
9

Design for testability: a step-wise
approach to protocol testing

Hartmut Koniga, Andreas Ulrichb, Monika Heinef1'
a Department of Computer Science, BTU Cottbus, PF 101344,
03013 Cottbus, Germany, e-mail: {koenig.mh}@informatik.tu­
cottbus.de
b Department of Computer Science, University of Magdeburg,
PF 4120,39016 Magdeburg, Germany, e-mail: ulrich@cs.uni­
magdeburg. de

Abstract
We present an approach to support the design for testability aspect of communica­
tion protocols. It combines the ad-hoc techniques partitioning and instrumentation
known from integrated circuit testing. A protocol specification is divided into mod­
ules of reasonable size. This module structure is preserved in the implementation.
Extra test points are added to observe inter-module communication. The test proce­
dure consists of several steps. In the first step, modules are tested separately by
applying a powerful test method, whereas following integration tests of modules
exploit additional information provided by observers. The application of less
sophisticated test methods is propagated for these steps. We show that this testing
approach extends testability while fault detection capability is maintained.

Keywords
Network protocols; requirements I specifications; testing.

Testing of Communicating Systems, M. Kim, S. Kang & K. Hong (Eds)
Published by Olapman & Hall e 1997 IFIP

126 Part Five Test Coverage and Testability

1 MOTIVATION

Oue to the limited power of verification, testing has always been an important
method in practice to validate the correctness of communication protocols. Never­
theless, the test of communication protocols has been proven to be difficult and
expensive. Reasons are the complexity of communication protocols that makes
exhaustive tests impossible as well as the need for complementary tests, e.g. devel­
opment tests during the implementation phase of a protocol, conformance test to
prove the compliance of the implementation with the specification or a protocol
standard, interoperability test to demonstrate the ability of implementations to work
together, performance test to measure, whether the implementation provides the
specified efficiency, and robustness test to prove, whether the implementation
behaves stable in erroneous situations.

Up to now, testing aspects are usually not considered during protocol design and
protocol implementation. To make sophisticated test methods more efficient and
applicable in practical testing, the test process itself has to be reconsidered. This
demand is especially enforced by new requirements from high performance com­
munication that require new protocols and communication architectures as well as
new implementation techniques [Clar 90]. To make protocol implementations more
testable, dedicated techniques and methods have to be applied already during the
design phase in order to reduce efforts and costs of testing. In addition, testing
aspects should be taken into consideration during the whole protocol development
process. Therefore, design for testability (OFf) has become an important research
topic in protocol engineering.

Testability, in general, is a property of an object that facilitates the testing pro­
cess [Vuon 94]. It can be obtained in two ways: (1) by introducing special observa­
tion features that give additional information about the (internal) behavior of the
object, and (2) by a systematic design for testability. The choice of the Off strategy
depends on two factors: the goals of the testing process, and the kind of application.

Off has been applied in integrated circuit (IC) technology already for a long
time. The techniques used there can be divided into two categories [Will 82]: ad-hoc
techniques and structured approaches. Ad-hoc techniques solve the testing problem
for a given design. They are not generally applicable to all designs. Examples of ad­
hoc techniques are partitioning and extra test points. Structured approaches, on the
other hand, are generally applicable techniques that are based on a certain design
methodology with fixed design rules.

Off is still a new topic in protocol engineering. It is obvious that some of the
approaches worked out in the IC area are also tried to be applied in protocol engi­
neering. First proposals, such as the introduction of points of observation [Osso 91,
95], can be categorized as ad-hoc techniques according to the classification intro­
duced above. Structured approaches have been not known, yet.

According to [Will 82], Off comprises a collection of techniques that are, in
some cases, general guidelines and, in other cases, precise design rules. Conse­
quently, there will be not only a single approach, but several ones. For the protocol

Design/or testability: a step-wise approach to protocol testing 127

area, this means that the objective of OFf should be to develop a set of approaches
that can be applied depending on the test context, the associated cost of implement­
ing them, and the return on investment. Therefore, OFf research should not be lim­
ited to a certain test category. It should have a general view and consider all
methods that improve the ability of detecting faults during testing and decreasing
cost. A selection of specific OFf techniques is needed bearing in mind the benefits
they will bring in a given test context.

Starting from this position, we present an testing approach to support OFf of
communication protocols that combines the ad-hoc techniques of partitioning a pro­
tocol specification into module structures and adding extra test points to observe
inter-module communication. The idea of the approach presented in this paper is to
use instrumentation not only for getting additional information about the behavior
of the implementation under test but also to use this information to decrease the
testing efforts by reducing the length of the test suite. The proposed testing proce­
dure is a step-wise one. In the first step, the modules are tested separately by apply­
ing a powerful test method, whereas for the following integration tests of the
modules (in one or more steps) the application of a less sophisticated test method is
propagated to decrease test efforts while fault detection capability is maintained.

The rest of the paper is organized as follows. Section 2 gives a short overview of
the proposed testing procedure that is evaluated in more detail in Section 3.
Section 4 is dedicated to aspects of multi-module testing and concurrency. Section 5
relates our work to existing ones, and finally, Section 6 concludes the paper.

2 A STEP-WISE TESTING APPROACH - OVERVIEW

The step-wise testing approach proposed in this paper follows the ad-hoc approach
in integrated circuit testing [Will 82]. In particular, we use partitioning and adding
of extra test points. According to these techniques, we propose to partition a proto­
col sgecification into a set of modules of reasonable size which can be executed
sequentially and/or in parallel. Such a structuring is natural for protocol design.
Most formal description techniques (FDTs) support a certain module structure in
the specification, but structuring is usually not used to support testing.

We suppose that the module structure is preserved in the implementation. But
we do not make any assumption that the specified inter-module communication is
correctly implemented. The inter-module communication, however, is traced by
extra test points used as points of control and observation (PCOs) or only as points
of observation (POs).

Supposing such a module structure, testing can be executed step-wise in the fol­
lowing manner (cf. Figure 1):

1. Module testing: Each module is tested separately. This test is a black-box test.
The extra test points associated to the module serve as PeOs. The modules can
be considered as software ICs [Hoff 89].

128 Part Five Test Coverage and Testability

subject of
module ub t test

peo

Figure 1 Subjects of test steps for a protocol entity.

extra ttSt
point

ubjcct of
y tern test

2. Module subset testing: Reasonable subsets of modules are tested together. The
used test method is grey-box testing. Extra test points between modules are POs
to observe internal communication between modules.

3. System testing: The complete system is tested by integration of all modules and
subsets of modules using again grey-box testing as described in the second step.

Steps 2 and 3 are integration tests [Myer 79] that test the correct cooperation of the
modules, i.e. the correct implementation of the inter-module communication. Step 2
is optional and can be omitted, or may be repeated several times with changing sub­
sets of modules.

The step-wise testing procedure takes advantage of the modularization within
the protocol entity. First, each module is tested separately (e.g. by applying the W­
method). After that, subsets of modules are tested, and eventually the whole system.
Due to the testing efforts already done at module testing level, application of less
sophisticated test generation methods is suggested at module subset or system level
(e.g. the T-method). The simplification is motivated by the types of faults that can
still appear at the second or third testing level (see Section 3.2). The necessary
information to find faults that are usually not detectable by a transition tour will be
derived from the observation of inter-module communication.

Applying this test strategy we have to show two things: (1) whether the pro­
posed testing approach increases testability, and (2) whether a less sophisticated test
generation method in combination with grey-box testing guarantees still high fault
coverage. The feasibility of these requirements is discussed in Section 3.

To measure the degree of testability T, we apply the measure introduced in [Petr
94] for finite state machines (FSMs) under the complete coverage assumption:

T=
o

2 m-n+ I
mn p

(1)

Design/or testability: a step-wise approach to protocol testing 129

where m is the number of states in the implemented FSM, n is the number of states
in the reference FSM, p denotes the number of inputs, and 0 the number of outputs.
In the case that the number of states of the reference FSM equals to the number in
the implemented FSM, i.e. m = n, the formula is simplified to:

3
T = olen p) (2)

The measure is proposed to evaluate FSM based module structures, in order to com­
pare different designs with respect to testability. It assumes that testability is
inversely proportional to the amount of testing efforts. The latter is proportional to
the length of the test suite needed to achieve full fault coverage in a predefined fault
domain. Further, it is obvious that an implementation becomes more testable, if
more outputs can be observed during testing.

The reduction of the length of a test suite has a larger impact on the increase in
testability, since it more effectively cuts test efforts. Consequently, to estimate the
increase in testability, we have to show that the average total test suite length of the
step-wise testing procedure is shorter than the length of a test suite from the
unstructured testing approach.

3 ADVOCATING THE STEP-WISE TESTING APPROACH

In this section, we want to discuss the feasibility of the step-wise testing approach.
We suppose that the protocol specification is given in the form of interacting mod­
ules as depicted in Figure 1. In order to perform systematic tests, test suites must be
derived that are complete to a chosen fault model. A test suite is complete if it can
distinguish all faulty implementations among all implementations in the chosen
fault model. For example, a complete test suite is produced by the W-method [Chow
78] under the assumption that the number of states in the implementation equals to
the one in its specification [Petr 94]. Therefore, we apply the W-method as test gen­
eration method for module testing and show that under certain prerequisites the test
suite of the less powerful transition tour method (T-method) [Sidh 89] is complete
in case of integration test.

For the sake of simplicity, we consider only module testing and system testing.
The necessity to introduce further module subset test steps depends on the complex­
ity of the specification. It does not principally change the discussion here, because
the proced\lre is the same as in the system test. It has only to be taken into account
for evaluating a concrete test situation.

3.1 Assumptions and basic notations

To follow the sequel of the paper, we introduce some necessary assumptions on the
protocol specification as well as some basic notations.

130 Part Five Test Coverage and Testability

First, we suppose a formal protocol specification as a parallel composition ~ =
Mill ... II M k of interacting modules. Each module realizes a certain part of the pro­
tocol. It is described by a sequential automaton (finite state machine, FSM). Mod­
ules communicate with each other solely via interaction points. The communication
pattern used is synchronous communication and non-blocking send based on inter­
leaving semantics. Transmitting messages and their receipt through interaction
points are referred to actions.

To distinguish the different kinds of communication, we denote all inputs and
outputs of the protocol implementation fromlto the environment as external, analo­
gously all inputs and outputs belonging to the inter-module communication as inter­
nal. Events appearing only inside a module are not considered.

In our discussion, we need to distinguish three types of automata: the module
automaton M, the composite automaton CA, and the entity automaton EA.

Module automaton (M)
The module automaton specifies the expected behavior of the module within the
protocol entity. It is modeled as a finite state machine.

Afinite state machine (FSM) M is defined by a quadruple (S, A, ~, so), where S
is a finite set of states; A is a finite set of actions (the alphabet) consisting of a subset
of inputs AI and a subset of outputs Ao; AI U Ao = A; ~ ~ S X AI X Ao x S is a tran­
sition relation; and So E S is the initial state.

A transition (sl, a, b, s2) E ~ with input a and output b is also written as sl-a;!
bo~S2' A trace denotes a sequence of actions aj transferring M from state s to state
s' and traversing a set of intermediate states: s-allbl~sl-a2Ib2~S2-"'~s'. With
no loss of generality, we assume that each component FSM is initially connected.

Composite automaton (CA)
The composite automaton specifies the behavior of a subset of modules and of the
complete protocol entity. The joint behavior of the multi-module system ~ = MI II
... II Mn can be described by means of a so-called composite machine dt:fined over
AS ~ A I U ... U An' the (global) alphabet of system ~ that is defined by the parallel
composition operator II. According to the semantics of this operator, components
execute shared actions that require rendezvous of a matching input/output pair of
two component FSMs along with local actions that are executed by a component
and its environment only.

A composite automaton of a given concurrent system ~ of k FSMs Mj = (Sj, Aj,
~j, SOj) is the quadruple (SS' AS, ~S' sS), where Ss is a global state space, Ss E SI
X ... X Sk; AS ~ Al U ... U Ak is the set of actions (the global alphabet), Ss = (sOl,

... , sOk) is the initial global state. The transition relation ~3 is given by the follow­
ing three transition rules assuming P and Q are two given FSMs, sp. sp' and sQ, sQ'
are states in P and Q, and a, x, b are actions in the corresponding subsets of inputs
or outputs of action sets Ap or AQ.

Designfor testability: a step-wise approach to protocol testing 131

• If Sp-a/X-Hp' and x e AQ/ then (Sp. sQ) -a/x~g (sp', sQ).
• If sp-a/x~sp' and sQ-xIb~so' then (Sp. sQ) -a/xIb~g (sp', sQ').
• If sQ-xIb~sQ' and x e Apo then (Sp. sQ) -xIb~g (Sp. sQ').

The notation of a global transition Sg -a/xIb~g sg' illustrates that after input a has
occurred, internal action x between two modules is exchanged and output b is pro­
duced finally.

Entity automaton (EA)
The entity automaton specifies the global, observable behavior of the protocol
entity. It can be derived formally from CA by restricting the global alphabet Ag to
the set of actions observable by the environment of the protocol, i.e. internal com­
munication between modules is suppressed in the description of EA. The notion of
an entity automaton is introduced here merely for the purpose of comparison.

3.2 Fault model

Now we discuss the types of faults that may appear in a faulty multi-module imple­
mentation. We assume that the specification has been verified to be correct. That
means, there are no deadlocks or unreachable states in the specification.

Fault model of the module automaton
In our test approach, the module test is a black-box test, in which a test suite is
applied that is complete to the fault model of a single module. We suppose in the
following discussion that the single modules have been successfully tested and that
they behave as specified.

Fault model of the composite automaton
At the level of integration tests the following faults are still possible *:

• Data flow faults: Data exchanged between modules may be faulty. This is a
common implementation fault. Testing related to data flow is still a partly
unsolved issue for which only specialized solutions have been found [Guer 96].
The observation of the inter-module communication can in part detect data
faults. This may be in some cases useful because inter-module communication
often consists of simple data structures as, for instance, signals that inform about

* Faults in module interactions that do not appear in an appropriate sequence or even incorrect
sequences of actions can be considered as design faults of the protocol. They can be found by static
analysis of the composite automata concerning communication inconsistencies (e.g. on the basis of
Petri net analysis [Hein 92] [Ochs 95]). Synchronization faults due to a change in the communication
pattern from synchronous to asynchronous communication or vice versa are not considered here
since once the communication principle has been selected in the design phase of the protocol, it
should remain the same throughout the design trajectory.

132 Part Five Test Coverage and Testability

a state achieved in the sending module or transfer data as credit information.
According to our approach false outputs, i.e. data of a wrong type, are detected
during module test. Faults in the data flow caused by false values of components
of the data are not considered in our discussion.

• Coupling faults among modules: Inter-module communication can be imple­
mented by different means, e.g. procedure calls, shared variables, communica­
tion channels or others. It is also often a source for faulty implementations.
Coupling faults appear if interaction points of the modules are erroneously con­
nected with each other, i.e. the output of a module is sent to a wrong module that
is, however, able to consume this event performing a corresponding input event.
This type of fault must be detected during integration test. A coupling fault can
be reduced to a state fault in the composite automaton.

3.3 Feasibility of the approach

To justify the step-wise testing approach, we have to show that

• the average total length of the test suite for the step-wise approach is shorter
than the length of the test suite derived from the entity automaton;

• the fault coverage of the step-wise approach is the same as for the conventional
approach based on the single entity automaton, i.e. all possible faults that can be
detected in the conventional approach shall be detected by the step-wise
approach, too.

Let A be a finite state automaton, length(W(A» is the test suite length of the W­
method applied to A, length(T(A» is the test suite length of the T-method applied to
A. The conjecture is that the following equation holds for a suitable number k of
modules in the specification:

k
length(W(EA» > L j = .length(W(Mj» + length(T(CA» (3)

The formula means that the total length of the test suite applied in the step-wise
approach is shorter than the length of the test suite that would be derived from the
entity automaton EA.

According to the formula, we have to show that the total length of test suites in a
step-wise approach is generally shorter than the length of the test suite derived from
the monolithic entity automaton. We demonstrate that this statement holds for the
case of an equal number of states in the implementation and the specification.

To test the entity automaton, the W-method is applied since it produces a com­
plete test suite in the fault model of implementations with an equal number of states.
The number of states in the entity automaton EA can be estimated in the worst case
by nEA ::;; n njo where nj is the number of states of module Mj. This estimation also
assumes that automaton reduction applied when constructing the entity automaton

Design/or testability: a step-wise approach to protocol testing 133

does not contribute to a reduction in the number of states, i.e. all global states in the
reduced composite automaton are distinguishable. Thus, the length of the W­
method is bounded to CXpEA·nEA3) = lXnEA 4) = lXn14 nk4) if we assume that the
number of transitions is nearly the same as the number of states.

On the other side of the formula, we have a finite sum of the length of the test
suites for all single modules (W-method) plus the length of the test suite for the
composite automaton (T-method): CXprn13) + ... + CXpk'nk3) + CXpCA'nCA) =
lXn14) + ... + lXnk 4) + lXnCA 2). The number of states nCA in the composite autom­
aton is also bounded to the product of the number of states of individual modules:
nCA:::;; nl·····nk·

Since the length of the T-method is reduced by the power of 2 compared to the
W-method, and a sum of numbers greater than 1 is always less than their product, it
follows that the total length of test suites in the step-wise approach is shorter. It
implies that testability increases according to the testability metric from [Petr 94]
quoted in Section 2. In addition, testability will be further improved by the number
of events additionally observed at points of observation.

Now we tum to the second requirement of our approach. We have to show that
the transition tour in combination with the use of extra test points is a complete test
suite for integration test. As known, a transition tour is only capable to indicate out­
put faults (caused by erroneous inter-module communication), but not to detect
wrong states. However after the module test has been carried out successfully, i.e.
the correctness of the module implementations was verified, we can assume that
wrong states in the composite automaton can only occur as result of coupling errors.
Therefore, we must show that the transition tour together with the observation of
inter-module communication will be capable to detect wrong coupling of modules.

The detection of these faults depends on the way how the observation of the
inter-module communication can be performed. A pragmatic approach for realizing
this observation would be to implement the extra test points in a such a way that the
gates of the modules send the information to the observer, which data have passed.
Thus, wrong data and coupling errors can be very easily detected, because the way
the transition tour has taken in the integration test can be traced. But it would
require that the implementations of the modules support extra test points. This
approach influences the implementation and is therefore not feasible. We suppose in
the following that the extra test points do not influence the module implementation.
They can only "see" the data sent by the modules.

A coupling fault may appear, if there exist two equivalent traces TriJ and Tri2
between a state sim in module m and a state Sjn in module n such that the transition
tour can follow another way. Since we know from the module test that the local
actions are correctly implemented, the selection of another way can only be forced
by a wrong coupling between modules. If we can prove that all traces between two
CA states that include inter-module communication are distinguishable, then cou­
pling faults in the composite automaton will lead to sequences of internal and exter­
nal outputs that do not correspond to traces of the specified automaton.

134 Part Five Test Coverage and Testability

correcl lour

B C
'--_/-:--_--J

p",lirm. ,/

Ii-:- ----- --.{ --~.~
L-______ ~ wrong lOur

JUT

Figure 2 Wrong tour due to coupling error.

Let us now suppose that there exist a coupling fault between two modules and that
the observed trace Tril between sim and Sjn coincides by chance with another trace
Tri2 between the two CA states. This is only possible if the states of the module
automata passed by Tril possess a same transition as Tri2' Figure 2 depicts this situ­
ation. In this case, a transition tour cannot detect without any further information
the wrong coupling. To exclude this situation, we have two choices:

1. To make the states of the modules that are involved in inter-module communica­
tion distinguishable at the receiving side. This can be done by analyzing the
specification for such states in advance and to introduce an additional loop tran­
sition back to the same state in the specification and implementation of these
states. The transition tour executes the additional transition to validate that it has
reached the correct state.

2. To use distinguishable messages for inter-module communication, i.e. the
shared actions in Ag are unique. In this case a data error will be observed.

If such a measures are accepted for OFT purposes, a transition tour is a complete
test suite for integration test.

Example
To illustrate the above discussion, we consider the XOT protocol [Koen 96] . XDT
(eXample Data Transfer) is an example protocol used for teaching protocol engi­
neering. It provides a connection-oriented data transfer service based on the go­
back-N principle. In our discussion we only consider the sender part. The sender
starts with an implicit connection set up (XDATrequ), which is indicated to the ser­
vice user by a XCONconf when finished successfulIy, otherwise the attempt is
stopped by an time-out (to_t1). After that the service user can continuously send
(XDATrequ). The sending may be interrupted (XBRKind, XBRKend), when the
buffer for storing the DT-POU copies is full . The sender repeats the transmission of
a DT-POU and the following (already sent) ones (go-back-N), when the transmis­
sion of a DT is not confirmed by an ACK-POU within a certain time (to_t2). The

Designfor testability: a step-wise approach to protocol testing 135

connection is released (XDISind) after confirming the successful transmission of the
last DT-POD. The transmission can be aborted with an ABO-POD by the receiver
(indicated to the service user by a XABOind), when the POD sequence is not rees­
tablished in a reasonable time. The FSM of the sender entity is depicted in Figure 5
in the appendix.

To estimate the testability of the sender FSM we use the measure from [Petr 94]
(see Section 2). The sender FSM has 5 states, 8 inputs and 5 outputs. The uPfer
bound of the length of the test suite when applying the W-method will be 8*5 =
1000, and the testability degree is 5/1000 = 0.005.

We now divide the specification according to their logical function in 3 modules
M1, M2 and M3 (see Figure 3 and Figure 4 in the Appendix). Module M1 performs
the connection set-up, M2 the data transfer and M3 supervises the acknowledg­
ments. It also initiates the go-back-N mechanism and accepts the ABO-POD. For
inter-module communication the internal events i1, i2, i3, i4, i5, ;6 are introduced.
The upper test suite lengths for each of the 3 modules, when applying the W­
method, are 3*23 = 24 (M1), 8*43 = 512 (M2) and 5*23 = 40 (M3). The upper
length of the transition tour is 8*2*4*2 = 128 (with 8 external inputs). The maxi­
mum length of the test suite is therefore 704 test events. The testability degree is 111
704 = 0.0156 (with 11 internal and external outputs), i.e. the testability increases
remarkably. The length of the transition tour for the system test can be even further
reduced, because module MI terminates before the other two modules start. This
knowledge from the specification could be also exploited in the step-wise test
approach.

4 CONCURRENT MODULE STRUCTURES

In this section, we discuss the application of the step-wise testing approach for a
protocol specification and its corresponding implementation, in which modules are
executed concurrently. The assumption of true concurrency is realistic for protocol
implementations. However, testing implementations based on multi-module specifi­
cations is complicated by a number of problems that are unique to the nature of con­
current systems. Dnder these problems the most important ones are the occurrence
of concurrent events during testing; the reproduction of test runs with the same test
data; and state explosion that occurs when the system is being analyzed.

A conventional approach to test suite generation starts from a monolithic, single
automaton, i.e. from the entity automaton in our case. Since the entity automaton is
usually not given in advance, it must be constructed, e.g., by computing the product
of the module automata using interleaving semantics rules to obtain the composite
automaton and reducing the composite automaton eventually to obtain its reduced
automaton that equals to the entity automaton. The generation of a transition tour
from the interleaving model of an entity automaton has its limitations since concur­
rent events are serialized. Oue to a lack of controllability during testing, this
approach is not feasible. The resulting order of concurrent events in a test run could

136 Part Five Test Coverage and Testability

not be predicted. The order of events is, however, essential to assess whether an
implementation is correct.

If we apply the proposed step-wise testing approach, we are able to use the
structure information given as a set of communicating modules during test suite
generation. In [Ulri 95], we extended the notion of a transition tour [Sidh 89] and
applied it as a test suite for distributed systems. A transition tour is defined for a sin­
gle automaton as the shortest path that covers all transitions in the automaton at
least once. In the context of distributed systems a transition tour is extended to a
concurrent transition tour (CIT) such that all transitions in all modules of the sys­
tem are visited at least once on the shortest possible path through the system. A
CIT takes concurrency among actions of different modules into account.

A CIT is depicted graphically as a time event sequence diagram where nodes
are events and the directed arcs define the causality relation between events. It can
be considered as a set of local transition tours ITj through the single modules of the
system by taking into account synchronization constraints, i.e. CIT = (IT1, ••• ,

ITk). Its construction, however, does not necessarily follow from this definition. A
feasible construction algorithm of a CIT is presented in [Ulri 97].

The actual length of a concurrent transition tour depends on the degree of con­
currency among the modules. The lowest bound of the length is determined by the
least common multiple of completed cycles of single transition tours through the
modules if no branching occurs at all. In the worst case, the length of the concurrent
transition tour equals to the length of a transition tour derived from the interleaving
model, i.e. length(C11) ~ length(11). Thus, using concurrent test sequences instead
of interleaved based ones reduces test efforts further.

5 RELATED WORK

Design for testability is a relatively new approach in protocol engineering. It aims at
decreasing the efforts in protocol testing.and supporting a better detection offaults
in implementations. The testability of protocols may be influenced by many factors
in the context of design, implementation and testing. Dssouli and Fournier have,
therefore, first proposed to introduce DFf as a development step in the protocol
development process [Dsso 91]. A general framework for DFf for protocols was
given by Vuong, Loureiro, and Chanson in [Vuon 94].

Grey-box testing is considered as the preferred approach to increase testability.
Theoretical aspects of grey-box testing have been pioneered by Yao, Petrenko,
Bochmann, and Yevtushenko [Yao 94] [Yevt 95]. A metric for testability based on
finite state machines under the complete fault coverage assumption was proposed
by Petrenko, Dssouli, and Konig [Petr 94]. Most approaches that follow this way
use means to instrument the implementation with extra test points in order to
observe the behavior of the implementation under test. A framework for this
approach is proposed by Dssouli, Karoui, Petrenko, and Rafiq in [Dsso 95]. A
generic scheme to automatically instrument a formal specification is described by
Kim, Chanson, and Yoo in [Kim 95].

Design/or testability: a step-wise approach to protocol testing 137

A similar incremental approach to structural testing was first proposed by Kop­
pol and Tai in [Kopp 96]. Here, the incremental approach is used to alleviate state
explosion during the derivation of test cases for a concurrent system using interleav­
ing semantics. They establish test derivation on structural test coverage criteria, e.g.
the coverage of every transition in the modules of the system at least once, instead
of providing a fault model, and they do not discuss the degree of testability of their
approach.

The work on a concurrent transition tour as a test suite for distributed systems
[Ulri 95, 97] can be regarded as an alternative approach to test derivation to alleviate
state explosion. It has been advocated by approaches on trace analysis [Yang 92]
[Kim 96]. These approaches assume that valid sets of traces through the modules,
i.e. valid execution sequences of the system, are already given, but do not provide
methods to derive them according to a certain fault coverage. Since a concurrent
transition tour requires a grey-box approach in testing to avoid nondeterminism in
distributed systems, the test method proposed in this paper follows immediately.

6 CONCLUSIONS

We have presented an approach to support design for testability for communication
protocols. The approach combines a step-wise test procedure with grey-box test
principles. Applying the approach, we have to consider two further aspects.

First, an appropriate module structure of the protocol specification has to be
found. Its design depends often on subjective decisions made by a designer. How­
ever, protocols themselves support modularization in most cases. They usually con­
sist of several protocol phases represented by separated (partial) services. These
phases can be designed as different subsets of modules and implemented and tested
separately. Such a modularization is also supported by the standardized FDTs.

In addition, a test architecture has to be provided that supports the step-wise
testing approach. Extra test points must be designed in such a manner that they can
be used as peos for module tests and POs for integration tests. Their inclusion
should be automated as proposed in [Kim 95].

Nondeterminism is a real issue in testing concurrent systems as it was shortly
pointed out in Section 4. This problem is aggravated further since additional forms
of non determinism may exist in a concurrent system, due to nonobservability of
internal interactions or data races, even if all its modules behave deterministically.
In this case, only a grey-box testing approach and further measures must be taken
into account to guarantee a deterministic test run [Tai 95].

Up to now, the step-wise testing approach has been elaborated and justified for
concurrent modules communicating synchronously. However, work on an extension
of the current method to asynchronous communication is needed. Furthermore, any
impact of data flow on the internal behavior of modules has been neglected. A more
sophisticated grey-box test procedure is needed to trace the influence of data
exchanged over communicating modules. Suggestions for related techniques that

138 Part Five Test Coverage and Testability

are probably applicable in the area of protocol engineering are already known from
software engineering of parallel processes (see e.g. [Lebl 87]).

Our approach also facilitates interoperability test because separate accessible
modules can be tested against each other. The additional information obtained from
POs supplements the test data recorded by a test monitor. Thus, these tests are use­
ful in particular for locating faults when the interoperability test was not successful.

7 REFERENCES

[Chow 78] Chow, T. S.: Testing Software Design Modeled by Finite-State
Machines; IEEE Trans. on Software Engineering (1978) 3,178-187.

[Clar 90] Clark, D. D.; Tennenhouse, D. L.: Architectural Considerations for a
New Generation of Protocols; Proc. ACM SIGCOMM, 1990,200-208.

[Dsso 91] Dssouli, R; Fournier, R: Communication Software Testability; In
Davidson, I.; Litwack, W. (eds:): Protocol Test Systems III. North
Holland, 1991, pp. 45-55.

[Dsso 95] Dssouli, R; Karoui, K., Petrenko, A.; Rafiq, 0.: Towards testable
communication software; Proc. IWPTS'95, Paris, 1995, pp. 239-255.

[Guer 96] Guerrouat, A.; Konig, H.; Ulrich, A.: SELEXPERT - A knowledge­
based tool for test case selection; In Formal Description Techniques
VIII, Chapman&Hall, 1996, pp. 313-328

[Hein 92] Heiner, M.: Petri Net Based Software Validation, Prospects and
Limitations; ICSI-TR-92-022, Berkeley/CA, 3/1992.

[Hoff 89] Hoffman, D.: Hardware testing and Software ICs; Proc. Pacific NW
Software Quality Conference, Portland, 1989, pp. 234-244.

[Kim 95] Iqm, M.; Chanson, S. T.; Yoo, S.: Designfor testability of protocols
based onformal specifications; Proc. IWPTS'95, Paris, 1995,257-269.

[Kim 96] Kim, M. C.; Chanson, S. T.; Kang, S. w.; Shin, J. W.: An approachfor
testing asynchronous communicating systems; 9th IWTCS'96,
Darmstadt, Germany; 1996.

[Koen 96] Konig,H.: The XDT Protocol. Technical Report 04-96. BTU Cottbus,
Fakultat Mathematik,Naturwissenschaften und Informatik,1996.

[Kopp 96] P. V. Koppol, K. C. Tai: An incremental approach to structural testing
of concurrent software; International Symposium on Software Testing
and Analysis (ISSTA'96); San Diego, California; 1996; pp. 14-23.

[Lebl 87] Leblanc, T.; Mellor-Crummey, J. M.: Debugging Parallel Programs
with Instant Replay; IEEE Trans. on Computers 36 (1987) 4, 471-482.

[Myer 79] Myers, G. J.: The art of software testing; John Wiley & Son, 1979.
[Ochs 95] Ochsenschlager, P.; Prinoth, R: Modelling of distributed systems;

Vieweg, 1995, (in German).
[Petr 94] Petrenko, A.; Dssouli, R.; Konig, H.: On Evaluation of Testability of

Protcol Structures; In Rafiq, O. (ed.): Protocol Test Systems VI, North
Holland, 1994, pp. 111-123.

Design/or testability: a step-wise approach to protocol testing 139

[Sidh 89] Sidhu, D. P.; Leung, T. K.: Formal methods for protocol testing: a
detailed study; IEEE Trans. on Software Eng. 15 (1989) 4, 413-426.

[Tai 95] Tai, K. C.; Carver, R. H.: Testing of distributed programs; in A
Zomaya (ed.): Handbook of Parallel and Distributed Computing;
McGraw HiII; 1995.

[Ulri 95] Ulrich, A; Chanson, S. T.: An approach to testing distributed software
systems; Proc. 15th PSTV'95; Warsaw, Poland; 1995.

[Ulri 97] Ulrich, A.: A description model to support test suite derivation for
concurrent systems; in M. Zitterbart (ed.): Kommunikation in
Verteilten Systemen, GIIITG-Fachtagung; Springer Verlag, 1997.

[Vuon 94] Vuong, S. T.; Loureiro, A A F.; Chanson, S. T.: A Frameworkfor the
Designfor Testability of Communication Protocols; In Rafiq, O. (ed.):
Protocol Test Systems VI, North Holland, 1994, pp. 89-108.

[Will 82] Williams, T.W.; Parker, K. P.: Designfor Testability - A Survey; IEEE
Trans. on Computers C-31 (1982) 1,2-15.

[Yang 92] R. D. Yang, C. G. Chung: Path analysis testing of concurrent
programs; Information and Software Technology; 34(1992)1,43-56.

[Yao 94] Yao, M., Petrenko, A, Bochmann, G.: A structural analysis approach
to evaluating fault coverage of software testing in respect to the FSM
model; Proc. 7th FORTE'94; Bern, Switzerland; 1994.

[Yevt 95] Yevtushenko, N.; Petrenko, A; Dssouli, R.; Karoui, K.; Propenko, S.:
On the Design for testability of Communication Protocols; Proc.
IWPTS'95, Paris, 1995.

8 APPENDIX

f:'\ XOATrequ I OT .r:-\
\2)\CKlil, XCONconf\.::J

to_til XABOind

p = {XOATrequ, ACK, to_tl}

o = {OT, XABOind, XCONconf, il}

Figure 3 FSMs Ml and M3.

i2/-

ABO/i4
ACK_L/i5

p = {i2, ABO, ACK, AClCL, to_t2}
0= {i3, i5, i6}

140 Part Five Test Coverage and Testability

ill i2

i4/XABOind

is I XABOind

iS/XABOind

p = {iI, i3, i4, is, i6, cl, e2, XOATrequ}
0= lOT, XBRKind, XBRKend, XDISind, XABOind, i2}

Figure 4 FSM M2.

XOATrequ I OT

to_tIl XABOind

ABO I XABORTind

p = {XOATrequ, ACK, ACK_L, ABO, to_tI, to_12, eI, e2}

0= lOT, XDISind, XABOind, XBRKind, XBRKend}

Figure 5 FSM of the XDT sender.

