter Agricola for his help in
parts of the contents and in technical matters, and to Michael Knoop and
David Kramer for their thorough reading of the manuscript and finding a
number of mistakes.

Wolfgang Rautenberg, June 2009

http://www.math.fu-berlin.de/~raut
http://www.math.fu-berlin.de/~raut/logic3/hint.pdf
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Introduction
Traditional logic as a part of philosophy is one of the oldest scientific
disciplines. It can be traced back to the Stoics and to Aristotle2 and
is the root of what is nowadays called philosophical logic. Mathematical
logic, however, is a relatively young discipline, having arisen from the en-
deavors of Peano, Frege, and Russell to reduce mathematics entirely to
logic. It steadily developed during the twentieth century into a broad dis-
cipline with several subareas and numerous applications in mathematics,
computer science, linguistics, and philosophy.

One feature of modern logic is a clear distinction between object lan-
guage and metalanguage. The first is formalized or at least formalizable.
The latter is, like the language of this book, a kind of a colloquial language
that differs from author to author and depends also on the audience the
author has in mind. It is mixed up with semiformal elements, most of
which have their origin in set theory. The amount of set theory involved
depends on one’s objectives. Traditional semantics and model theory
as essential parts of mathematical logic use stronger set-theoretic tools
than does proof theory. In some model-theoretic investigations these are
often the strongest possible ones. But on average, little more is assumed
than knowledge of the most common set-theoretic terminology, presented
in almost every mathematical course or textbook for beginners. Much of
it is used only as a façon de parler.

The language of this book is similar to that common to almost all math-
ematical disciplines. There is one essential difference though. In math-
ematics, metalanguage and object language strongly interact with each
other, and the latter is semiformalized in the best of cases. This method
has proved successful. Separating object language and metalanguage is
relevant only in special context, for example in axiomatic set theory, where
formalization is needed to specify what certain axioms look like. Strictly
formal languages are met more often in computer science. In analyzing
complex software or a programming language, as in logic, formal linguistic
entities are the central objects of consideration.
2 The Aristotelian syllogisms are easy but useful examples for inferences in a first-order
language with unary predicate symbols. One of these syllogisms serves as an example
in Section 4.6 on logic programming.

xv



xvi Introduction

The way of arguing about formal languages and theories is traditionally
called the metatheory . An important task of a metatheoretic analysis is
to specify procedures of logical inference by so-called logical calculi, which
operate purely syntactically. There are many different logical calculi. The
choice may depend on the formalized language, on the logical basis, and
on certain aims of the formalization. Basic metatheoretic tools are in any
case the naive natural numbers and inductive proof procedures. We will
sometimes call them proofs by metainduction, in particular when talking
about formalized object theories that speak about natural numbers. In-
duction can likewise be carried out on certain sets of strings over a fixed
alphabet, or on the system of rules of a logical calculus.

The logical means of the metatheory are sometimes allowed or even ex-
plicitly required to be different from those of the object language. But in
this book the logic of object languages, as well as that of the metalang-
uage, are classical, two-valued logic. There are good reasons to argue that
classical logic is the logic of common sense. Mathematicians, computer
scientists, linguists, philosophers, physicists, and others are using it as a
common platform for communication.

It should be noticed that logic used in the sciences differs essentially
from logic used in everyday language, where logic is more an art than a se-
rious task of saying what follows from what. In everyday life, nearly every
utterance depends on the context. In most cases logical relations are only
alluded to and rarely explicitly expressed. Some basic assumptions of two-
valued logic mostly fail, in particular, a context-free use of the logical con-
nectives. Problems of this type are not dealt with here. To some extent,
many-valued logic or Kripke semantics can help to clarify the situation,
and sometimes intrinsic mathematical methods must be used in order to
solve such problems. We shall use Kripke semantics here for a different
goal, though, the analysis of self-referential sentences in Chapter 7.

Let us add some historical remarks, which, of course, a newcomer may
find easier to understand after and not before reading at least parts of this
book. In the relatively short period of development of modern mathemat-
ical logic in the twentieth century, some highlights may be distinguished,
of which we mention just a few. Many details on this development can be
found in the excellent biographies [Daw] and [FF] on Gödel and Tarski,
the leading logicians in the last century.
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The first was the axiomatization of set theory in various ways. The most
important approaches are those of Zermelo (improved by Fraenkel and von
Neumann) and the theory of types by Whitehead and Russell. The latter
was to become the sole remnant of Frege’s attempt to reduce mathematics
to logic. Instead it turned out that mathematics can be based entirely on
set theory as a first-order theory. Actually, this became more salient after
the rest of the hidden assumptions by Russell and others were removed
from axiomatic set theory around 1915; see [Hei]. For instance, the notion
of an ordered pair, crucial for reducing the notion of a function to set
theory, is indeed a set-theoretic and not a logical one.

Right after these axiomatizations were completed, Skolem discovered
that there are countable models of the set-theoretic axioms, a drawback
to the hope for an axiomatic characterization of a set. Just then, two
distinguished mathematicians, Hilbert and Brouwer, entered the scene
and started their famous quarrel on the foundations of mathematics. It
is described in a comprehensive manner for instance in [Kl2, Chapter IV]
and need therefore not be repeated here.

As a next highlight, Gödel proved the completeness of Hilbert’s rules for
predicate logic, presented in the first modern textbook on mathematical
logic, [HA]. Thus, to some extent, a dream of Leibniz became real, namely
to create an ars inveniendi for mathematical truth. Meanwhile, Hilbert
had developed his view on a foundation of mathematics into a program. It
aimed at proving the consistency of arithmetic and perhaps the whole of
mathematics including its nonfinitistic set-theoretic methods by finitary
means. But Gödel showed by his incompleteness theorems in 1931 that
Hilbert’s original program fails or at least needs thorough revision.

Many logicians consider these theorems to be the top highlights of math-
ematical logic in the twentieth century. A consequence of these theorems
is the existence of consistent extensions of Peano arithmetic in which true
and false sentences live in peaceful coexistence with each other, called
“dream theories” in 7.3. It is an intellectual adventure of holistic beauty
to see wisdom from number theory known for ages, such as the Chinese re-
mainder theorem, simple properties of prime numbers, and Euclid’s char-
acterization of coprimeness (page 249), unexpectedly assuming pivotal
positions within the architecture of Gödel’s proofs. Gödel’s methods were
also basic for the creation of recursion theory around 1936.
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Church’s proof of the undecidability of the tautology problem marks an-
other distinctive achievement. After having collected sufficient evidence
by his own investigations and by those of Turing, Kleene, and some oth-
ers, Church formulated his famous thesis (see 6.1), although in 1936 no
computers in the modern sense existed nor was it foreseeable that com-
putability would ever play the basic role it does today.

Another highlight of mathematical logic has its roots in the work of
Tarski, who proved first the undefinability of truth in formalized languages
as explained in 6.5, and soon thereafter started his fundamental work on
decision problems in algebra and geometry and on model theory, which
ties logic and mathematics closely together. See Chapter 5.

As already mentioned, Hilbert’s program had to be revised. A decisive
step was undertaken by Gentzen, considered to be another groundbreaking
achievement of mathematical logic and the starting point of contemporary
proof theory. The logical calculi in 1.4 and 3.1 are akin to Gentzen’s
calculi of natural deduction.

We further mention Gödel’s discovery that it is not the axiom of choice
(AC) that creates the consistency problem in set theory. Set theory with
AC and the continuum hypothesis (CH) is consistent, provided set theory
without AC and CH is. This is a basic result of mathematical logic that
would not have been obtained without the use of strictly formal methods.
The same applies to the independence proof of AC and CH from the axioms
of set theory by Cohen in 1963.

The above indicates that mathematical logic is closely connected with
the aim of giving mathematics a solid foundation. Nonetheless, we confine
ourself to logic and its fascinating interaction with mathematics, which
characterizes mathematical logic. History shows that it is impossible to
establish a programmatic view on the foundations of mathematics that
pleases everybody in the mathematical community. Mathematical logic
is the right tool for treating the technical problems of the foundations of
mathematics, but it cannot solve its epistemological problems.



Notation
We assume that the reader is familiar with the most basic mathematical
terminology and notation, in particular with the union, intersection, and
complementation of sets, denoted by ∪, ∩, and \ , respectively. Here we
summarize only some notation that may differ slightly from author to
author or is specific for this book. N, Z, Q, R denote the sets of natural
numbers including 0, integers, rational, and real numbers, respectively,
and N+, Q+, R+ the sets of positive members of the corresponding sets.
n, m, i, j, k always denote natural numbers unless stated otherwise. Hence,
extended notation like n ∈ N is mostly omitted.

In the following, M, N denote sets, M ⊆ N denotes inclusion, while
M ⊂ N means proper inclusion (i.e., M ⊆ N and M �= N). As a rule, we
write M ⊂ N only if the circumstance M �= N has to be emphasized. If
M is fixed in a consideration and N varies over subsets of M , then M \N
may also be symbolized by \N or ¬N .

∅ denotes the empty set, and PM the power set (= set of all subsets)
of M . If one wants to emphasize that all elements of a set S are sets, S is
also called a system or family of sets.

⋃
S denotes the union of S, that is,

the set of elements belonging to at least one M ∈ S, and
⋂

S stands for
the intersection of a nonempty system S, the set of elements belonging to
all M ∈ S. If S = {Mi | i ∈ I} then

⋃
S and

⋂
S are mostly denoted by

⋃
i∈I Mi and

⋂
i∈I Mi, respectively.

A relation between M and N is a subset of M × N , the set of ordered
pairs (a, b) with a ∈ M and b ∈ N . A precise definition of (a, b) is given
on page 114. Such a relation, f say, is said to be a function or mapping
from M to N if for each a ∈ M there is precisely one b ∈ N with (a, b) ∈ f .
This b is denoted by f(a) or fa or af and called the value of f at a. We
denote a function f from M to N also by f : M → N , or by f : x 
→ t(x),
provided f(x) = t(x) for some term t (see 2.2). ran f = {fx | x ∈ M}
is called the range of f , and dom f = M its domain. idM denotes the
identical function on M , that is, idM (x) = x for all x ∈ M .

f : M → N is injective if fx = fy ⇒ x = y, for all x, y ∈ M , surjective
if ran f = N , and bijective if f is both injective and surjective. The reader
should basically be familiar with this terminology. The phrase “let f be
a function from M to N ” is sometimes shortened to “let f : M → N .”

xix



xx Notation

The set of all functions from a set I to a set M is denoted by M I . If
f, g are functions with ran g ⊆ dom f then h : x 
→ f(g(x)) is called their
composition (or product). It will preferably be written as h = f ◦ g.

Let I and M be sets, f : I → M , and call I the index set. Then f will
often be denoted by (ai)i∈I and is named, depending on the context, an
(indexed) family, an I-tuple, or a sequence. If 0 is identified with ∅ and
n > 0 with {0, 1, . . . , n − 1}, as is common in set theory, then Mn can
be understood as the set of n-tuples (ai)i<n = (a0, . . . , an−1) of length n

whose members belong to M . In particular, M0 = {∅}. Also the set of
sequences (a1, . . . , an) with ai ∈ M will frequently be denoted by Mn. In
concatenating finite sequences, which has an obvious meaning, the empty
sequence (i.e., ∅), plays the role of a neutral element. (a1, . . . , an) will
mostly be denoted by �a. Note that this is the empty sequence for n = 0,
similar to {a1, . . . , an} for n = 0 always being the empty set. f�a means
f(a1, . . . , an) throughout.

If A is an alphabet , i.e., if the elements s ∈ A are symbols or at least
named symbols, then the sequence (s1, . . . , sn) ∈ An is written as s1 · · · sn
and called a string or a word over A. The empty sequence is called in
this context the empty string. A string consisting of a single symbol s is
termed an atomic string. It will likewise be denoted by s, since it will be
clear from the context whether s means a symbol or an atomic string.

Let ξη denote the concatenation of the strings ξ and η. If ξ = ξ1ηξ2 for
some strings ξ1, ξ2 and η �= ∅ then η is called a segment (or substring) of
ξ, termed a proper segment in case η �= ξ. If ξ1 = ∅ then η is called an
initial, if ξ2 = ∅, a terminal segment of ξ.

Subsets P, Q, R, . . . ⊆ Mn are called n-ary predicates of M or n-ary re-
lations. A unary predicate will be identified with the corresponding subset
of M . We may write P�a for �a ∈ P , and ¬P�a for �a /∈ P . Metatheoretical
predicates (or properties) cast in words will often be distinguished from
the surrounding text by single quotes, for instance, if we speak of the
syntactic predicate ‘The variable x occurs in the formula α’. We can do
so since quotes inside quotes will not occur in this book. Single-quoted
properties are often used in induction principles or reflected in a theory,
while ordinary (“double”) quotes have a stylistic function only.

An n-ary operation of M is a function f : Mn → M . Since M0 = {∅}, a
0-ary operation of M is of the form {(∅, c)}, with c ∈ M ; it is denoted by
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c for short and called a constant . Each operation f : Mn → M is uniquely
described by the graph of f , defined as

graph f := {(a1, . . . , an+1) ∈ Mn+1 | f(a1, . . . , an) = an+1}.1

Both f and graph f are essentially the same, but in most situations it is
more convenient to distinguish between them.

The most important operations are binary ones. The corresponding
symbols are mostly written between the arguments, as in the following
listing of properties of a binary operation ◦ on a set A. ◦ : A2 → A is

commutative if a ◦ b = b ◦ a for all a, b ∈ A,
associative if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ A,
idempotent if a ◦ a = a for all a ∈ A,
invertible if for all a, b ∈ A there are x, y ∈ A

with a ◦x = b and y ◦ a = b.

If H, Θ (read eta, theta) are expressions of our metalanguage, H ⇔ Θ
stands for ‘H iff Θ’ which abbreviates ‘H if and only if Θ’. Similarly,
H ⇒ Θ and H & Θ mean ‘if H then Θ’ and ‘H and Θ’, respectively, and
H∨∨∨Θ is to mean ‘H or Θ.’ This notation does not aim at formalizing the
metalanguage but serves improved organization of metatheoretic state-
ments. We agree that ⇒, ⇔, . . . separate stronger than linguistic binding
particles such as “there is” or “for all.” Therefore, in the statement

‘X � α ⇔ X � α, for all X and all α’ (Theorem 1.4.6)
the comma should not be dropped; otherwise, some serious misunder-
standing may arise: ‘X � α for all X and all α ’ is simply false.

H :⇔ Θ means that the expression H is defined by Θ. When integrating
formulas in the colloquial metalanguage, one may use certain abbreviating
notation. For instance, ‘α ≡ β and β ≡ γ’ is occasionally shortened
to α ≡ β ≡ γ. (‘the formulas α, β, and β, γ are equivalent’). This is
allowed, since in this book the symbol ≡ will never belong to the formal
language from which the formulas α, β, γ are taken. W.l.o.g. or w.l.o.g. is
a colloquial shorthand of “without loss of generality” used in mathematics.

1 This means that the left-hand term graph f is defined by the right-hand term. A
corresponding meaning has := throughout, except in programs and flow diagrams,
where x := t means the allocation of the value of the term t to the variable x.
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