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Abstract 
We present an approach to support the design for testability aspect of communica­
tion protocols. It combines the ad-hoc techniques partitioning and instrumentation 
known from integrated circuit testing. A protocol specification is divided into mod­
ules of reasonable size. This module structure is preserved in the implementation. 
Extra test points are added to observe inter-module communication. The test proce­
dure consists of several steps. In the first step, modules are tested separately by 
applying a powerful test method, whereas following integration tests of modules 
exploit additional information provided by observers. The application of less 
sophisticated test methods is propagated for these steps. We show that this testing 
approach extends testability while fault detection capability is maintained. 
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1 MOTIVATION 

Oue to the limited power of verification, testing has always been an important 
method in practice to validate the correctness of communication protocols. Never­
theless, the test of communication protocols has been proven to be difficult and 
expensive. Reasons are the complexity of communication protocols that makes 
exhaustive tests impossible as well as the need for complementary tests, e.g. devel­
opment tests during the implementation phase of a protocol, conformance test to 
prove the compliance of the implementation with the specification or a protocol 
standard, interoperability test to demonstrate the ability of implementations to work 
together, performance test to measure, whether the implementation provides the 
specified efficiency, and robustness test to prove, whether the implementation 
behaves stable in erroneous situations. 

Up to now, testing aspects are usually not considered during protocol design and 
protocol implementation. To make sophisticated test methods more efficient and 
applicable in practical testing, the test process itself has to be reconsidered. This 
demand is especially enforced by new requirements from high performance com­
munication that require new protocols and communication architectures as well as 
new implementation techniques [Clar 90]. To make protocol implementations more 
testable, dedicated techniques and methods have to be applied already during the 
design phase in order to reduce efforts and costs of testing. In addition, testing 
aspects should be taken into consideration during the whole protocol development 
process. Therefore, design for testability (OFf) has become an important research 
topic in protocol engineering. 

Testability, in general, is a property of an object that facilitates the testing pro­
cess [Vuon 94]. It can be obtained in two ways: (1) by introducing special observa­
tion features that give additional information about the (internal) behavior of the 
object, and (2) by a systematic design for testability. The choice of the Off strategy 
depends on two factors: the goals of the testing process, and the kind of application. 

Off has been applied in integrated circuit (IC) technology already for a long 
time. The techniques used there can be divided into two categories [Will 82]: ad-hoc 
techniques and structured approaches. Ad-hoc techniques solve the testing problem 
for a given design. They are not generally applicable to all designs. Examples of ad­
hoc techniques are partitioning and extra test points. Structured approaches, on the 
other hand, are generally applicable techniques that are based on a certain design 
methodology with fixed design rules. 

Off is still a new topic in protocol engineering. It is obvious that some of the 
approaches worked out in the IC area are also tried to be applied in protocol engi­
neering. First proposals, such as the introduction of points of observation [Osso 91, 
95], can be categorized as ad-hoc techniques according to the classification intro­
duced above. Structured approaches have been not known, yet. 

According to [Will 82], Off comprises a collection of techniques that are, in 
some cases, general guidelines and, in other cases, precise design rules. Conse­
quently, there will be not only a single approach, but several ones. For the protocol 
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area, this means that the objective of OFf should be to develop a set of approaches 
that can be applied depending on the test context, the associated cost of implement­
ing them, and the return on investment. Therefore, OFf research should not be lim­
ited to a certain test category. It should have a general view and consider all 
methods that improve the ability of detecting faults during testing and decreasing 
cost. A selection of specific OFf techniques is needed bearing in mind the benefits 
they will bring in a given test context. 

Starting from this position, we present an testing approach to support OFf of 
communication protocols that combines the ad-hoc techniques of partitioning a pro­
tocol specification into module structures and adding extra test points to observe 
inter-module communication. The idea of the approach presented in this paper is to 
use instrumentation not only for getting additional information about the behavior 
of the implementation under test but also to use this information to decrease the 
testing efforts by reducing the length of the test suite. The proposed testing proce­
dure is a step-wise one. In the first step, the modules are tested separately by apply­
ing a powerful test method, whereas for the following integration tests of the 
modules (in one or more steps) the application of a less sophisticated test method is 
propagated to decrease test efforts while fault detection capability is maintained. 

The rest of the paper is organized as follows. Section 2 gives a short overview of 
the proposed testing procedure that is evaluated in more detail in Section 3. 
Section 4 is dedicated to aspects of multi-module testing and concurrency. Section 5 
relates our work to existing ones, and finally, Section 6 concludes the paper. 

2 A STEP-WISE TESTING APPROACH - OVERVIEW 

The step-wise testing approach proposed in this paper follows the ad-hoc approach 
in integrated circuit testing [Will 82]. In particular, we use partitioning and adding 
of extra test points. According to these techniques, we propose to partition a proto­
col sgecification into a set of modules of reasonable size which can be executed 
sequentially and/or in parallel. Such a structuring is natural for protocol design. 
Most formal description techniques (FDTs) support a certain module structure in 
the specification, but structuring is usually not used to support testing. 

We suppose that the module structure is preserved in the implementation. But 
we do not make any assumption that the specified inter-module communication is 
correctly implemented. The inter-module communication, however, is traced by 
extra test points used as points of control and observation (PCOs) or only as points 
of observation (POs). 

Supposing such a module structure, testing can be executed step-wise in the fol­
lowing manner (cf. Figure 1): 

1. Module testing: Each module is tested separately. This test is a black-box test. 
The extra test points associated to the module serve as PeOs. The modules can 
be considered as software ICs [Hoff 89]. 
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2. Module subset testing: Reasonable subsets of modules are tested together. The 
used test method is grey-box testing. Extra test points between modules are POs 
to observe internal communication between modules. 

3. System testing: The complete system is tested by integration of all modules and 
subsets of modules using again grey-box testing as described in the second step. 

Steps 2 and 3 are integration tests [Myer 79] that test the correct cooperation of the 
modules, i.e. the correct implementation of the inter-module communication. Step 2 
is optional and can be omitted, or may be repeated several times with changing sub­
sets of modules. 

The step-wise testing procedure takes advantage of the modularization within 
the protocol entity. First, each module is tested separately (e.g. by applying the W­
method). After that, subsets of modules are tested, and eventually the whole system. 
Due to the testing efforts already done at module testing level, application of less 
sophisticated test generation methods is suggested at module subset or system level 
(e.g. the T-method). The simplification is motivated by the types of faults that can 
still appear at the second or third testing level (see Section 3.2). The necessary 
information to find faults that are usually not detectable by a transition tour will be 
derived from the observation of inter-module communication. 

Applying this test strategy we have to show two things: (1) whether the pro­
posed testing approach increases testability, and (2) whether a less sophisticated test 
generation method in combination with grey-box testing guarantees still high fault 
coverage. The feasibility of these requirements is discussed in Section 3. 

To measure the degree of testability T, we apply the measure introduced in [Petr 
94] for finite state machines (FSMs) under the complete coverage assumption: 

T= 
o 

2 m-n+ I 
mn p 

(1) 
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where m is the number of states in the implemented FSM, n is the number of states 
in the reference FSM, p denotes the number of inputs, and 0 the number of outputs. 
In the case that the number of states of the reference FSM equals to the number in 
the implemented FSM, i.e. m = n, the formula is simplified to: 

3 
T = olen p) (2) 

The measure is proposed to evaluate FSM based module structures, in order to com­
pare different designs with respect to testability. It assumes that testability is 
inversely proportional to the amount of testing efforts. The latter is proportional to 
the length of the test suite needed to achieve full fault coverage in a predefined fault 
domain. Further, it is obvious that an implementation becomes more testable, if 
more outputs can be observed during testing. 

The reduction of the length of a test suite has a larger impact on the increase in 
testability, since it more effectively cuts test efforts. Consequently, to estimate the 
increase in testability, we have to show that the average total test suite length of the 
step-wise testing procedure is shorter than the length of a test suite from the 
unstructured testing approach. 

3 ADVOCATING THE STEP-WISE TESTING APPROACH 

In this section, we want to discuss the feasibility of the step-wise testing approach. 
We suppose that the protocol specification is given in the form of interacting mod­
ules as depicted in Figure 1. In order to perform systematic tests, test suites must be 
derived that are complete to a chosen fault model. A test suite is complete if it can 
distinguish all faulty implementations among all implementations in the chosen 
fault model. For example, a complete test suite is produced by the W-method [Chow 
78] under the assumption that the number of states in the implementation equals to 
the one in its specification [Petr 94]. Therefore, we apply the W-method as test gen­
eration method for module testing and show that under certain prerequisites the test 
suite of the less powerful transition tour method (T-method) [Sidh 89] is complete 
in case of integration test. 

For the sake of simplicity, we consider only module testing and system testing. 
The necessity to introduce further module subset test steps depends on the complex­
ity of the specification. It does not principally change the discussion here, because 
the proced\lre is the same as in the system test. It has only to be taken into account 
for evaluating a concrete test situation. 

3.1 Assumptions and basic notations 

To follow the sequel of the paper, we introduce some necessary assumptions on the 
protocol specification as well as some basic notations. 
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First, we suppose a formal protocol specification as a parallel composition ~ = 
Mill ... II M k of interacting modules. Each module realizes a certain part of the pro­
tocol. It is described by a sequential automaton (finite state machine, FSM). Mod­
ules communicate with each other solely via interaction points. The communication 
pattern used is synchronous communication and non-blocking send based on inter­
leaving semantics. Transmitting messages and their receipt through interaction 
points are referred to actions. 

To distinguish the different kinds of communication, we denote all inputs and 
outputs of the protocol implementation fromlto the environment as external, analo­
gously all inputs and outputs belonging to the inter-module communication as inter­
nal. Events appearing only inside a module are not considered. 

In our discussion, we need to distinguish three types of automata: the module 
automaton M, the composite automaton CA, and the entity automaton EA. 

Module automaton (M) 
The module automaton specifies the expected behavior of the module within the 
protocol entity. It is modeled as a finite state machine. 

Afinite state machine (FSM) M is defined by a quadruple (S, A, ~, so), where S 
is a finite set of states; A is a finite set of actions (the alphabet) consisting of a subset 
of inputs AI and a subset of outputs Ao; AI U Ao = A; ~ ~ S X AI X Ao x S is a tran­
sition relation; and So E S is the initial state. 

A transition (sl, a, b, s2) E ~ with input a and output b is also written as sl-a;! 
bo~S2' A trace denotes a sequence of actions aj transferring M from state s to state 
s' and traversing a set of intermediate states: s-allbl~sl-a2Ib2~S2-"'~s'. With 
no loss of generality, we assume that each component FSM is initially connected. 

Composite automaton (CA) 
The composite automaton specifies the behavior of a subset of modules and of the 
complete protocol entity. The joint behavior of the multi-module system ~ = MI II 
... II Mn can be described by means of a so-called composite machine dt:fined over 
AS ~ A I U ... U An' the (global) alphabet of system ~ that is defined by the parallel 
composition operator II. According to the semantics of this operator, components 
execute shared actions that require rendezvous of a matching input/output pair of 
two component FSMs along with local actions that are executed by a component 
and its environment only. 

A composite automaton of a given concurrent system ~ of k FSMs Mj = (Sj, Aj, 
~j, SOj) is the quadruple (SS' AS, ~S' sS), where Ss is a global state space, Ss E SI 
X ... X Sk; AS ~ Al U ... U Ak is the set of actions (the global alphabet), Ss = (sOl, 

... , sOk) is the initial global state. The transition relation ~3 is given by the follow­
ing three transition rules assuming P and Q are two given FSMs, sp. sp' and sQ, sQ' 
are states in P and Q, and a, x, b are actions in the corresponding subsets of inputs 
or outputs of action sets Ap or AQ. 
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• If Sp-a/X-Hp' and x e AQ/ then (Sp. sQ) -a/x~g (sp', sQ). 
• If sp-a/x~sp' and sQ-xIb~so' then (Sp. sQ) -a/xIb~g (sp', sQ'). 
• If sQ-xIb~sQ' and x e Apo then (Sp. sQ) -xIb~g (Sp. sQ'). 

The notation of a global transition Sg -a/xIb~g sg' illustrates that after input a has 
occurred, internal action x between two modules is exchanged and output b is pro­
duced finally. 

Entity automaton (EA) 
The entity automaton specifies the global, observable behavior of the protocol 
entity. It can be derived formally from CA by restricting the global alphabet Ag to 
the set of actions observable by the environment of the protocol, i.e. internal com­
munication between modules is suppressed in the description of EA. The notion of 
an entity automaton is introduced here merely for the purpose of comparison. 

3.2 Fault model 

Now we discuss the types of faults that may appear in a faulty multi-module imple­
mentation. We assume that the specification has been verified to be correct. That 
means, there are no deadlocks or unreachable states in the specification. 

Fault model of the module automaton 
In our test approach, the module test is a black-box test, in which a test suite is 
applied that is complete to the fault model of a single module. We suppose in the 
following discussion that the single modules have been successfully tested and that 
they behave as specified. 

Fault model of the composite automaton 
At the level of integration tests the following faults are still possible *: 

• Data flow faults: Data exchanged between modules may be faulty. This is a 
common implementation fault. Testing related to data flow is still a partly 
unsolved issue for which only specialized solutions have been found [Guer 96]. 
The observation of the inter-module communication can in part detect data 
faults. This may be in some cases useful because inter-module communication 
often consists of simple data structures as, for instance, signals that inform about 

* Faults in module interactions that do not appear in an appropriate sequence or even incorrect 
sequences of actions can be considered as design faults of the protocol. They can be found by static 
analysis of the composite automata concerning communication inconsistencies (e.g. on the basis of 
Petri net analysis [Hein 92] [Ochs 95]). Synchronization faults due to a change in the communication 
pattern from synchronous to asynchronous communication or vice versa are not considered here 
since once the communication principle has been selected in the design phase of the protocol, it 
should remain the same throughout the design trajectory. 
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a state achieved in the sending module or transfer data as credit information. 
According to our approach false outputs, i.e. data of a wrong type, are detected 
during module test. Faults in the data flow caused by false values of components 
of the data are not considered in our discussion. 

• Coupling faults among modules: Inter-module communication can be imple­
mented by different means, e.g. procedure calls, shared variables, communica­
tion channels or others. It is also often a source for faulty implementations. 
Coupling faults appear if interaction points of the modules are erroneously con­
nected with each other, i.e. the output of a module is sent to a wrong module that 
is, however, able to consume this event performing a corresponding input event. 
This type of fault must be detected during integration test. A coupling fault can 
be reduced to a state fault in the composite automaton. 

3.3 Feasibility of the approach 

To justify the step-wise testing approach, we have to show that 

• the average total length of the test suite for the step-wise approach is shorter 
than the length of the test suite derived from the entity automaton; 

• the fault coverage of the step-wise approach is the same as for the conventional 
approach based on the single entity automaton, i.e. all possible faults that can be 
detected in the conventional approach shall be detected by the step-wise 
approach, too. 

Let A be a finite state automaton, length(W(A» is the test suite length of the W­
method applied to A, length(T(A» is the test suite length of the T-method applied to 
A. The conjecture is that the following equation holds for a suitable number k of 
modules in the specification: 

k 
length(W(EA» > L j = .length(W(Mj» + length(T(CA» (3) 

The formula means that the total length of the test suite applied in the step-wise 
approach is shorter than the length of the test suite that would be derived from the 
entity automaton EA. 

According to the formula, we have to show that the total length of test suites in a 
step-wise approach is generally shorter than the length of the test suite derived from 
the monolithic entity automaton. We demonstrate that this statement holds for the 
case of an equal number of states in the implementation and the specification. 

To test the entity automaton, the W-method is applied since it produces a com­
plete test suite in the fault model of implementations with an equal number of states. 
The number of states in the entity automaton EA can be estimated in the worst case 
by nEA ::;; n njo where nj is the number of states of module Mj. This estimation also 
assumes that automaton reduction applied when constructing the entity automaton 
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does not contribute to a reduction in the number of states, i.e. all global states in the 
reduced composite automaton are distinguishable. Thus, the length of the W­
method is bounded to CXpEA·nEA3) = lXnEA 4) = lXn14 ..... nk4) if we assume that the 
number of transitions is nearly the same as the number of states. 

On the other side of the formula, we have a finite sum of the length of the test 
suites for all single modules (W-method) plus the length of the test suite for the 
composite automaton (T-method): CXprn13) + ... + CXpk'nk3) + CXpCA'nCA) = 
lXn14) + ... + lXnk 4) + lXnCA 2). The number of states nCA in the composite autom­
aton is also bounded to the product of the number of states of individual modules: 
nCA:::;; nl·····nk· 

Since the length of the T-method is reduced by the power of 2 compared to the 
W-method, and a sum of numbers greater than 1 is always less than their product, it 
follows that the total length of test suites in the step-wise approach is shorter. It 
implies that testability increases according to the testability metric from [Petr 94] 
quoted in Section 2. In addition, testability will be further improved by the number 
of events additionally observed at points of observation. 

Now we tum to the second requirement of our approach. We have to show that 
the transition tour in combination with the use of extra test points is a complete test 
suite for integration test. As known, a transition tour is only capable to indicate out­
put faults (caused by erroneous inter-module communication), but not to detect 
wrong states. However after the module test has been carried out successfully, i.e. 
the correctness of the module implementations was verified, we can assume that 
wrong states in the composite automaton can only occur as result of coupling errors. 
Therefore, we must show that the transition tour together with the observation of 
inter-module communication will be capable to detect wrong coupling of modules. 

The detection of these faults depends on the way how the observation of the 
inter-module communication can be performed. A pragmatic approach for realizing 
this observation would be to implement the extra test points in a such a way that the 
gates of the modules send the information to the observer, which data have passed. 
Thus, wrong data and coupling errors can be very easily detected, because the way 
the transition tour has taken in the integration test can be traced. But it would 
require that the implementations of the modules support extra test points. This 
approach influences the implementation and is therefore not feasible. We suppose in 
the following that the extra test points do not influence the module implementation. 
They can only "see" the data sent by the modules. 

A coupling fault may appear, if there exist two equivalent traces TriJ and Tri2 
between a state sim in module m and a state Sjn in module n such that the transition 
tour can follow another way. Since we know from the module test that the local 
actions are correctly implemented, the selection of another way can only be forced 
by a wrong coupling between modules. If we can prove that all traces between two 
CA states that include inter-module communication are distinguishable, then cou­
pling faults in the composite automaton will lead to sequences of internal and exter­
nal outputs that do not correspond to traces of the specified automaton. 
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Figure 2 Wrong tour due to coupling error. 

Let us now suppose that there exist a coupling fault between two modules and that 
the observed trace Tril between sim and Sjn coincides by chance with another trace 
Tri2 between the two CA states. This is only possible if the states of the module 
automata passed by Tril possess a same transition as Tri2' Figure 2 depicts this situ­
ation. In this case, a transition tour cannot detect without any further information 
the wrong coupling. To exclude this situation, we have two choices: 

1. To make the states of the modules that are involved in inter-module communica­
tion distinguishable at the receiving side. This can be done by analyzing the 
specification for such states in advance and to introduce an additional loop tran­
sition back to the same state in the specification and implementation of these 
states. The transition tour executes the additional transition to validate that it has 
reached the correct state. 

2. To use distinguishable messages for inter-module communication, i.e. the 
shared actions in Ag are unique. In this case a data error will be observed. 

If such a measures are accepted for OFT purposes, a transition tour is a complete 
test suite for integration test. 

Example 
To illustrate the above discussion, we consider the XOT protocol [Koen 96] . XDT 
(eXample Data Transfer) is an example protocol used for teaching protocol engi­
neering. It provides a connection-oriented data transfer service based on the go­
back-N principle. In our discussion we only consider the sender part. The sender 
starts with an implicit connection set up (XDATrequ), which is indicated to the ser­
vice user by a XCONconf when finished successfulIy, otherwise the attempt is 
stopped by an time-out (to_t1). After that the service user can continuously send 
(XDATrequ). The sending may be interrupted (XBRKind, XBRKend), when the 
buffer for storing the DT-POU copies is full . The sender repeats the transmission of 
a DT-POU and the following (already sent) ones (go-back-N), when the transmis­
sion of a DT is not confirmed by an ACK-POU within a certain time (to_t2). The 
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connection is released (XDISind) after confirming the successful transmission of the 
last DT-POD. The transmission can be aborted with an ABO-POD by the receiver 
(indicated to the service user by a XABOind), when the POD sequence is not rees­
tablished in a reasonable time. The FSM of the sender entity is depicted in Figure 5 
in the appendix. 

To estimate the testability of the sender FSM we use the measure from [Petr 94] 
(see Section 2). The sender FSM has 5 states, 8 inputs and 5 outputs. The uPfer 
bound of the length of the test suite when applying the W-method will be 8*5 = 
1000, and the testability degree is 5/1000 = 0.005. 

We now divide the specification according to their logical function in 3 modules 
M1, M2 and M3 (see Figure 3 and Figure 4 in the Appendix). Module M1 performs 
the connection set-up, M2 the data transfer and M3 supervises the acknowledg­
ments. It also initiates the go-back-N mechanism and accepts the ABO-POD. For 
inter-module communication the internal events i1, i2, i3, i4, i5, ;6 are introduced. 
The upper test suite lengths for each of the 3 modules, when applying the W­
method, are 3*23 = 24 (M1), 8*43 = 512 (M2) and 5*23 = 40 (M3). The upper 
length of the transition tour is 8*2*4*2 = 128 (with 8 external inputs). The maxi­
mum length of the test suite is therefore 704 test events. The testability degree is 111 
704 = 0.0156 (with 11 internal and external outputs), i.e. the testability increases 
remarkably. The length of the transition tour for the system test can be even further 
reduced, because module MI terminates before the other two modules start. This 
knowledge from the specification could be also exploited in the step-wise test 
approach. 

4 CONCURRENT MODULE STRUCTURES 

In this section, we discuss the application of the step-wise testing approach for a 
protocol specification and its corresponding implementation, in which modules are 
executed concurrently. The assumption of true concurrency is realistic for protocol 
implementations. However, testing implementations based on multi-module specifi­
cations is complicated by a number of problems that are unique to the nature of con­
current systems. Dnder these problems the most important ones are the occurrence 
of concurrent events during testing; the reproduction of test runs with the same test 
data; and state explosion that occurs when the system is being analyzed. 

A conventional approach to test suite generation starts from a monolithic, single 
automaton, i.e. from the entity automaton in our case. Since the entity automaton is 
usually not given in advance, it must be constructed, e.g., by computing the product 
of the module automata using interleaving semantics rules to obtain the composite 
automaton and reducing the composite automaton eventually to obtain its reduced 
automaton that equals to the entity automaton. The generation of a transition tour 
from the interleaving model of an entity automaton has its limitations since concur­
rent events are serialized. Oue to a lack of controllability during testing, this 
approach is not feasible. The resulting order of concurrent events in a test run could 
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not be predicted. The order of events is, however, essential to assess whether an 
implementation is correct. 

If we apply the proposed step-wise testing approach, we are able to use the 
structure information given as a set of communicating modules during test suite 
generation. In [Ulri 95], we extended the notion of a transition tour [Sidh 89] and 
applied it as a test suite for distributed systems. A transition tour is defined for a sin­
gle automaton as the shortest path that covers all transitions in the automaton at 
least once. In the context of distributed systems a transition tour is extended to a 
concurrent transition tour (CIT) such that all transitions in all modules of the sys­
tem are visited at least once on the shortest possible path through the system. A 
CIT takes concurrency among actions of different modules into account. 

A CIT is depicted graphically as a time event sequence diagram where nodes 
are events and the directed arcs define the causality relation between events. It can 
be considered as a set of local transition tours ITj through the single modules of the 
system by taking into account synchronization constraints, i.e. CIT = (IT1, ••• , 

ITk). Its construction, however, does not necessarily follow from this definition. A 
feasible construction algorithm of a CIT is presented in [Ulri 97]. 

The actual length of a concurrent transition tour depends on the degree of con­
currency among the modules. The lowest bound of the length is determined by the 
least common multiple of completed cycles of single transition tours through the 
modules if no branching occurs at all. In the worst case, the length of the concurrent 
transition tour equals to the length of a transition tour derived from the interleaving 
model, i.e. length(C11) ~ length(11). Thus, using concurrent test sequences instead 
of interleaved based ones reduces test efforts further. 

5 RELATED WORK 

Design for testability is a relatively new approach in protocol engineering. It aims at 
decreasing the efforts in protocol testing.and supporting a better detection offaults 
in implementations. The testability of protocols may be influenced by many factors 
in the context of design, implementation and testing. Dssouli and Fournier have, 
therefore, first proposed to introduce DFf as a development step in the protocol 
development process [Dsso 91]. A general framework for DFf for protocols was 
given by Vuong, Loureiro, and Chanson in [Vuon 94]. 

Grey-box testing is considered as the preferred approach to increase testability. 
Theoretical aspects of grey-box testing have been pioneered by Yao, Petrenko, 
Bochmann, and Yevtushenko [Yao 94] [Yevt 95]. A metric for testability based on 
finite state machines under the complete fault coverage assumption was proposed 
by Petrenko, Dssouli, and Konig [Petr 94]. Most approaches that follow this way 
use means to instrument the implementation with extra test points in order to 
observe the behavior of the implementation under test. A framework for this 
approach is proposed by Dssouli, Karoui, Petrenko, and Rafiq in [Dsso 95]. A 
generic scheme to automatically instrument a formal specification is described by 
Kim, Chanson, and Yoo in [Kim 95]. 
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A similar incremental approach to structural testing was first proposed by Kop­
pol and Tai in [Kopp 96]. Here, the incremental approach is used to alleviate state 
explosion during the derivation of test cases for a concurrent system using interleav­
ing semantics. They establish test derivation on structural test coverage criteria, e.g. 
the coverage of every transition in the modules of the system at least once, instead 
of providing a fault model, and they do not discuss the degree of testability of their 
approach. 

The work on a concurrent transition tour as a test suite for distributed systems 
[Ulri 95, 97] can be regarded as an alternative approach to test derivation to alleviate 
state explosion. It has been advocated by approaches on trace analysis [Yang 92] 
[Kim 96]. These approaches assume that valid sets of traces through the modules, 
i.e. valid execution sequences of the system, are already given, but do not provide 
methods to derive them according to a certain fault coverage. Since a concurrent 
transition tour requires a grey-box approach in testing to avoid nondeterminism in 
distributed systems, the test method proposed in this paper follows immediately. 

6 CONCLUSIONS 

We have presented an approach to support design for testability for communication 
protocols. The approach combines a step-wise test procedure with grey-box test 
principles. Applying the approach, we have to consider two further aspects. 

First, an appropriate module structure of the protocol specification has to be 
found. Its design depends often on subjective decisions made by a designer. How­
ever, protocols themselves support modularization in most cases. They usually con­
sist of several protocol phases represented by separated (partial) services. These 
phases can be designed as different subsets of modules and implemented and tested 
separately. Such a modularization is also supported by the standardized FDTs. 

In addition, a test architecture has to be provided that supports the step-wise 
testing approach. Extra test points must be designed in such a manner that they can 
be used as peos for module tests and POs for integration tests. Their inclusion 
should be automated as proposed in [Kim 95]. 

Nondeterminism is a real issue in testing concurrent systems as it was shortly 
pointed out in Section 4. This problem is aggravated further since additional forms 
of non determinism may exist in a concurrent system, due to nonobservability of 
internal interactions or data races, even if all its modules behave deterministically. 
In this case, only a grey-box testing approach and further measures must be taken 
into account to guarantee a deterministic test run [Tai 95]. 

Up to now, the step-wise testing approach has been elaborated and justified for 
concurrent modules communicating synchronously. However, work on an extension 
of the current method to asynchronous communication is needed. Furthermore, any 
impact of data flow on the internal behavior of modules has been neglected. A more 
sophisticated grey-box test procedure is needed to trace the influence of data 
exchanged over communicating modules. Suggestions for related techniques that 
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are probably applicable in the area of protocol engineering are already known from 
software engineering of parallel processes (see e.g. [Lebl 87]). 

Our approach also facilitates interoperability test because separate accessible 
modules can be tested against each other. The additional information obtained from 
POs supplements the test data recorded by a test monitor. Thus, these tests are use­
ful in particular for locating faults when the interoperability test was not successful. 
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8 APPENDIX 

f:'\ XOATrequ I OT .r:-\ 
\2)\CKlil, XCONconf\.::J 

to_til XABOind 

p = {XOATrequ, ACK, to_tl} 

o = {OT, XABOind, XCONconf, il} 

Figure 3 FSMs Ml and M3. 

i2/-

ABO/i4 
ACK_L/i5 

p = {i2, ABO, ACK, AClCL, to_t2} 
0= {i3, i5, i6} 
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ill i2 

i4/XABOind 

is I XABOind 

iS/XABOind 

p = {iI, i3, i4, is, i6, cl, e2, XOATrequ} 
0= lOT, XBRKind, XBRKend, XDISind, XABOind, i2} 

Figure 4 FSM M2. 

XOATrequ I OT 

to_tIl XABOind 

ABO I XABORTind 

p = {XOATrequ, ACK, ACK_L, ABO, to_tI, to_12, eI, e2} 

0= lOT, XDISind, XABOind, XBRKind, XBRKend} 

Figure 5 FSM of the XDT sender. 


