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In this paper, we compute the stochastic bounds on the cell loss rates in an ATM 
switch. The spatial priority in the buffer is controlled by the Push-Out mechanism, while 
the time priority is managed in the FIFO lllanner. We consider an i.i.d arrival process of 
cells and a constant switching time of a cell. Therefore, the system can be moddled by a 
discret-time Markov chain, however the size of the chain is approximatively 2B, where B 
is the buffer size. We propose a methodology based on the stochastic ordering to aggre­
giLte the underlying Markov chain to obtain a. bounding Markov chain. In other words, 
the performance indices defined by the reward functions are bounded stochastically by 
the reward functions of the bounding Markov chain. We apply the methodology twice to 
have the bounding Markov chain reduced to B2 states and finally to B states. Several 
bounds have been computed under various assumptions and they prove that the proposed 
methodology is numerically efficient. 

Key Words Codes: C.2.0; 1.6.3; G.3 
Keywords: Computer-Communication networks, General; Simulation and Modeling, Ap­
plication; Probability and Statistics 

1. INTRODUCTION 

Cell loss rates are one of the key problems for broadband ISDN. In an ATM switch, 
buffers have a finite capacity and may receive two flows of cells which have distinct cell 
loss requirements. One bit of the cell header (CLP bit) is used to indicate the cell loss 
priority level. Several buffer management schemes such as the Push-Out or the Partial 
Buffer Sharing mechanisms have been proposed to assure a low loss probability for high 
priority cells. In the sequel, we denote as high priority cells, the cells which have the 
highest requirements, i.e., the smallest loss ratio requirements. 

Cells have a fixed size; thus service times are constant. The mixture of data, video and 
voice traffic is so bursty that Poisson arrivals assumption is not valid anymore. Processes 
like Markov Modulated Poisson Processes (MMPP) or Switched Batch Bernoulli Processes 
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(SBBP) have been proposed to capture the bursty nature of traffic in ATM networks. 
However, these assumptions do not lead usually to exact analytical results. 

These assumptions have been only partially handled by several authors. Usually, the 
results are obtained because of some simplification of the assumptions or after some ap­
proximations. Doshi and HefIes [1] have described and analyzed an overload control 
algorithm using the Push-Out scheme for the M/M/l/N queue. In [2], Hebuterne and 
Cravey have obtained the loss probabilities assuming a Poisson arrival process, deter­
ministic service time and LIFO replacement policy. Similarly, Kroner [3] has proposed 
a method to compute the loss rates of an M1 , MdG/l/N Push-Out system with FIFO 
service discipline. Three different space priority mechanisms (Push-Out, Partial Buffer 
Sharing and separate route for each class) were considered. Finally, Cheng and Akyildiz 
[4], have analyzed a M1 , MdG r , GdN queue with different scheduling and Push-Out dis­
cipline. They have obtained an exact solution for loss probabilities of both classes. As 
all ATM switch is ba,sically a discretc tilllc system, a few works in discrete time queues 
without buffer management schemes [5, G] have also been published. 

Algorithmic results are also quite difTicult to obtain (see [7] for a survey on the use of 
ad-hoc numerical methods to evaluate the cell loss rates). Finally, as the state spaces are 
so large, standard numericaJ analysis of Markov chains seems intractable. 

So, we advocate the use of a new methodology based on stochastic ordering on Markov 
chains which leads to an efficient. numerical solution. Assume that we have modelled the 
problem using a very large Markov chain. We need to compute its steady-state distribution 
in order to obtain reward functions (for instance, the cell loss rates for a finite capacity 
buffer). The key idea of the proposed methodology is to design a new chain such that the 
reward functions will be upper or lower bounds of the exact reward functions. This new 
chain is an aggregated model of the former one. These bounds and the aggregation criteria 
are based on some stochastic orderings applied to Markov and semi-Markov processes (see 
Stoyan [8J and other references therein). As we drastically reduced the state space, we 
may now use numerical methods to efficiently bound the problem. Note that bounding 
some reward functions is often sufficient while modeling ATM networks as we only need 
to verify the requirements for the QoS. 

We apply this methodology to the analysis of a buffer management policy: the Push­
Out mechanism. Since the switching time is constant, the study is performed in discrete­
time where the time unit is equal to the cell switching time. We assume that the arrivals 
follow a Bernoulli Batch Process. Such a system is easily represented by a discrete-time 
Markov chain, however the size of the chain is approximatively 2B where B is the buffer 
sIze. 

To apply stochastic ordering, we must first find a natural ordering on the states of the 
Markov chain. The stochastic properties we may use are dependent of the properties of 
this ordering of the states. If it is a total order, then we may use the coupling technique 
to obtain strong stochastic ordering. If the order is only a partial order, then weaker 
stochastic orderings may be obtained. 

In this paper, we only consider a simple arrival process (an i.i.d. batch arrival process). 
Indeed, Poisson arrival process and batch arrival process may lead to a totally ordered 
Markov chain whereas Markov arrival process or Markov modulated arrival process are 
associated to partial order on vector spaces. In this paper, we introduce the methodology 
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for totally ordered Markov chains. In a companion paper [9], we show how to analyze 
partially ordered Markov chains. 

We apply the methodology twice. In the first step, we prove that the cell loss rates for 
high priority cells is stochastically bounded by the same reward function of the system with 
Head-Of-Line (HOL) service discipline. Such disciplines mixing time and space priorities 
have been considered in [10]. As the HOL service discipline is easier to represent than 
the FIFO discipline, the size of the Markov chain is reduced to B2. In the second 
step, we perform another aggregation of the states to obtain a chain with B states. In 
this aggregated chain we define the transition rates between states in order to obtain 
a bounding Markov chain. Note that the bounds we obtain are not trivial. Several 
bounds have been computed under various assumptions and they prove that the proposed 
methodology is numerically efficient. 

The paper is organized as follows: the next section is devoted to the modelling of the 
Push-Out mechanism. In Section 3 and 4 the stochastic bounds are derived, and the 
results are presented in section 5. Finally, we introduce the concept of stochastic ordering 
and coupling method in the appendix. 

2. THE MODEL 

We consider a buffer policy which uses the Push-Out mechanism for the buffer man­
agement in ATM networks. We assume that there exists two types of cells with distinct 
loss rate requirements. In the Push-Out mechanism 

• when the buffer is not full, low and high priority cells can be stored in the buffer 

• when the buffer is full, an arriving low priority cell is lost, while an arriving high 
priority cell pushes out of the buffer a low priority cell if there is any in the buffer, 
otherwise the high priority cell is lost. The deletion discipline is LIFO. 

Batch Bernouilli 
arrivals of high 
and low priority cells 

a high priority cell 
"pushes-out" a low priority cell 

Deterministic 
service time 

the low priority 
cell is lost 

Figure 1. Push-Out mechanism description 

We consider three service disciplines: 
• [FIFO :] there is no time-priority between cells; so the service scheduling is First-In-
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First-Out . 
• [HOL :] We consider two service disciplines with Head-Of-Line priority (these mixed 
disciplines have been considered in [10] : 

• [HOLl :] in which, the low priority cells are scheduled before high priority cells, 

• [HOL2 :] in which, the high priority cells are scheduled before low priority cells. 

In an ATM network cells have a fixed size of 53 bytes, so their switching time is constant. 
Since we observe the system at the cell departure epochs, the time can be considered to be 
divided in slots, which are equal to the cell switching time. The cell arrivals are modelled 
by an i.i.d. Batch Process. We assume that the batch size varies between 0 and M, and 
the buffer size is B. 

Let ti be the departure time of the ith cell. For the Head-Of-Line disciplines, the state 
of the system at time ti is presented by the vector 

N HOL(ti) = (Nl(ti)' N2(t;)), 

where Nl(ti) is the total number of cells in the buffer and N2(ti) is the number of high 
priority cells in the buffer at time t;. 

Clearly, we must change the state description, if we consider FIFO service discipline. 
Since we must also know the state of the buffer to determine the next cell to be sent, 
we will a<;ld a third component, denoted as B( til representing the state of the buffer. As 
usual, this component is an ordered list of cells in the queue, i.e., 

N FIFO(t;) = (Nl(ti), N2(ti), B(t;)). 

Note that the first two components are not necessary anymore; these information can 
be easily obtained from B(ti). 

Let Ai+l (Ai+1(high)) be respectively the total number of cells (the number of high 
priority cells) arrived to the buffer in the time interval [ti - ti+l[. Note that this implies 
that the arrivals take place just after the service completion epochs. 

Let TI{condition} be a binary valued {O, I} random variable, which equals 0 if the condition 
is not true, and which equals 1 if the condition is true. We denote (x)+ for max{x,O}. 
The evolution equations of HOLI and HOL2 service disciplines are: 

• If the service priority is given to low priority cells (HOLl) : 

(min{B, (Nl HO L1(t;) -1)+ + Ai+1}, 

min{B,N2HOL1(ti) - TI{N1HOL1(t;)=N2HOLdt,jJll{N1HoLdt;»O} + 
Ai+1(high)}) 

• If the service priority is given to high priority cells (HOL2): 

(1 ) 
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(min{B, (NIHoL2(ti) - 1)+ + Ai+d, 
min{B, (N2HOL2(t;) -1)+ + Ai+1{high)}); 
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(2) 

• there is no service priority; the cells are scheduled according to FIFO discipline: 

(min{B, (NIFIFO(t;) - 1)+ + Ai+!}, 
min{B,N2FIFO(t;) - ll{head(ti)=high} + Ai+l(high)}, 
B(ti) e head(ti) EB Ai+!). (3) 

where ll{head(t;)=high} is equal to 1, if the first cell in the buffer is a high priority cell at 
time ti. B(ti) e head(ti) denotes the state reached from B(ti) after the departure of the 
first cell in the buffer (if it exists). Similarly, B(ti) EEl Ai+! denotes the state reached from 
B( ti) due to the arrivals and the insertion in the queue of fresh customers. Remember that 
these transitions may be quite complex when the buffer is full because of the Push-Out 
mechanism. 

As Ai+! and Ai+1{high) are i.i.d. random sequences, the three processes NUOL1(ti), 
NllOL2(li) and NFIFO(li) are obviously discrete-time Markov chains. The size of the 
Markov chain for FIFO policy is equal to (2R+! - 1) while it is equal to (B + 1) * (B + 2)/2 
for Head-Of-Line policies. The size of the Ma.rkov chain increases exponentially with the 
buffer capacity, for the FIFO service discipline. So we easily exceed the size of Markov 
chains which may be numerically solved. 

A naive bound on the loss probabilities ma.y be easily computed. Indeed, the total 
number of cells is modelled by a Markov chain T with B + 1 states. The evolution 
equation of T is 

(4) 

Obviously, the total loss probability is an upper bound for the loss probability for high 
priority (or low priority) cells. 

3. STOCHASTIC BOUNDS FOR HIGH PRIORITY CELLS 

In this section, we stochastically compare the loss rates of high priority cells for these 
three service disciplines. We define the loss rates of cells as the expected number of 
lost cells per slot.First, we prove that the HOLI policy provides a stochastic upper bound 
while the HOL2 policy provides a stochastic lower bound for the FIFO scheduling. Assume 
that we have obtained the steady-state probability distributions for these three models. 
We denote by Il(nmodel) the probability that the state vector of the considered model 
has the value nmodel at the steady-state. In the sequel, Nmodel denotes the state vector 
of the considered model, while nmodel denotes a particular realization of this vector ( 
Nmodel := nmode,)' 

First, let us define the rewards functions which may be used to compute the loss rates of 
high priority for these three service discipline. Assume that there are m high priority cells 
at the buffer and during a slot, k high priority cells arrive to the buffer; the probability of 
this event is Prob{ A( high) := k} and will be denoted as pZigh. The first event which will 
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occur in the system is the service completion of the cell, so the number of high priority 
cells becomes n (n may be m or m - 1 according to the state and the service discipline). 
Then, the admission mechanism takes place and we lose (n + k - B)+ high priority cells. 
So, the loss rates for the three disciplines are: 

M 

RI '" '" II( ) high ( k B 1 )+ FIFO = ~ ~ nFIFO Pk n2 + - - {head=high} 
nFlFO k=O 

M 

RkoLI = L L II(nHoLd p~igh (n2 + k - B - 1{nl=n2}1{nl>O})+ 
nHOL,k=O 

M 

RI '" '" II( ) high ( k B 1 )+ HOL2 = ~ ~ nHOL2 Pk n2 + - - {n2>O} 
nHOL2 k=O 

3.1. Stochastic upper bound for FIFO policy 
We apply the coupling method in order to compare these three service policies stochas­

tically. Since the state spa.ces for IIO L policies, and FiFO policy are not the same, we 
define two mappings 'P and 1jJ to project them into the same state space. This method is 
usually known as stochastic comparison by images or by state functions [11]. We denote 
by S the lexicographic ordering by considering first the second component and then the 
first one. 

Definition 1 Let us define the following many to one mapping 'P which maps a random 
vector 
(Nl(t;), N2(ti), B(ti)) into a non negative random integer z which is the index of the 
realization of the first two components of the vector i.e., (N2(ti)' Nl(t;)) according to the 
order S. 

Definition 2 Similarly, let us define the following one to one mapping 1jJ which maps a 
random vector (N2(td, Nl(t;)) into a non negative integer z which is the index of the 
realization according to the order S. 

Proposition 1 

(5) 

Proof: If the first random variable is equal to 0, then there is no high priority cell in 
the buffer. So, the first cell in the buffer cannot be a high priority cell and the second 
random variable is equal to O. But if the first cell is not a high priority one, then either 
the buffer is empty, or there exists only low priority cells in the buffer. Thus, the third 
random variable is equal to O. 

Assume now that the third random variable is equal to 1. So, there is no low priority 
cell in the buffer (the first two components are equal to each other), but there are some 
cells (the first component is positive). Thus, the first cell in the buffer is a high priority 
one and the second random variable is equal to 1. And the third random variable is equal 
to 1 as there exists high priority cells in the buffer. 0 

Let us define now PFIFO(t) as 'P(NFIFO(t)). Similarly PHOL1(t) = 1jJ(NHOLI(t)) and 
PHOL2(t) = 1jJ(NHOL2(t)) 
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Theorem 1 If PHOL2 (O) ~st PFlFO(O) ~st PHOL1(O)" then 

PHOL2(ti) ~st PFlFO(t;) ~st PHOL1 (ti), Vti > 0 

Proof: First, couple the initial values of P(O) . 

Then, the proof is by induction on ti to establish the deterministic relation 

Assume that the inequality holds for ii. By construction, we have: 

where x and y represent the considered service disciplines. 
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(6) 

(7) 

(8) 

It follows from the evolution equations of the three systems (see equation 1, 2, 3), that 
the first components of the state vectors have the same evolution in all systems. However, 
the binary valued random variables (ll{condilion}) are different in the second components of 
the state vectors according to the considered system. We have the inequality 5 between 
these random variables from the Proposition 1, and they are subtracted in the evolution 
equations. Because of the vector ordering (equation 8), the orders between the first 
components and between the second components at time ii are conserved at time t i+1 . 

Therefore, the inequality 7 holds at time ti+1 and by induction it holds for all ti > O. it 
follows from the coupling theorem that 

Proposition 2 The following relations hold for the reward functions; 

R~OL2 ~ R~IFO ~ R~oL1 

Proof: Consider the FIFO reward function. 

M 

RhFO = L L II (nFlFO ) p~igh (n2 + k - B - ll{head=high})+ 
nFIFO k=O 

Because of the relation 5, we have 

M 

RhFO ~ W = L L II(nFlFo) p~igh (n2 + k - B - ll{n2>o})+ 
nFIFO k=O 
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W is defined as an expectation on the stationary distribution of NFIFO. To compare the 
expectations, we must apply the mapping <po 

M 

W = L L I1(nFIFO) L pZigh (n2 + k - B -1{n2>o})+ 
Z nFIFol<p(nFIFo)=z k=O 

The function L:~o pZigh (n2 + k - B - 1l{n2>O})+ has the same value for all the states 
of NFIFO which are mapped on the same value Z; therefore, 

M 

W = .E.E pZigh (n2 + k - B - 1l{n2>O})+ .E II(nFIFo) 
Z k=O nFIFol<p(nFIFO)=Z 

As the sizeofthe batch is smaller than B, (i.e., k :<::; M < B) the function L:~o pZigh (N2+ 
k - B - 11 {N2>O} )+ is a positive increasing function. It follows from the fundamental 
property of the strong stochastic ordering (see definition 4 of the appendix) and theorem 
1 that 

M 

W ~ V = L.E pZigh (n2 + k - B - 1l{n2>O})+ 
Z k=O 

As 1f; is a one to one mapping, 

M 

.E 
nHoL2Iw(nHoL2)=Z 

V = .E. II(nHoL2) L pZigh (n2 + k - B - 1{n2>o})+ = RkoL2 
nHOL2 k=O 

Thus, the first inequality is proved. The proof of the second inequality is omitted as it is 
exactly the same proof which begins by the second part of the relation 5. 

M 

RhFO:<::; L L I1(nFIFo) pZigh (n2 + k - B -1{nl=n2}1{nl>O})+ 0 
nFIFO k=O 

3.2. Stochastic upper bounds on HOLI policy 
In the second step, we perform an aggregation of the states to obtain a chain with 

O(B x F) states where F is a factor which is used during the aggregation process. F is 
denoted as the aggregation factor. We define a macro-state (nl,n3), which gathers the 
states having the same value of Nl and for which the value of N2, i.e., the number of 
high priority cells is less than nl - F. All the other states are kept unchanged in the 
aggregated chain (see figure 2). Note that the states of the initial chain where cells can 
be lost are not aggregated. 
More precisely, let (nl,n3) be a state of the aggregated chain: 

• if n3 = nl- F then the state is a macro-state which contains all the states (nl, n2) 
such that n2 :<::; nl - F. So, N3 is an upper bound of the number of high priority 
cells in the buffer . 

• if n3 > nl - F then the state contains only one state (nl, n3) where n3 = n2. So, 
n3 represents exactly the number of high priority cells in the buffer. 
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Therefore n3 E {n1 - F, . .. , n1} These states and these transitions are defined to provide 
a stochastic upper bound of the Head-Of-Line service discipline (HOL1). Intuitively, they 
are defined by considering the worst case from the point of view of the loss rate for high 
priority cells. 

The new system is denoted as HOLl agg , and its evolution equations are: 

1 Nl(ti+d = min{B, (Nl(ti) - 1)+ + Ai+d 
N3(ti+d = max{N1(ti+d - F, N4(ti+d} 
where N4(ti+l) = min{B,N3(t;) - Jl{(Nl(t,)=N3(tinJl{Nl(t;»On + A+1(high)} 

N 4( ti+d represents the number of high priority cells in the buffer after the service and 
the arrival process. And the max operation in the second evolution equation models the 
aggregation process into the macro-state. 

N2 
states where 
high priority 
cells can be lost 

macro-states 

Figure 2. The aggregated chain 

Clearly, if the value of F is large, then the bound is tight (if F is equal to B, then 
the Markov chain is not aggregated). And if F is too small the bound is quite similar 
to the naive bound presented in section III. So a good value of F is a trade-off between 
computational complexity and the accuracy of the results. The size of the aggregated 
Markov chain is Lt:o(B + 1 - i) = O(B x F). In the following, we assume that F is 
greater than the maximum batch size M. Therefore the states where cells are lost are 
represented explicitly (they are original states, not the aggregated ones). 

To compare these policies, we first map the states from the HOLl model into the states 
of the aggregated chain. More precisely, for the HOLI model, for a given nl, all the states 
such that N2 is in the set {O, 1,2, ... , (n 1 - F) +} will be mapped to the state denoted as 
(nl,(n1 - F)+). 

Definition 3 Let us define two mappings ¢ and 1/J which maps the states of the two 
Markov chains into the same subset of the integers such that 
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1. 1/; is a one to one mapping which maps a random vector N HOLl agg into a non negative 
integer z which is the index of the realization according to the order S. 

2. <p is a many to one mapping such that for all states N of NHOLl, we have <p(N) = 
1/;(N A) where N A is the macro-state in the aggregated chain which contains the 
stafe N. 

3. Then, we define QHOLI(t) = <p(NHOLI(t)) and QHOLlagg(t) = 1/;(NHOLlag,(t)) 

Theorem 2 IfQHoLI(O) '5:st QHOLlagg(O), then 

QHOLI(t;) '5:st QHOLlagg(t;), Vti> 0 

Proof: The proof is by induction on the cell departure epochs and is quit.e similar to the 
proof of Theorem 1. First we couple the initial values of Q(O). Then we establish the 
deterministic relation 

(9) 

Assume that the inequality holds at ii. The first component which is the total number 
of cells in the buffer evolutes ill the same manner in both systems for all fi. It follows 
from the evolution equations, the second component is greater in the aggregated system, 
so the orders on Nl(fi) N2(til at time ti are preserved at time f,+I. As a result of the 
construction of the mappings 1/;,,p, and the order S, QHOLI(ti+l ) '5: QHOLlagg(fi+l), so by 
induction the inequality 9 holds. It follows from the coupling theorem that 

QHOLI(ti) '5:st QHOLlagg(td, Vti > 0 0 

The reward function for the HOLl discipline is already defined. The reward function 
for the aggregated chain (RHOLlagg) is the expectation of the same function on a reduced 
state space. 

M 

R10Llagg = L L II(nHOLlagg) p~igh (nz + k - B - ll{nl=nZ}ll{nl>o})+ 
nHOLl agg k=O 

Proposition 3 The following relation holds for the reward functions. 

RI < RI HOLI - HOLl agg 

The proof is similar to the proof of Proposition 2 and is omitted. 

3.3. Stochastic lower bound for FIFO policy 
It follows from the proposition 2 that for high priority cells, the cell loss rates with 

HOL2 policy gives the lower bound on the cell loss rates with FIFO policy. Since the 
reward function defining the loss rates with HOL2 policy depends upon only the number 
of high priority cells, we can easily compute this reward function by using a Markov chain 
of B + 1 states. In this representation, each state Y( t;) represents the number of high 
priority cells in the buffer at time fi and the evolution of the system is following: 

Y(ti+d = min{B, (Y(ti) - 1)+ + Ai+I(high)} 

Note that there is no aggregation of states, so the computed reward function gives the 
exact results of the cell loss rates for high priority cells with HOL2 policy. 
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4. STOCHASTIC BOUNDS FOR LOW PRIORITY CELLS 

In this section, we consider the loss rates of low priority cells, and prove that the HOL2 
policy provides a stochastic upper bound and the HOLI policy provides a stochastic lower 
bound for FIFO scheduling. First, we define the reward functions in order to compute 
the loss rates of low priority cells with these service policies. 

We consider the pseudo-state of the buffer after the completion of service and after the 
arrivals of both types of cells, just before the admission mechanism takes place. Let this 
pseudo state be (m, q) where m is the total number of cells and q is the number of low 
priority cells. As we consider pseudo-states before the admission control, we may have 
m > Band q > B. Clearly, the number of low priority cells rejected by the Push-Out 
mechanism is min((m - B)+,q). 

The values of m and q are obtained easily from the former state description, the service 
discipline and the arrival process. The probability of the arrivals of k high priority cells 
and I low priority cells during one slot is Prob{A =.: k + I and A(high) = k}. The 
probability of this event will be denoted as [ik,t. Thus, the reward function for FIFO 
service discipline is : 

AI M-k 

R}[FO = L L L fI(nFlFo) [ik,1 min{(m - 13)+,q}, 
HFJ FO k=O l=O 

where m = (nl - 1)+ + k + I and q = nl - n2 - ll{head=low}) + I. 
In order to compute the bounds for the loss rates of low priority cells, we use the bounds 

derived for the high priority cells. We denote by RI+2 the reward function defining the 
total cell loss rates which can be computed from the naive bound (see equation 4): 

B M 
R1+2 = L L fI(n) ((n - 1)+ + k - B)+ jJk 

n=O k=O 

where Pk = Prob{ A = k}, denotes the probability of k cells arrivals. 
If we substract from the total loss rates the lower bound on the loss rates for high 

priority cells, we derive the upper bound on loss rates for low priority cells. In the same 
way, when we substract the upper bound on the loss rates for high priority cells, then we 
obtain the lower bound on the loss rates for low priority cells. Therefore, we have these 
inequalities: 

5. RESULTS 

In this section we give some typical results for the loss rates of high priority and low 
priority cells. The steady state distribution are computed using the GTH algorithm 
because of its accuracy [12] . As the chain are quite small, the results needs only few 
seconds of computation, on a SPARC station SUN. 

We assume that the maximum batch size is M = 3 or M = 4. We consider three 
models for the arrival process. The first two models allow us to shorten the number of 
parameters. The third model is the general batch model (with maximum size 3) and we 
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Figure 3. High priority cells: loss rates ver­
sus buffer size 

have to give the probability of the arrival of i - j high priority cells and j low priority 
cells. This event is denoted as ei,j' 

In the first model, we assume that the batch process is represented by d the ratio of 
high priority cells and by the vector (Pi)i=O,4 where Pi is the probability that the batch 
size is i. Each cell of a batch may be a high priority cell following an i.i.d. Bernoulli 
process \\lith probability d. 

In the second model, we assume that only few batches are feasible. We assume that the 
batches of size 1 or 2 contain only high priority cells whereas the batches of size 3 or 4 
contain only low priority cells. We also denote, in this model, (Pi)i=O,4 as the distribution 
of the batch size. 

In the first figure, we present loss rates of the high priority cells versus buffer size. Two 
experiments are considered using the third model of arrivaL 

• the load is 0.7; and the probability of the events are: p( eo,o) = 0.65, p( ei,o) = 0.05, 
p(ei,i) = 0.05, p(e2,O) = 0.075, p(e2,d = 0.075, p(e2,2) = 0, p(e3,O) = 0.05, p(e3,1) = 
0.05, p(e3,2) = 0 

• the load is 0.8; and the probability of the events are : p( eo,o) = 0.6, p( ei,O) = 0.05, 
p(ei,i) = 0.05, p(e2,O) = 0.1, p(e2,d = 0.1, p(e2,2) = 0, p(e3,O) = 0.05, p(e3,1) = 0.05, 
p(e3,2) = 0 

In figure 4, we present the loss rates for high priority cells in a buffer of size 80. The 
load increase from 0.75 to 0.9 but the load due to high priority cells is kept constant 
to 0.6. This is obtained using the second arrival model with the following parameters: 
Pi = 004, P2 = 0.1, P3 = 0.02 * n, P4 = 0.01 * n where n is a parameter varying from 1 to 
3. 

Figure 5 shows the importance of the aggregation factor F. The same models were 
analyzed with two values of F (F = 3 and F = 10). Clearly, there are between 1 and 
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3 orders of magnitude between the two bOllnds. The buffer size if 60. We consider the 
second model of arrival with a maximum batch size equal to 3. The ratio of high priority 
cells is 0.1. And the points are obtained for the following values of the arrival process: 
(Point 1 : PI = 0.2, P2 = 0.1, P3 = 0.1) (Point. 2 : PI = 0.3, P2 = 0.1, P3 = 0.1) (Point 3 : 
PI = 0.2, P2 = 0.2, P3 = 0.1) 

c=0.1,B=60 
1e-09 r--~--~--~--~-"'7T 
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Figure 5. High priority cells: loss rates ver­
sus buffer load for two aggregation factor F 

This is also illustrated in Figure 6. Furthermore, we have plotted in this figure the 
naive bound presented in section III. Clearly, our approach gives in these experiments 
much better results than the naive bound. The buffer size if 60. The maximum size of 
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the batch is 3. We use the second model of arrivals. The loads were obtained using the 
following probabilities of arrival: (load 0.7 : PI = 0.2, P2 = 0.1, P3 = 0.1), (load 0.75 : 
PI = 0.25, P2 = 0.1, P3 = 0.1), (load 0.8 : PI = 0.25, P2 = 0.125, P3 = 0.1), (load 0.85 : 
PI = 0.3, P2 = 0.1, P3 = 0.1), (load 0.9: PI = 0.4, P2 = 0.1, P3 = 0.1). 

1e-10 

....... 

B ~60 

F ~3 -o­

F ~ 10 -+--­

naive bound G 

1e-20 '--~~~~~~~~~~~~--' 
0.65 0.7 0.75 0.8 0.85 0.9 

BUFFER LOAD -> 

LOSS RATES 

Figure 6. High priority cells: loss rates ver­
sus load 

Figure 7 shows the difference between the lower and the upper bound: HOLI policy 
provides a good upper bound, but HOL2 policy does not provide a good lower bound. 
The loads where obtained using the following probabilities of arrival: (load 0.8: PI = 0.1, 
P2 = 0.2, P3 = 0.1), (load 0.85 : PI = 0.15, P2 = 0.2, P3 = 0.1), (load 0.9 : PI = 0.2, 
P2 = 0.2, P3 = 0.1), (load 0.95 : PI = 0.25, P2 = 0.2, P3 = 0.1), and with a ratio of high 
priority cells which is 0.8. 

However, for the low priority cells, the naive bound provides good results. For instance, 
in figure 8, we present the loss rates for low priority cells versus the load. The loads were 
obtained using arrival probabilities: Po = 0.5, PI = 0.2, P2 = 0.2, P3 = 0.1 where Pi 
denotes the probability of i cell arrivals. The ratio of high priority cells is 0.8. In this 
case, our bound is so close, in the logarithmic scale, to the naive bound that only one 
curve is depicted. This is quite natural because, if the Push-Out mechanism is efficient, 
then almost surely the lost cells are low priority cells. Therefore, the naive bound is very 
close to the exact result and our bound lies somewhere in between. 

6. CONCLUSIONS 

In this paper, we evaluate cell loss rates in an ATM switch with Push-Out mechanism 
and FIFO service discipline. The considered system is modelled by a discret-time Markov 
chain. As the state space of the underlying chain increases exponentially with the buffer 
size, the analysis with standard numerical methods seems intractable. 
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We propose a methodology based on stochastic ordering to obtain a bounding chain 
of smaller size. It means that the performance indices defined by the reward functions 
are bounded by the reward functions computed from the bounding chain. The advantage 
of the method of stochastic bounds is that we keep important information about the 
evaluated system. 

On the other hand, it is not always easy to prove that the modified system provides 
stochastic bounds on the analyzed system and generally the bounds are not tight. In 
this paper, we use the coupling method to derive stochastic bounds. First, we compare 
stochastically different service disciplines for the Push-Out mechanism. In the second 
step, we perform an aggregation of states by conditioning on the events which occur in 
the system. 

We analyzed the Push-Out mechanism with Bernoulli Batch arrivals using the strong 
ordering. In the case where the arrivals are assumed to be modulated by a Markov chain, 
the strong ordering cannot be applied since the evolution of the system in different phases 
is not the same. So weaker orders must be dcfined. 

7. APPENDIX 

In this appendix, we give the esscntial definitions for strong stochastic orderings and 
the coupling method (see [8J for further information). 

Definition 4 Let X and Y be two random variables on the same space £0, we say that X 
is stochastically lowel" in the sense of the st7"ong ordering than Y, denoted by X '5:st Y 

X '5:st Y if and only if E(f(X)) '5: E(f(Y)) 

for all increasing functions f on £0, if the expectations exist. 

This definition is equivalent to the next one in terms of the distribution functions (Fx, Fy): 

Definition 5 X '5:st Y if and only if Fx(a) ~ Fy(a), Vt E £0 

The strong stochastic order is a sample path ordering, so from the Strassen's theorem [13J 
it follows that: 

Theorem 3 (coupling theorem) The following conditions are equivalent: 

II there exists a probability measure,\ on R X R with support in J{ = {(x,y) E 

R x R, such that x '5: y}, with first marginal Fx and with second marginal Fy ; 

iii . there exist random variables X' and Y', having the same distribution of X and 
Y and such that X' '5: Y' almost surely. 

Definition 6 Let Xi and Yi be discrete-time Markov processes (Markov chains). Xi '5:st 
Yi if and only if the initial stochastic O1"der Xo '5:st Yo is preserved for all i 

Xi '5:st Yi, Vi> 0 
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The coupling theorems are generalized in order to compare the probability measures 
by their images [ll]. We state here only the theorem for comparison of Markov chains. 

Theorem 4 (coupling by images) Let Xi (resp. l'i) be Markov chain on E (resp. F) 
with probability transition matrices PI (ITSp.P2); G be a totally ordered space; and <p 
(resp. 'IjJ) be a one to many mapping from E (rfsp. F) to G. The image of Xi on G, 
<p(X;) is stochastically lower in the sense of the strong ordering than the image of li on 
G, 'IjJ(li) if and only if 

<p(Xo) Sst 'IjJ(lol =? <p(Xi ) Sst 'IjJ(Y;), Ii i > 0 

The following conditions are equivalent : 

ii . there exists a Markov chain {X;', )~'} having the probability transition matrix P 
with ]il·St marginal PI, with second Tll.1I.I"yinai P2 and with support in fI' = {(x,y) E 

E x F, s1lch thai <p( x) S 'IjJ(y)}. 
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