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Preface 

These days, the term Noncommutative Dynamics has several interpretations. It is 
used in this book to refer to a set of phenomena associated with the dynamical evo­
lution of quantum systems of the simplest kind that involve rigorous mathematical 
structures associated with infinitely many degrees of freedom. The dynamics of 
such a system is represented by a one-parameter group of automorphisms of a non­
commutative algebra of observables, and we focus primarily on the most concrete 
case in which that algebra consists of all bounded operators on a Hilbert space. 

If one introduces a natural causal structure into such a dynamical system, then 
a pair of one-parameter semigroups of endomorphisms emerges, and it is useful to 
think of this pair as representing the past and future with respect to the given 
causality. These are both Eo-semigroups, and to a great extent the problem of 
understanding such causal dynamical systems reduces to the problem of under­
standing Eo-semigroups. The nature of these connections is discussed at length in 
Chapter 1. The rest of the book elaborates on what the author sees as the impor­
tant aspects of what has been learned about Eo-semigroups during the past fifteen 
years. Parts of the subject have evolved into a satisfactory theory with effective 
toolsj other parts remain quite mysterious. 

Like von Neumann algebras, Eo-semigroups divide naturally into three types: 
1,11,111. The type I examples are now known to be classified to cocycle conjugacy 
by their numerical index. It is also known that examples of type 11 and 111 exist in 
abundance (there are uncountably many cocycle conjugacy classes of each type), 
but we are a long way from a satisfactory understanding: we have surely not seen all 
the examples of type 11 or 111, and we still lack effective cocycle conjugacy invariants 
for distinguishing between the ones we have seen. 

This 'subject makes significant contact with several areas of current interest, 
including quantum field theory, the dynamics of open quantum systems, and prob­
ability theory, both commtative and noncommutative. Indeed, Powers' first ex­
amples of type III Eo-semigroups were based on a construction involving quasi-free 
states of the C* -algebra associated with the infinite-dimensional canonical anticom­
mutation relations. More recently, the product systems constructed by Tsirelson 
are based on subtle properties of "noises" of various types, both Gaussian and non­
Gaussian, that bear some relation to Brownian motion and white noise. When 
combined with appropriate results from the theory, of Eo-semigroups, the examples 
of product systems based on Bessel processes give rise to a continuum of exam­
pIes of Eo-semigroups of type 11, and an Eo-semigroup that cannot be paired with 
itself. The Tsirelson-Vershik product systems discussed in Chapter 14 lead to a 
continuum of type 111 examples that are mutually non-cocycle-conjugate. 

It appears to me that the current state of knowledge about these matters can be 
likened to the state of knowledge of von Neumann algebras in the late sixties, in the 
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period of time after Powers' proof that there are uncountably many nonisomorphic 
type In factors but before the revolutionary developments of the seventies, which 
began with the discovery, based on the Tomita-Takesaki theory, that a type In 
factor is an object that carries with it an intrinsic dynamical group, and culminated 
with Connes's classification of amenable factors. I believe that there are exciting 
developments in the future of Eo-semigroups as well. 

The book contains new material as well as reformulations of results scattered 
throughout the literat ure. For example, we have based our discussion of dilation 
theory on certain aspects of noncommutative dynamics that are common to all 
dynamical systems, allowing us to deduce the existence of dilations of quantum 
dynamical semigroups from very general considerations involving continuous free 
products of C* -algebras. We have freed the discussion of the interaction inequality 
of Chapter 12 from the context of semigroups of endomorphisms in order to place it 
in an appropriate general context, in which the central result becomes an assertion 
about the convergence of eigenvalue lists along a tower of type I factors in B(H). 
Chapter 13 contains a technically complete discussion of Powers' examples of type 
In Eo-semigroups that brings out the role of Toeplitz and Hankel operators and 
quasi-continuous functions, and provides a new concrete criterion for the absence 
of units. Finally, the theory of spectral C* -algebras presented in Chapter 4 has 
been simplified and rewritten from scratch. 

I am pleased to acknowledge financial support for work appearing in these 
pages from the National Science Foundation, USA, and the Miller Institute for 
Basic Research in Science, Berkeley. 

Berkeley, California 
J anuary, 2003 

William Arveson 
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