
18

CORBA access to telecommunications
databases

P. Porkka and K. Raatikainen
University of Helsinki, Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of
Helsinki, Finland.
Telephone: +35897084 {4677,4243}. Fax: +358970844441.
E-mail: {pasi.porkka.kimmo.raatikainen}@cs.Helsinki.FI

Abstract
Distributed object technology, CORBA in particular, will be the basis for the next
generation of telecommunications software. Intelligent Networks Long-Term
Architecture, Telecommunications Management Network, Telecommunications
Information Networking Architecture are all based on object technology. The
Telecommunications Task Force of OMG is actively working towards CORBA­
based solutions.

In this paper we present how the standard CORBAservices specified by OMG
can be used to provide access to telecommunications databases. The challenging
task is to introduce database objects into Object Request Broker without
registering each database object as an ORB object. The RODAIN Object­
Oriented Database Adapter (ROODA) is our solution to bring database objects
and services for CORBA clients. The ROODA implements interfaces that will
provide essentials parts of Persistent Object Service, Object Transaction Service,
and Object Query Service as well as the Dynamic Skeleton Interface.

Keywords
Database Access, CORBA, Object Services, Object Database Adapter

Intelligent Networks and Intelligence in Networks D. Gaiti (Ed.)
Published by Chapman & Hall e 1997 IFIP

282 Part Seven Databases, Web

INTRODUCTION

Databases are important building blocks in modern telecommunications systems.
Databases are already used in several areas, such as call connection, number
translations, Intelligent Network services, mobility management. Due to the
growing use also data value and volume are increasing rapidly. The requirements
for database architectures to be used in the telecommunications originate in the
following areas: real-time access to data, fault tolerance, distribution, object
orientation, efficiency, flexibility, multiple interfaces, and compatibility with
other object standards (Taina et at. 1996).

Real-time access to data means that transactions usually have deadlines that
specify when the transaction must be finished. Fault-tolerance means that the
database should, in the practice, be almost always available. The requirement of
object orientation is based on the general trend in telecommunications standards:
Intelligent Networks Long-Term Architecture (IN LTA) (ITV-T 1993),
Telecommunications Management Network (TMN) (lTV-T 1992), and
Telecommunication Information Networking Architecture (TINA) (Barr et at.
1993) are all based on object technology. In particular, the de facto standards
based on the OMG specifications are of crucial importance.

The efficiency requirements that the telecommunications services set to
databases are strict. Thousands of short transactions must be answered in a
second. At the same time very long transactions must also get resources. The
requirement of flexibility arises from the fact that telecommunications databases
must support very different kinds of transactions. Multiple interfaces to the
database are a necessity. A telecommunications database has different types of
users. For example, some of the users want to see the database as an X.500
Directory while others want to see it as an X.700 Management Information Tree.
In a near future, TINA object invocation and access based on the OMG CORBA
will be required.

In this paper we describe how database access through CORBA can be
arranged. In particular, we describe how we will implement a CORBA compliant
Object Database Adapter (ODA) called RODAIN Object-Oriented Database
Adapter (ROODA) that provides a CORBA access to the RODAIN Database. In
addition to the OMG Object Services called Object Transaction Service (OTS)
and Persistent Object Service (POS), the ROODA provides an IDL interface to
an ODMG-93 (Cattell 1994) compliant Object Query Language (OQL) as
specified in the OMG Object Query Service (OQS). The ROODA also allows
applications to register their own IDL interfaces to speed-up the database access.

CORBA access to telecommunications databases 283

ORB

Object S.",ie<.

Figure 1 Object Management Architecture.

The rest of the paper is organised as follows. In Section 2 we describe the
essentials of the OMG specifications that affect any implementation of ODA:
Object Management Architecture (OMA), Object Request Broker (ORB), and
Object Adapters. In Section 3 we review two known Object Database Adapters
called Sunrise ODA and Orbix+ObjectStore Adapter. Finally, in Section 4 we
present the RODAIN OODA and its functionality which includes the Object
Transaction Service, the Persistent Object Service, and the Object Query Service
as specified by OMG.

2 OBJECT MANAGEMENT ARCHITECTURE

The Object Management Group (OMG) has defined an architecture called Object
Management Architecture (OMA) (OMG 1993) that provides the conceptual
infrastructure upon which all OMG specifications are based. The OMA has
gained the status of the most important de facto standard in the area of distributed
computing. In this section we describe the essentials of OMA for database access
in distributed computing environments.

2.1 OMA Overview

The key building blocks of the Object Management Architecture are shown in
Figure 1. They include Object Request Broker (ORB), Object Services, Common
Facilities, Domain Interfaces, and Application Interfaces.

Object Request Broker (ORB) (OMG 1996a), commercially known as
CORBA, is the communications backbone of OMA. The ORB transparently
provides its clients to make requests and to receive responses using object
invocations in a distributed environment. Object Services (OMG 1996b) is a
collection of services (interfaces and objects) that support basic functions for
using and implementing objects. For database access the most important services
are the Object Transaction Service (OTS), the Persistent Object Service (POS),
and the Object Query Service (OQS).

284 Part Seven Databases, Web

Dyn;uli ic
InvtlCid iun

ORB Core

I.,ed_ idenlical rill all ORB implemo., .. kI ..

_ The ... may be multiple object a<bpc ...

- There ubs skeleton ror exb objea 'ype

c::=::J ORB,. ' I.'err,.,.
~ NIImlOI call1.,err_

Figure 2 Structure of ORB interfaces [3/CORBA V2.0].

Common Facilities (OMG 1995) is a collection of services that many
applications may share but which are not as fundamental as the Object Services.
The Common Facilities are divided into two major categories: Horizontal
Common Facilities that are used by most systems, and Vertical Market Facilities
that are domain-specific. Domain Interfaces represent vertical areas that provide
functionality of direct interest to end-users in particular application domains.
Domain interfaces may combine some common facilities and object services but
are designed to perform particular tasks for users within a certain vertical market
or industry. Application Interfaces while not an actual OMG standardisation
activity are critical when considering a comprehensive system architecture. The
Application Interfaces represent component-based applications performing
particular tasks for a user.

2.2 Essentials in CORBA

The CORBA makes an interface between clients and objects allowing object
implementations to be machine and language independent. As Figure 2 depicts, a
CORBA client has three primary ways of making a request:
I. The client can use the Dynamic Invocation Interface.
2. The client can use an OMG IDL Stub.
3. The client can directly interact with the ORB through the ORB Interface.

CORBA access to telecommunications databases 285

Client Object Implementation

Figure 3 Interface and implementation repositories [6/CORBA V2.0].

Figure 3 shows how an interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG
IDL and/or in the Interface Repository: The definition is used to generate the
Client Stubs and the object Implementation Skeletons. The object implementation
information is provided at installation time and is stored in the Implementation
Repository for use during the request delivery.

Interface Repository is a service that provides persistent objects that represent
the IDL information in a form available at runtime. The Interface Repository
information may be used by the ORB to perform requests. Moreover, using the
information in the Interface Repository, it is possible for a program to encounter
an object whose interface was not known when the program was compiled, yet,
be able to determine what operations are valid on the object and make an
invocation on it.

Implementation Repository contains information that allows the ORB to
locate and activate implementations of objects. Although most of the information
in the Implementation Repository is specific to an ORB or operating
environment, the Implementation Repository is the conventional place for
recording such information. Ordinarily, installation of implementations and
control of policies related to the activation and execution of object
implementations is done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation
Repository is a common place to store additional information associated with
implementations of ORB objects.

Object Implementation is a definition that provides the information needed to
create an object and to allow the object to participate in providing an appropriate
set of services. An implementation typically includes definitions of the methods
that operate upon the state of an object, and information about the intended type
of the object.

286 Part Seven Databases. Web

Object Implementation

ORB Core

Object
Adapter
Interface

Figure 4 Structure of a typical object adapter [9/CORBA V2.0].

An object implementation provides the semantics of the object, usually by
defining data for the object instance and code for the methods of the object. Often
the implementation will use other objects or additional software to implement the
behaviour of the object. In some cases, the primary function of the object is to
have side-effects on other things that are not objects. A variety of object
implementations can be supported, including separate servers, libraries, a
program per method, an encapsulated application, an object-oriented database.
Through the use of additional object adapters, it is possible to support virtually
any style of object implementation.

2.3 Object Adapter

Generally, object implementations do not depend on the ORB or how the client
invokes the object. Object implementations may select interfaces to ORB­
dependent services by the choice of Object Adapter. When an invocation occurs,
the ORB Core together with the Object Adapter and The Skeleton arrange that a
call is made to the appropriate method of the implementation.

An Object Adapter, a typical structure of which is shown in Figure 4, is the
primary way that an object implementation accesses ORB services such as object
reference generation. An object adapter exports a public interface to the object
implementation, and a private interface to the skeleton.

An object adapter called the Basic Object Adapter (BOA) should be available
in every ORB implementation. Although the BOA will generally have an ORB­
dependent implementation, object implementations that use it should be able to
run on any ORB that supports the required language mapping, assuming they
have been installed appropriately.

CORBA specification mentions two other Object Adapters: Library Object
Adapter (LOA) and Object Database Adapter (ODA). An LOA is primarily
used for objects that have library implementations. It accesses persistent files but
does not support activation or authentication because the objects are assumed to

CORBA access to telecommunications databases 287

be in the clients program. An ODA uses a connection to a Database Management
Systems (DBMS) to provide access to the objects stored in the database. Since a
DBMS provides the methods and persistent storage, objects may be registered
implicitly and no state is required in the object adapter.

3 OBJECT DATABASE ADAPTERS

An Object Database Adapter (ODA) allows object implementations to be written
in the database programming language of the ODBMS, that is a language
incorporating persistence into the programming environment. The object
implementation is still responsible for managing the persistence state of the
objects it implements but the task of an object implementor is much simpler in
the programming environment provided by ODBMS. Besides persistency other
database features like data consistency and crash recovery are available to the
object implementation (Reverbel 1996a).

The importance of integrating ORB and ODBMS is widely recognised. Many
vendors of ORBs and ODBMSes have announced plans to integrate their
products. However, due to the commercial interests involved only a few design
and implementation plans have been published: Sunrise ODA (Reverbel 1996a,
1996b, 1996c) and OrbiX+ObjectStore Adapter (Iona 1995b).

3.1 The Sunrise ODA

The motivation behind the Sunrise ODA was the fact that object persistence was
not sufficiently supported in CORBA-based environments. The initial design of
the Sunrise ODA was for lona's Orbix and Object Design's ObjectS tore. Currently
there are also releases for Orbix, mSQL, and Sunrise's own object-relational
mediator as well as for VisiBroker and ObjectStore.

Rather than replacing the BOA, the Sunrise ODA is an add-on to the BOA (see
Figure 5). The Sunrise ODA is implemented as a library that uses and extends
the BOA services. It does not maintain any ORB-specific information in the
database. Therefore, schema evolution is not needed when the Sunrise ODA is
ported to another ORB. It is even possible that a single database is simultaneously
accessed through CORBA servers based upon different ORBs.

3.2 Orbix+ObjectStore Adapter

10NA Technologies Ltd. has integrated its Orbix with the ObjectStore OODBMS.
The result of this integration is called Orbix+ObjectStore Adapter (OOSA). The
OOSA makes Orbix objects persistent by storing them in ObjectS tore. On the
other hand, ObjectS tore objects can be accessed remotely by making them
CORBA compliant. Due to commercial interests involved design and

288 Part Seven Databases. Web

implementation information on OOSA is only partially public (Iona I 995a.
1995b).

Objectlmplemenlation

IDL
skeleton

Figure 5 Sunrise ODA.

ORB Core

OODBMS Server

Orbix and ObjectStore are both object-oriented and based on C++ but their
objectives are quite different. ObjectStore provides powerful support for
persistence but it supports only a limited form of distribution. Orbix provides a
flexible distribution model but has only basic support for persistence.

The integration allows an object to benefit both from persistency available in
ObjectStore and from distribution transparency available in Orbix. The integrated
system has three different types of processes (see also Figure 6):
I. ObjectStore servers: The innermost part in Figure 6 contains a set of

ObjectStore servers. They are responsible for saving objects.
2. Orbix servers: The middle part contains a set of Orbix servers. These

processes serve Orbix clients and are clients of ObjectS tore servers.
3. Orbix clients: They reside in the outer part and make remote invocations on

the objects provided by the Orbix server processes.

Naturally. a process can be both an Orbix client and an Orbix server when the
process contains Orbix+ObjectStore objects and makes remote calls to other
Orbix+ObjectStore objects. An object can also use ObjectStores distribution
support. An object can be loaded into several Orbix server processes. In this case
ObjectS tore controls the concurrent access to the copies of the object.

Orbix clients do not necessarily be aware whether or not the called object is an
object both in Orbix and in ObjectStore. References to both types of objects are
transmitted in the same way. If the given reference points to an ObjectStore
object. the object will be automatically loaded into the server process.

CORBA access to telecommunications databases 289

Figure 6 Process types of OOSA.

Orbix client proces." that can make
remnte operation calls tID

Orbix+ObjectSlol~ obje<:t.'

Obje<:tSl<Xe client proees •• into whieh
OrbiHObjectStore objecl,

can be loaded:
the.<e are also Orbix .<erver proee., ... ,.

____ ObjectStore server proe ... ,.

4 RODAIN OBJECT-ORIENTED DATABASE ADAPTER

The RODAIN Object.Oriented Database Adapter (ROODA) is the way how
we are going to provide CORBA clients an access to the RODAIN Database
(Niklander et al. 1997). The ROODA will provide:
1. the OMG Persistent Object Service (POS),
2. the OMG Object Transaction Service (OTS),
3. an IDL interface to an ODMG-93 (Cattell 1994) compliant OQL interface as

specified in the OMG Object Query Service (OQS), and
4. an flexible way of registering application specific IDLs to the database based

on the OMG Dynamic Skeleton Interface (DSI).

4.1 ROODA Architecture

Figure 7 depicts how the CORBA access to the RODAIN Database will be
organised in our prototype implementation. CORBA clients use ORB to obtain
services available in our CORBA interface to the RODAIN Database. The
ROODA acts as an interpreter between the ORBs and the RODAIN Database.

290

CORBA
Client

Part Seven Databases, Web

ooDA

COOL-ORB

Linux

URIS

RODAINDBMS

CHORUS CI iX

Figure 7 Interactions between CORBA clients, ROODA, and RODAIN database.

There are certain similarities between the OMG and ODMG-93 specifications
that help us in building the interfaces:
• The data model used in RODAIN (Kiviniemi et al. 1996) is a real-time

extension of the object model specified by ODMG-93 (Cattell 1994) which, in
turn, is a superset of the object model specified by OMG (OMG 1993).

• The Object Definition Language (ODL) used in ODMG-93 is a superset of
Interface Definition Language (IDL) of OMG.

• OMG recommends to use ODMG-93 as a standard interface for Persistent
Object Service (POS).

In our prototype we have divided the Object Database Adapter into two parts.
The ROODA, which interacts with the CORBA clients, runs on a front-end node.
The ROODA use an internal interface of URIS to access the database system.

4.2 Object Mapping

At some level of abstraction there exists only objects in ODMG-93 and OMG.
For example, the database is an object and the fetch operation is done by a
method call to the database object. Changing the value of an attribute is done by
a method call. Actually all of the functionality in the system is modelled by
method calls to objects. Therefore, ORBs that access the database need to include
information about object classes. However, the all the information should not be
revealed outside the database. In particular, problems in distributed updates make
it necessary to restrict the access from ORB to the class and type definitions
(schema) in the database.

One of the primary advantages of using an OODA instead of POS is the fact
that an object reference for every object in the database does not need to be
registered with the ORB. Considering the case when the database consists of
millions of objects this is a huge advantage. However, knowing only the logical
name of the database is not sufficient for making queries. The ORB must have
some information available about the contents of the database. Therefore, the
ROODA maintains a copy of the database schema. As Figure 8 outlines, the
classes defined in schema map CORBA-objects into database objects.

The ROODA also acts as the border between CORBA and RODAIN. There are
certain information in RODAIN, for example the complete database schema,

CORBA access to telecommunications databases

RODAIN
[nlerface ReposilOry

•

CORBA Clienl COOL-ORB

Figure 8 Mapping between CORBA and RODAIN objects.

U
R

s

291

RODAIN

which is not to be shown outside without strict control. Results of the queries
from RODAIN are database objects but results given to the CORBA client are
CORBA objects. If the result of a query leads to another query, the ROODA
should know how the information from CORBA attaches itself to RODAIN
objects. This means that there has to be some way of translating messages in
ROODA. This translation is done by using an Interface Repository which
includes the database schema that has interface definitions of all classes in the
database. The definitions are expressed in OMG IDL. When we restrict the use of
the database schema only to ROODA, not other parts of CORBA, we can be sure
of the proper use of the schema.

4.3 Functionality

The functionality to be implemented in the ROODA can be semantically
separated into two independent parts:
I . The ROODA provides database access to the RODAIN system. The CORBA

interface is simply a way of using the database. In this role the ROODA
provides only those tasks which directly use the database for retrieving,
updating, and deleting objects in the database. This functionality is defined in
ODMG-93 (Cattell 1994) and in the OMG Object Query Service.

2. The ROODA provides database services to CORBA clients. In this role the
ROODA provides to CORBA clients the possibility of storing persistent
objects in a way defined in POS. The ROODA can also take part in a
distributed transaction as specified in OTS. The ROODA can also be the co­
ordinator of a distributed transaction that only involves RODAIN Database
nodes.

How different semantics these parts have, they use the same basic services of
RODAIN. When a RODAIN user wants to change the database schema, schema

292 Part Seven Databases, Web

management functions are to be used. When a CORBA client needs to store an
object of a certain class for the first time, the class must be stored into database.
In this task the ROODA uses the same schema management functions.

Below we examine the functionality provided by ROODA in terms of the
relevant standards; which parts of different standards the ROODA must provide.
The RODAIN Database system is based on the ODMG-93 standard. An OODA is
introduced but not specified in CORBA references.

The ODMG·93 standard describes the functionality relevant to use in a
database. In order to allow a client fully to exploit the benefits of any database
system, most aspects of the ODMG-93 standard must be supported. The RODAIN
Data Model (Kiviniemi et al. 1996) is a real-time extension of the ODMG-93
object model. The functionality include means of data management: retrieval,
modification, and deletion. Inherently, using a database through its own
management system, other capabilities of the databases are also available: the so­
called ACID properties, recovery, concurrency control, indexing.

An ODA is mentioned in the CORBA reference as an interface to databases.
In addition, an OODA can be used to implement some of the functionalities
described in CORBAservices. The ROODA will implement the functionality
described in the Persistent Data Service module of POS (OMG 1996b). The
ROODA will also also roles described in Object Transaction Service (OTS). In
the OTS context the ROODA can be the co-ordinator of an internal RODAIN
transaction or the recoverable server in a normal or nested transaction. In
addition, parts of Object Query Service (OQS) are included into the ROODA
through the OQL interface.

In order to become a production system in telecommunications, new services
and service features must be easily introduced. A generic OQL-based queries
with RODAIN Interface Repository service consumes too much resources.
Therefore, service specific interfaces are needed. Currently we are examining
whether or not the OMG Dynamic Skeleton Interface (DSI) can be used to as the
means of deploying service-specific interfaces to the database.

Persistent Object Service
The Persistent Object Service (POS) provides a common interface to the
mechanism used for retaining and managing the persistent state of objects. The
POS has the primary responsibility for storing the persistent state of objects.
Figure 9 shows the main components involved in the Persistent Object Service.
A Client is an application that uses a Persistent Object (PO). It is common for

clients to need to control or to assist in managing persistence. In particular, the
timing of when the persistent state is preserved or restored, and· the identification
of which persistent. state is to be used for an object, are two aspects often of
interest to clients. However, the client of the object can be completely ignorant of
the persistence mechanism, if the object chooses to hide it. Persistence Identifier

CORBA access to telecommunications databases 293

Persistent Object Persistent Identifier

Protocol PersistentObjectManager

PersistentDataService

Datastore

Figure 9 Major components of the POS and their interactions.

(PID) describes the location of persistent data of an object in some Datastore and
generates a string identifier for that data.

The most crucial part of an Object Implementation is often in the definition and
manipulation of persistence. The first decision the object makes is what interface
to its data it needs. The POS captures that choice in the selection of the Protocol
used by the object. The Protocol provides one of several ways to get data in and
out of an object. The POS also defines a Persistence Object Manager (POM) that
handles much of the complexity of establishing connections between objects and
storage. The POM allows new components to be introduced without affecting the
objects or their clients. An object has a single POM to which it routes its high­
level persistence operations.

The Datastore provides one of several ways to store the data of an object
independently of the address space containing the object. By having an interface
that is hidden from objects and their clients, a Datastore can provide service to
any and all objects that indirectly use the Datastore interface.
Persistent Data Service (PDS) actually implements the mechanism for making
data persistent and manipulates it. The PDS provides a uniform interface for any
combination of Datastore and Protocol. It co-ordinates the basic persistence
operations for a single object. The PDS interacts with the object to get data in and
out of the object using a Protocol. A protocol may consist of calls from the object
to PDS, calls from PDS to the object, implicit operations implemented with
hidden interfaces, or some combination. The Persistent Object Service
specification defines three Protocols:
I. the Direct Attribute Protocol (DA protocol),

294 Part Seven Databases, Web

2. the ODMG Protocol. and
3. the Dynamic Data Object Protocol (DDO protocol).

Distribuled
ClienllSel"u Applicalion

Truns:.ldiorual Server Recoye~le Server

TrJ"~linn3t Clienl

T~lional Transaction.al Tr.U\Ja(.1'OOaJ 8 Op::r.acivn Object Oper.u iotl

:Sinor noc involv ~~~,pletition. U11lU*:lio ~=o~ [ceo in
plelion. rr=~ In

Cflmpielirinn
Ir.1J'LUCIKII may force tailback may folOe roll ack

Tr.an.Q(1ion Service @

Figure 10 Basic elements of the Transaction Service [1O-4/CORBAservices] .

Object Transaction Service
The Object Transaction Service (OTS) provides transaction synchronisation
across the elements of a distributed client/server application. A transaction can
involve multiple objects performing multiple requests. The scope of a transaction
is defined by a transaction context that is shared by the participating objects. The
OTS places no constraints on the number of objects involved. the topology of the
application or the way in which the application is distributed across a network.

Applications supported by the OTS consist of the entities shown in Figure 10:
• Transactional Client (TC) is an arbitrary program that can invoke operations

of many transactional objects in a single transaction. The program that begins
a transaction is called the transaction originator.

• Transactional Object (TO) is an object whose behaviour is affected by being
invoked within the scope of a transaction. A transactional object typically
contains or indirectly refers to persistent data that can be modified by
requests. The term non-transactional object refers to an object none of whose
operations are affected by being invoked within the scope of a transaction.
Transactional objects are used to implement two types of application servers:
Transactional Server and Recoverable Server.

• Recoverable Objects are objects whose data is affected by committing or
rolling back a transaction. A recoverable object must participate in the
Transaction Service protocols by registering an object called a resource with

Cu",,".

CORBA access to telecommunications databases

FOK.1my
Conlml
Tennin;i.lM

(1lilI1smined with mruests)

R.esource
Subfl'OlIl$:iI(1ionAwm Rt$uuro:

TnnSilClion ServK:e

recuvc.rablc 5erver

Curren.

Connol
CoonJinilior
ReooveryConrdi "aUK

Figure 11 Interfaces ofthe Transaction Service [lO-lICORBAservices].

295

the Transaction Service. The Transaction Service drives the commit protocol
by issuing requests to the resources registered for the transaction. A
recoverable object typically involves itself in a transaction because it is
required to retain in stable storage certain information at critical times in its
processing. When a recoverable object restarts after a failure, it participates in
a recovery protocol based on the contents (or lack of contents) of its stable
storage.

• Trallsactiollal Server is a collection of one or more objects whose behaviour is
affected by the transaction but these objects have no recoverable states of
their own. A transactional server does not participate in the completion of the
transaction but it can force the transaction to be rolled back.

• Recoverable Server is a collection of objects, at least one of which is
recoverable. It participates in the protocols by registering one or more
Resource objects with the Transaction Service. The Transaction Service
drives the commit protocol by issuing requests to the resources registered for
a transaction.

Figure 11 illustrates the major components and interfaces defined by the Object
Transaction Service: Transaction originator is an arbitrary program that begins
a transaction. Factory interface is used by the originator to create a transaction.
Control interface allows an explicit management or propagation of the
transaction context. Terminator interface is used by the transaction originator to
commit or rollback the transaction. Coordinator interface is available to a
recoverable server. Resource interface, which implements the two-phase commit
protocol, is registered by the recoverable server to the Transaction Service.
SubtransactionAwareResource interface can also be registered by the
recoverable server to track the completion of subtransactions.
RecoveryCoordinator interface can be used in certain failure cases to determine
the outcome of transaction and to coordinate the recovery process with the Object

296 Part Seven Databases. Web

Transaction Service. Current interface defines operations that allow a client of
the OTS to explicitly manage the association between threads and transactions.
The interface also defines operations that simplify the use of the OTS.

Object Query Service
The Object Query Service (OQS) (OMG 1996b) provides selection, insertion,
updating, and deletion on collections of objects. These operations are defined as
predicate-based queries. Operations are executed to source collection and they
may return result collections of objects. The result collections of objects may be
either selected from source collections or produced by query evaluators. The
source and result collections may be typed.

The specification of OQS is based on the following design principles:
• The OQS should allow arbitrary user objects to invoke queries on arbitrary

collections of other objects. Such queries may specify values of attributes,
invoke operations, and invoke arbitrary OMG Object Services.

• The OQS should support the OMG architecture. Therefore, it should allow
querying against any objects, with arbitrary attributes and operations.

• The OQS must allow use of performance enhancing mechanisms such as
indexing.

• The OQS should smoothly and efficiently co-operate with the internal
mechanisms of database systems, especially in specifying collections and in
using indexing.

• The OQS must also allow the native systems to contribute in specifying
collections and indexing. .

The specification of OQS is based on existing standards for query. When
necessary to accommodate other design principles the model is extended. In OQS
the query evaluator can be nested and federated like the transactions in the
Object Transaction Service. Objects may participate in the Query Service in two
ways:
• Any CORBA object is queryable. The Query Evaluator evaluates the query

predicate and query operations. Query operations are performed by invoking
operations on that object through its published OMG IDL interface. If an
operation is not supported, then an exception is triggered. This mechanism
provides generality but prevents optimisation.

• Objects may participate as members of collections. The collection has a
specific query interface. In other words the collection is a Query Evaluator.
This way allows Query Evaluators or any associated native query system to
evaluate the query using the internal optimisation.

CORBA access to telecommunications databases

Table 1 OQS modules and their interfaces

CosQueryCollection

Interface

CollectionFactory
Collection
Iterator

CosQuery

Interface

QueryLanguageType
QueryEvaluator
QueryableCollection
QueryManager
Query

Purpose

To create collections
To represent generic collections
To iterate over collections

Purpose

To represent query language types
To evaluate query predicates and execute operations
To represent the scope and result of queries
To create query objects and perform query processing
To represent queries

297

The Query Service provides definitions and interfaces for creating and
manipulating collections of objects. The collections are defined as objects with
methods for inserting and deleting members. Associated iterators are defined in
order to allow manipulation of collections. The members of the same collection
may be of different types. The CORBA collections may directly map to
collections managed by native query systems. These native collections may
include arbitrary CORBA objects. The Query Service is independent of any
specific query language. A Query Service provider must support either SQL or
OQL-93 query language, that is the Object Query Language defined in the
ODMG-93 standard.

The Query Service defines two types of service; see also Table 1:
• Collections include two interfaces to create and manipulate collections of

objects. The Collection interface includes operations for creating and
manipulating collections. The Iterator interface defines operations for
traversing over and retrieving objects.

• The Query Framework interface defines a framework for an object query. The
QueryLanguageType interface classifies query language types defined in
OMG IDL. The QueryEvaluator interface defines basic operations for query
evaluation. The QueryableCollection interface defines the result of the query.
The QueryManager defines a more powerful QueryEvaluator which can
create arbitrary Query objects. Query objects can provide graphical query
construction, pre-compilation and optimisation of a query, asynchronous
query execution.

298 Part Seven Databases. Web

Appli- CORDA I calion POS ROODA RODAIN

OTS I Database

~ R System

OQL I Interface 0
I

- Repository

I DSI I 011

Figure 12 OODA interfaces to CORBA and RODAIN.

4.4 Interfaces to ORB

Since the services provided by any ODA must be transparent, the ORB interfaces
must be constructed using existing service interfaces. The interfaces that an ODA
should, at least partially, support include POS, OTS, OQS, and DSI. Figure 12
depicts the interfaces to those services the functionality of which the ROODA is
designed to support.

The interfaces are:
• In the POS context the ROODA must provide functionality described in

Persistent Data Service module. ROODA should interact with the RODAIN
Database in order to get data in and out. The ROODA should also interact
directly with the object itself in order to get data in and out using protocol.
OMG endorses ODMG-93 as a standard interface for storing persistent object
state.

• In the OTS context the ROODA must provide functionality described for
Recoverable Server. The ROODA must have properties or understand
messages of/from objects Current, Control, Coordinator,
RecoveryCoordinator, Resource, and SubTransactionAwareResource.

• In the OQS context the ROODA must act as a Query Evaluator. Query
Evaluator is responsible for evaluating the query predicate and performing all
query operations by invoking operations on that object.

• In the DSI context the ROODA offers to a CORBA client a way of dynamic
invocation of objects. On the client side the counterpart of DSI is the Dynamic
Invocation Interface (DII).

4.5 Interface to RODAIN

The interace to RODAIN URIS is built on the ODMG-93 standard data model,
which is used in RODAIN. The functions described in the ODMG-93 standard
(Cattell 1994) or in our real-time extensions (Kiviniemi et al. 1996) offer a low­
level interface into RODAIN. The basic idea of this object oriented approach is
that RODAIN contains objects for which the CORBA client can make method
calls. Or the client can fetch the objects to its own memory, modify them and

CORBA access to telecommunications databases 299

finally return them into the database. Due to the nature of ODMG-93 data model
even the fetches are method calls which are applied to the database-object.

The ODMG-93 model's interface may be too low-level for sophisticated use.
Therefore, we have will use an intermediate language between the ROODA and
the RODAIN Database based on clauses in relational algebra. Other URISes that
interpret other protocols also use algebraic clauses. The intermediate language
based on such clauses can, in a rather straightforward manner, be optimised by a
single optimiser regardless the used protocol.

5 CONCLUSIONS

Object technology based on the OMG specifications will be the next step in
telecommunications software. As introduced in this paper CORBAservices
standardised by the OMG provide a sound basis for database access in
telecommunications. The Persistent Object Service and Object Transaction
Service are the ways in which CORBA objects can be stored and manipulated in
a database system. The Object Query Service and Dynamic Skeleton Interface
provide the other side of the coin. When CORBA is used as an enabling
technology in telecommunications, the databases containing the operational,
administrative, and management data must be accessed through CORBA.

An Object Database Adapter is the key component when objects and services
available in telecommunications databases are provided to CORBA clients. A
typical database includes millions or billions of objects. If all these objects must
be registered as CORBA objects, any ORB implementation will not scale to the
needs of telecommunications. Therefore, the ODA must provide an interface
repository that dynamically provides query results as CORBA objects. Another
ability needed in the ODA is dynamic registration of application specific
interfaces for database services.

6 REFERENCES

Barr, W.J., Boyd, T. and Inoue, Y. (1993) The TINA initiative. IEEE
Communications Magazine, 31, 3, 70-6.

Cattell, R.G.G. (ed.) (1994) The Object Database Standard: ODMG-93. Morgan
Kauffmann, San Francisco, Calif.

lona (1995a) The Orbix Architecture. lona Technologies Ltd., Dublin.
lona (l995b) The Orbix+ObjectStore Adapter. lona Technologies Ltd., Dublin.
lTU-T Recommendation M.3010 (1992) Principles for a Telecommunications

Management Network. International Telecommunications Union, Geneva.
lTU-T Recommendation Q.1201 (1993) Principles of Intelligent Network.

International Telecommunications Union, Geneva.

300 Part Seven Databases, Web

Kiviniemi, J. and Raatikainen, K.E.E. (1996) Object Oriented Data Model for
Telecommunications. Report C-1996-75, University of Helsinki, Department
of Computer Science, Finland.

Niklander, T., Kiviniemi, 1. and Raatikainen, K.E.E. (1997) A real-time database
for future telecommunication services, in Proceedings of 21N'97, Chapman
& Hall, London.

OMG (1993) Object Management Architecture Guide. John Wiley & Sons, New
York.

OMG (1995) CORBAfacilities: Common Facility Architecture. John Wiley &
Sons, New York.

OMG (1996a) CORBA: Common Object Request Broker Architecture and
Specification. John Wiley & Sons, New York.

OMG (1 996b) CORBAservices: Common Object Service Specification. John
Wiley & Sons, New York.

Reverbel, F. (l996a) ORB/ODBMS integration. URL= .. http://www.acl.lanl.govl
-reverbellorb_odbms.html" .

Reverbel, F. (l996b) ORB/ODBMS integration in the Sunrise project. URL=
''http://www.acl.lanl.gov l-reverbellreverbeCorb_odbms.html" .

Reverbel, F. (l996c) Persistence in Distributed Object Systems: ORBIODBMS
Integration. Ph.D. Dissertation, University of New Mexico, Computer
Science Department.

7 BIOGRAPHY

Pasi Porkka received the B.Sc. degree in computer science from the University of
Helsinki, in 1996. He is currently a research assistant in RODAIN research
project and completing his M.Sc. thesis about integrating CORBA to object­
oriented database. His research interests include real-time databases, CORBA
architecture and data mining from relational databases.

Kimmo Raatikainen received the Ph.D. degree in computer science from the
University of Helsinki, in 1990. He is currently an associate professor in
computer science at the University of Helsinki. He is a member of ACM, IEEE
(Communications and Computer Societies), and IFIP TC6 Special Interest Group
of Intelligent Networks. His research interests include nomadic computing,
telecommunications software architectures, and real-time databases.

