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Abstract 
Form features have been around since early 80's. However, until recently, no 
(mathematical) theory underpinning form feature-based modelling has been 
proposed. This is largely because of an incomplete understanding of the 
relationships between shape and function of engineering artifacts and the 
inadequacy of current geometric models to conform with the arbitrary space 
decompositions. This paper shows the essential shape incompatibilities between 
current geometric models and form feature models, and describes briefly an 
integrated and general-purpose shape model. 
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1 INTRODUCTION 

Integration is a concept that is not wholly achieved in current computer aided 
design and manufacturing (CAD/CAM) systems. Paraphrasing Warman (1990), in 
fact, a simple joining of systems is not the same as integration. Significant efforts 
have been carried out mainly in the last ten years to achieve a reference model for 
CAD systems in order to establish a general CAD framework capable of describing 
and formalising a generic CAD system architecture. A CAD system consists of a 
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network of processes or virtual machines cooperating with each other ( Reference 
Model, 1990). 

As specific virtual machines, geometric and feature-based modeHers play a 
central role in design and manufacturing. They are distinct, although related, shape 
processing machines since they represent and manipulate distinct shape structures. 
Additionally, feature-based modeHers focus on the function of the engineering 
artifacts shape, promoting the symbiosis between shape (usually geometry) and 
functionality. This enables, for example, the construction of complex models of 
matehing mechanical components, called assemblies. But, more importantly, form 
features allow us to envisage a more effective integration of design and 
manufacturing languages and processes. However, to achieve an effective 
integration of design and manufacturing, we have frrst to integrate geometric and 
feature-based modeHers. The sucess of such integration has been found to be 
extremely difficult. 

Our methodology towards such an integration closely foHows three guidelines, 
namely: 
• Unlike the usual methodologies in feature-based modelling, we separate the 

shape and function aspects of form features; that is, we distinguish between 
functional entities, called form features, and their underlying shapes, called 
feature shapes. This is extremely important, because it enables us to 
distinguish and formulate a functional model and a shape model for form 
features, conforming with the principle that function determines the shape of 
engineering artifacts, but not vice-versa. The functional model carries 
engineering data, including formfeaturetype (e.g. keyways, grooves, through 
holes, slots, bo~ses), assembly relationships (e.g. shaft-hole engagement F5-
g6), type ofmaterial, surface finish, and even geometric shape (e.g. cylindrical 
shape or square shape), etc. 

• The shapes underlying form features (/eature shapes) do not depend on any 
functional or engineering requirements. This does not contradict the fact that 
function determines shape. We show that, the family of form features is 
potentially infinite, depending on the state of technology development, 
whereas the family of feature shapes is finite. Furthermore, this shape 
classification is general since it does not depend on the application, whether it 
is feature-based modeHing or anything else. This shape classification foHows 
from mathematical principles that are beyond the scope of this paper (see 
Gomes, 1998, for details). It is dimension-independent; for example, a circle 
and a torus in R' both have a hole through them. 

• Cu"ent geometric modellers (ACIS, Parasolid, etc.) cannot process directlv 
the types of shape that underly form features. Consequently, we say that 
current geometric modeHers suffer from shape incompleteness. In fact, extra, 
external, application-oriented geometric data structures between the geometric 
modeHer and the applications, feature modeHers in particular, are absolutely 
necessary in order to find a reasonable degree of shape compatibility. This 
introduces not only significant geometric redundancy, but also forces the 
feature modeHer to take control of all geometric interactions amongst form 
features. This promiscuity between the geometric and the feature modeHer is 
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rather undesirable and encourages us to think of an alternative architecture of a 
shape modeHer as a result from synthesising the geometric shape processed by 
geometric modellers and the shape associated with feature modellers. This 
releases feature modellers from any shape overheads, and leaves them 
responsible only for functional processing of engineering design and 
manufacture. Such shape integration should facilitate the integration of 
CAD/CAM systems. 

2 SHAPE THEORY ESSENTIALS 

This Section provides a summary of the fundamentals of the shape theory 
introduced in Gomes and Teixeira (1994), Gomes and Middleditch (1996), and 
detailed in Gomes (1998). 

Geometrie equivalence, geometric shapes 
Two geometric objects in R" are geometrically equivalent if and only if they are 
congruent, or, equivalently, they can be exactly superimposed on each other by a 
rigid motion (translations, rotations, and reflections). That is, two objects are 
geometrically equivalent if and only if their point sets coincide by superimposing 
one on the other. These rigid transformations or mappings preserve lengths ( or 
distances, areas, volumes and angles. So, for example, two cubes with the same 
volume belong to the same equivalence dass of congruent objects; similarly, all 
cirdes of radius five form an equivalence dass of congruent objects. Obviously, 
the number of distinct geometric objects in R" is infinite and is equal to the number 
of all subsets of R". Some examples of non-congruent geometric objects are 
depicted in Figure 1; (a) a solid sphere with two local geometric shapes, the surface 

x2 + y 2 + z2 = 1 and the solid x2 + i + z2 < 1 ; (b) a parallelipipedic surface 
containing 6 planar surface patches, 12 straight line segments, and 8 corners; ( c) I­
dimensional geometric object consisting of 1 straight line segment, 1 circle line, 
and 2 corners. 

6 
(a) (b) (c) 

Figure 1. Objects with different geometric shapes. 

Topological equivalence, topological shapes 
The topological shape takes into account the global properties of polyhedra and 
neglects the local ones. Every topological shape is essentially relaxed in the sense 
that two objects are equivalent if only if they are homeomorphic. Thus, two objects 
are of the same topological shape if and only if they are homeomorphic. 
Intuitively, homeomorphisms behave like elastic transformations of subsets made 
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of perfectly elastic rubber. In other words, two subsets in R" are topologically 
equivalent if and only if one subset can be made to coincide with the other by an 
elastic transformation. For example, a solid sphere can be deformed into a solid 
cube, or a cube with a protrusion, or even a cube with a depression. Thus, 
topological equivalence does not preserve geometric properties such as distances, 
angles, convexity, etc. 

Equivalently, two objects possess the same topological shape if only if their first 
three Betti numbers are the same. These three Betti numbers stand for the number 
of components (or separated 'pieces') , holes through components, and voids in 
components, respectively. For example, the solid objects shown in Figure 2 are all 
topologically equivalent because they possess the same number of components 
(one), through holes (one), and internal cavities (zero). 

(a) (b) (c) (d) 

Figure 2. Objects with the same topological shape. 

Vexitopy equivalence, vexitopic shapes 
Roughly speaking, a vexitopy is a function which maps the convex and concave 
zones, called convexities and concavities, respectively, of an object to the convex 
arid concave zones of another object, respectively. A vexitopy is a particular 
homeomorphism and a generalisation of an isometry. A vexitopy, unlike a 
homeomorphism, is an elastic mapping constrained by the fact that a convexity 
cannot bebe transformed into a concavity, nor vice-versa. Gomes and Middleditch 
(1996) showed that every surface of a closed solid is decomposable into convex 
and concave zones, which are the shape representatives for surface form features in 
the feature modelling literature. Therefore, vexitopies are zonal shape mappings. 
Gomes and Middleditch also showed that these zones can be considered as 2-
dimensional shape retracts of 3-dimensional vexitopic (morphological) shapes, 
called protrusions and depressions. Moreover, they have related the class of 
topological shapes with vexitopic shapes, using the following axioms: 
• A protrusion is a convex point set; 
• A depression is a convex point set; 
• A component contains at least a protrusion; if the component is convex it is 

the single protrusion. 
• A through hole contains at least one depression; if the through hole is convex 

it is the single depression. 
• A void contains at least one depression; if the void is convex, it is the single 

depresion. 
These axioms relating zonal and global shapes of an object imply a space 

decomposition not available in conventional geometric modellers. It also provides 
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the frrst mathematical shape model for feature modelling. In fact, a graph-based 
model is easily derived from the containment relationships between zonal and 
global shapes. An alternative and stronger shape theory results if the distinction 
between zonal and global properties is relaxed. The idea is to consider every 
topological shape as a vexitopic one; components are protrusions, through holes 
and voids are depressions, but now we have to consider that protrusions and 
depressions may or may not be convex. Consequently, every protrusion 
(respectively, depression) is decomposable into a finite collection of simpler 
protrusions (respectively, depressions). For example, in Figure 3, the through hole 
(a) is a depression consisting of 3 convex depressions, and the depression (b) has 

two convex depressionLR ~ 

(a) (b) 
Figure 3. (a) Through hole with three convex depressions, (b) a depression with 
two convex depressions. 

3 SHAPE INCOMPABILITIES IN MODELLING 

The primitives of geometric modellers are a finite number of families of pre­
defined equivalence classes of geometric objects, from which more complex 
geometric objects are somehow constructed. 

3.1 Set-theoretic shape modelling 

Set-theoretic modellers, usually known as CSG (Constructive Solid Geometry) 
modellers, typically include five parametric families of primitive solids (or 
homogeneously 3-dimensional geometric objects): blocks, wedges, spheres, 
cylinders, and tori. Each primitive solid is an element of a geometric equivalence 
class of congruent solids. Each primitive solid is parametrically defined by a finite 
number of parameter values. For example, a block or reetangular parallelipiped is 
created or instantiated by assigning values to its lenght /, width w, and height h; 
symbolically, this is described by the function CREATE_BLOCK:RxRxR-+B , 
where B is the family of blocks. 

Typical CSG modellers do not provide a compatible shape interface for feature­
based modelling. In fact, they do not provide access to through holes, protrusions, 
etc. For example, a subtraction of one CSG solid from another may or may not 
create a through hole, but there is no way to k:now that directly from the CSG tree. 
Besides, topological and morphological shapes such as, for example, a through 
hole composed of three depressions (Figure 3a), requires some kind of shape 
grouping machinery which is absent from CSG trees. Consequently, automatic 
(algorithmic) detection of feature shape changes is not possible; for example, the 
transmutation of the through hole (Figure 3a) into a stepped depression (Figure 3b) 
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consisting of two convex depressions, after removing the bottom convex 
depression. 

3.2 B-Rep-based shape modelling 

B-Rep modellers have some advantages over CSG modellers because they possess 
a lower level of shape incompleteness. In fact, they are able in principle to 
represent and manipulate n-cells (e.g. points, lines, surfaces and solids), whether 
they possess holes and voids. The existence of these cells in B-Rep data strucutures 
is quite useful for many purposes; for example, it facilitates the direct, graphical 
interaction with the designer. 

B-Reps have explicit representatives, called shells, for components and voids. 
Shells are particular cellular clustering entities. Unfortunately, through holes, 
depressions and protrusions do not have similar representatives. Even worse, there 
is no any representation for the relationships between global topological shapes 
(components, through holes and voids) and their constituent morphological ones 
(protrusions and depressions). Equivalently, there are no hierarchical shape 
clustering entities, and it is impossible to represent cellular interactions between 
topological and morphological shapes. 

To overcome these shape incompatibilities between B-Reps and F-Reps, some 
authors have proposed extemal cellular data structures to emulate cellular 
clustering for topological and morphological shapes, their shape hierarchical 
relationships, and their cellular interaction relationships. However, this external 
cellular shape structure on the top of a B-Rep data structure clearly exposes the 
shape defficiencies of the B-Rep modellers. In fact, it can not be considered as an 
extension of B-Rep because the corresponding mathematical model has not been 
reformulated and extended. It is just an ad-hoc solution for a particular engineering 
application, such as feature-based modelling. 

4 A GENERAL SHAPE MODELLING KERNEL 

Feature-based modeHing shows us that current geometric CSG and B-Rep families 
are shape-incomplete. This is largely due to deficiences in the mathematical 
models for CSG and B-Reps. Such CSG and B-Rep models were derived from the 
theory of semialgebraic sets (Requicha, 1977) and theory of closed surfaces (Braid, 
Hillyard and Stroud, 1978), respectively, but they were over-constrained by the 
notion of solidity. Consequently, they could not satisfy irnportant shape 
requirements of a significant number of applications, even those related to design 
and manufacturing. 

4.1 Shape requirements for applications 

The most important foundation for the effective integration of computer aided 
design and manufacturing systems is an engineering environment with integrated 
shape. Otherwise, we can never say CADCAM integration has been reached. The 
most important shape requirements follow. 
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General geometric coverage 
In the last twenty years, some efforts to integrate the geometries of solid modellers 
and free-form modellers have been attempted by integrating their implicit and 
parametric representations. However, as Gomes (1998) shows in bis doctoral work, 
an integrated geometry has to do more with a generat geometric coverage than its 
representations. Such a generat geometric coverage has been recently proposed by 
Middleditch, Reade and Gomes (1998) to be the class of subanalytic sets. 
Subanalytic geometry is a generalisation of algebraic geometry, rational geometry 
and transeendental geometry; hence, it includes algebraic and semialgebraic sets 
(e.g. CSG objects) described by polynomials, rational sets (e.g. nonuniform 
rational B-splines, shortly NURBS) described ratios of polynomials, and 
transeendental sets (e.g. springs) described by transeendental functions, 
respectively. This is not only important to overcome geometric incompatiblities in 
design and manufacturing, but also because sub-analytic sets mathematically form 
a Boolean class, i.e., they can be combined through Boolean operators; for 
example, a cylindrical hole in aspring can created by subtracting a cylinder from 
it. 

General shape coverage 
This paper shows that geometry is only part of the business in shape modelling. By 
shape integration we mean not only geometry integration, but also the integration 
of geometry with other kinds of shape, namely topological and morphological 
shape. Other shape types can be defined, but they are of minor importance in 
feature-based modelling. Geometry integration is far from complete but 
subanalytic sets appear to be able to fill the gap between solid modelling and 
freeform modelling. Furthermore, the integration of topological and morphological 
shapes in a function-independent generat shape modeller releases feature modellers 
from controlling shape representation and manipulation. This is advantageaus in 
many respects, mainly because shape modelling is then application-independent. A 
feature modeHer will be then just a (functional) modelling system taking advantage 
of the facilities provided by a general-purpose shape modeller. 

Multi-dimensional cell structure 
The geometric structure of an object should be piecewise manifold and multi­
dimensional. Amongst several reasons, we mention the following. First, it provides 
the unified representation for drafting, wireframe, surface, and solid models 
(Weiler, 1986), essential in interactive design. Second; it is necessary to model 
objects and spaces of arbitrary dimension, in applications such as robot path 
planning which uses n-dimensional configuration spaces (Middleditch, 1992). 
Third, it is suited to the representation of finite element meshes, unlike solid 
models which do not possess intemal membranes. 

General cellular dustering 
With the exception of the C-Rep (Cellular Representation) developed by Gomes 
and Teixeira (1994}, current geometric cellular models do not provide general 
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dimensionally nonhomogeneous dusters for cells. This fact and the non-existence 
of a general shape theory have been the major obstades in the way of integrating 
geometric and feature modellers. Such clusters are called subcomplexes in the 
theory of complexes (see, for example, Rotman, 1988). Basically, the dassical 
hierarchical cellular structure of complex-cell is replaced by a hierachical cellular 
clusterlog structure of complex-subcomplex-cell. A subcomplex can represent the 
cell structure of a topological or morphological shape, or even general shapes 
necessarily non-homogeneous in dimension. 

Unlike C-Rep, other cellular models use external, application-oriented cellular 
dustering as it is the case of those due to Floriani and Falcidieno (1988), Luo and 
Lukacs (1991, Gomes, Bidarra and Teixeira (1992), Masuda (1993), Rossignac 
(1997), or Bidarra and Bronsvoort (1998). These external cell dusters were 
specifically designed to represent the cell structures of form features, that is, they 
are application-oriented. 

4.2 Basic architecture of a general shape modeller 

In generic terms, the architecture of a general shape modeHer indudes the 
following two layers (Figure 4). 
• Structure layer. The two-level cellular structure (complex-cell) of the B-Reps 

should be replaced by a three-level cellular dustering structure (complex­
subcomplex-cell). Cells are manifolds, that is, local topological shapes as used 
in classical B-Reps. Subcomplexes are arbitrary clusters of cells, and 
obviously, a complex isaduster of subcomplexes. 

• Shape layer. Here we have the geometric (points, lines, surfaces and solids 
described by sub-analytic functions), global topological (components, through 
holes, and voids), and morphological shapes (protrusions and depressions). 
The axiomatic relationships between global topological and morphological 
shapes are represented by an hierarchical graph. 



application-dependent 

FEATURE layer 
(formfeatures, tolerances, 

surface finish, material 
aspects, etc.) 

application-independre•n•t-----+-------. 

SHAPE KERNEL 

SHAPE layer 
(geometric, topological, 

morphological, and 
arbitrary shapes) 

STRUCTURE layer 
(complexes, subcomplexes, 

and cells) 

Figure 4. The diagram of a complete shape CAD kemel. 
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Note that the each shape is one-to-one mapped to a cell or a subcomplex, but not 
all subcomplexes correspond to a shape in the shape layer; for example, the 
subcomplexes of interaction between shapes have no representatives on the shape 
layer, but they may be useful for many purposes beyond the discussion in this 
paper. 

This shape kemel is general-purpose since it is application-independent, whether 
or not it is included in a CAD system. It is necessary to bear in mind that some 
engineering terms used in feature modelling coincide with mathematical terms in 
shape theory; for example, a through hole is a form feature but also a topological 
shape. The distinction becomes apparent when we consider that there so many 
kinds of through holes (straight holes, stepped holes, etc.) in mechanical 
engineering design, but they all have the same topological shape, just a through 
hole. 
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5 CONCLUSIONS 

The main conclusions to draw from the above discussion are: 
• A shape theory capable of synthesising the shape of geometric and feature 

modellers has been outlined. It enables effective shape integration of 
CAD/CAM systems. 

• Features combine function with shape, but the shape processing should be 
delegated to an application-independent shape kerne!. 

• In feature-based modelling, the separation of function from shape and 
structure provides a deeper insight of what should be a CAD kernel. In terms 
of object-oriented software engineering, a subtractive form feature class (e.g. 
SLOT, POCKET, etc.) is derived from a shape class (DEPRESSION, 
respectively), which in turn is derived from the SUBCOMPLEX class. 
Obviously this turns such a shape kernel into an extensible object-oriented 
system. 

• Current geometric modellers are over-constrained since the relationships 
between shape and structure have not been completely understood and 
developed so far. Consequently, cellular clustering is usually relegated and 
controlled by applications externally. To avoid external, application-dependent 
cellular clustering, subcomplexes must be part of the structure. 
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