Springer Monographs in Mathematics

Springer Science+Business Media New York

William Arveson

Noncommutative Dynamics and E-Semigroups

William Arveson University of California at Berkeley Department of Mathematics Evans Hall Berkeley, CA 94720-0001 arveson@mail.math.berkeley.edu

Mathematics Subject Classification (2000): 46L09, 46L55

Library of Congress Cataloging-in-Publication Data Arveson, William. Noncommutative dynamics and E-semigroups / William Arveson. p. cm.-- (Springer monographs in mathematics) Includes bibliographical references and index.

1. Noncommutative algebras. 2. Endomorphisms (Group theory) 3. Semigroups. I. Title II. Series

QA251.4.A78 2003 512'.24--dc21

Printed on acid-free paper.

2002042734

ISBN 978-1-4419-1803-1 ISBN 978-0-387-21524-2 (eBook)

DOI 10.1007/978-0-387-21524-2

© 2003 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 2003

Softcover reprint of the hardcover 1st edition 2003

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use inconnection with any form of information storage and retrieval, electronic adaptation, computersoftware, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even ifthey are not identified as such, is not to be taken as an expression of opinion as to whether or notthey are subject to proprietary rights.

9 8 7 6 5 4 3 2 1 SPIN 10900543

www.springer-ny.com

Preface

These days, the term Noncommutative Dynamics has several interpretations. It is used in this book to refer to a set of phenomena associated with the dynamical evolution of quantum systems of the simplest kind that involve rigorous mathematical structures associated with infinitely many degrees of freedom. The dynamics of such a system is represented by a one-parameter group of automorphisms of a noncommutative algebra of observables, and we focus primarily on the most concrete case in which that algebra consists of all bounded operators on a Hilbert space.

If one introduces a natural causal structure into such a dynamical system, then a pair of one-parameter semigroups of endomorphisms emerges, and it is useful to think of this pair as representing the past and future with respect to the given causality. These are both E_0 -semigroups, and to a great extent the problem of understanding such causal dynamical systems reduces to the problem of understanding E_0 -semigroups. The nature of these connections is discussed at length in Chapter 1. The rest of the book elaborates on what the author sees as the important aspects of what has been learned about E_0 -semigroups during the past fifteen years. Parts of the subject have evolved into a satisfactory theory with effective tools; other parts remain quite mysterious.

Like von Neumann algebras, E_0 -semigroups divide naturally into three types: I, II, III. The type I examples are now known to be classified to cocycle conjugacy by their numerical index. It is also known that examples of type II and III exist in abundance (there are uncountably many cocycle conjugacy classes of each type), but we are a long way from a satisfactory understanding: we have surely not seen all the examples of type II or III, and we still lack effective cocycle conjugacy invariants for distinguishing between the ones we have seen.

This subject makes significant contact with several areas of current interest, including quantum field theory, the dynamics of open quantum systems, and probability theory, both commutative and noncommutative. Indeed, Powers' first examples of type III E_0 -semigroups were based on a construction involving quasi-free states of the C^* -algebra associated with the infinite-dimensional canonical anticommutation relations. More recently, the product systems constructed by Tsirelson are based on subtle properties of "noises" of various types, both Gaussian and non-Gaussian, that bear some relation to Brownian motion and white noise. When combined with appropriate results from the theory of E_0 -semigroups, the examples of product systems based on Bessel processes give rise to a continuum of examples of E_0 -semigroups of type II, and an E_0 -semigroup that cannot be paired with itself. The Tsirelson–Vershik product systems discussed in Chapter 14 lead to a continuum of type III examples that are mutually non-cocycle-conjugate.

It appears to me that the current state of knowledge about these matters can be likened to the state of knowledge of von Neumann algebras in the late sixties, in the period of time after Powers' proof that there are uncountably many nonisomorphic type III factors but before the revolutionary developments of the seventies, which began with the discovery, based on the Tomita–Takesaki theory, that a type III factor is an object that carries with it an intrinsic dynamical group, and culminated with Connes's classification of amenable factors. I believe that there are exciting developments in the future of E_0 -semigroups as well.

The book contains new material as well as reformulations of results scattered throughout the literature. For example, we have based our discussion of dilation theory on certain aspects of noncommutative dynamics that are common to all dynamical systems, allowing us to deduce the existence of dilations of quantum dynamical semigroups from very general considerations involving continuous free products of C^* -algebras. We have freed the discussion of the interaction inequality of Chapter 12 from the context of semigroups of endomorphisms in order to place it in an appropriate general context, in which the central result becomes an assertion about the convergence of eigenvalue lists along a tower of type I factors in $\mathcal{B}(H)$. Chapter 13 contains a technically complete discussion of Powers' examples of type III E_0 -semigroups that brings out the role of Toeplitz and Hankel operators and quasi–continuous functions, and provides a new concrete criterion for the absence of units. Finally, the theory of spectral C^* -algebras presented in Chapter 4 has been simplified and rewritten from scratch.

I am pleased to acknowledge financial support for work appearing in these pages from the National Science Foundation, USA, and the Miller Institute for Basic Research in Science, Berkeley.

William Arveson

Berkeley, California January, 2003

Contents

Preface	v
Chapter 1. Dynamical Origins 1.1. The Flow of Time in Quantum Theory	1 1
1.2. Causality and Interactions	5
1.3. Semigroups of Endomorphisms	9
1.4. Existence of Dynamics	13
Part 1. Index and Perturbation Theory	17
Chapter 2. E-Semigroups	18
2.1. The CAR/CCR Flows	19
2.2. Cocycle Perturbations	27
2.3. Measurability and Continuity of Cocycles	31
2.4. Concrete Product Systems	33
2.5. Units and the Numerical Index	41
2.6. Computation of the Index	45
2.7. Type and Decomposability	53
2.8. The Gauge Group $G(\alpha)$	56
2.9. Pure E_0 -Semigroups and Absorbing States	59
2.10. Notes and Remarks	64
Chapter 3. Continuous Tensor Products	66
3.1. Tensor Product Systems	67
3.2. Representations of Product Systems	70
3.3. The Continuous Fock space $L^2(E)$	72
3.4. Multipliers of $(0,\infty)$	74
3.5. The Classifying Semigroup Σ	77
3.6. Units, Dimension, and Index	83
3.7. Additivity of the Index	87
3.8. Automorphisms and the Gauge Group	93
3.9. Notes and Remarks	99
Chapter 4. Spectral C^* -Algebras	101
4.1. Regular Representation of $C^*(E)$	101
4.2. Irreducibility	112
4.3. Nuclearity	116
4.4. Wiener–Hopf Perturbations and Stabilization	117
4.5. Amenability I	121
4.6. Amenability II	125

4.7. Infinitesimal Description of $C^*(E)$	130
4.8. Decreasing Weights	133
4.9. State Space of $C^*(E)$	138
4.10. Existence of E_0 -Semigroups	145
4.11. Simplicity	148
4.12. The C [*] -Algebras \mathcal{W}_n	155
4.13. Notes and Remarks	158
Part 2. Classification: Type I Cases	161
Chapter 5. Path Spaces	162
5.1. Definitions and Examples	162
5.2. Additive Forms and their Exponentials	166
5.3. Exactness of Additive Cocycles	172
5.4. Strongly Spanning Sets	178
5.5. Classification of Metric Path Spaces	180
5.6. Exponentials of Metric Path Spaces	196
Chapter 6. Decomposable Product Systems	199
6.1. Continuity of the Modulus	202
6.2. Decomposable Vectors	205
6.3. Continuity and Normalization	207
6.4. Continuous Logarithms	210
6.5. Infinite Divisibility	215
6.6. Existence of Measurable Propagators	223
6.7. Applications to Product Systems	225
6.8. Classification of E_0 -semigroups	232
6.9. Notes and Remarks	233
Part 3. Noncommutative Laplacians	235
Chapter 7. CP-Semigroups	236
7.1. Basic Properties	238
7.2. Harmonic Analysis of the Commutation Relations	240
7.3. Examples: CCR Heat Flow, Cauchy Flow	242
7.4. Generators and the Domain Algebra	248
7.5. Further Discussion of Examples	252
7.6. Notes and Remarks	253
Chapter 8. C^* -Generators and Dilation Theory	254
8.1. Dilation and Compression	255
8.2. Moment Polynomials	257
8.3. The Hierarchy of Dilations	260
8.4. Generators of C^* -Dynamics	265
8.5. Existence of C^* -Dilations	269
8.6. Existence of W^* -Dilations	274
8.7. Examples of Dilations	279
8.8. Type I Part of an E_0 -Semigroup	281
8.9. More on Minimality	284
8.10. Units of CP-Semigroups and Their Dilations	293

8.11. Pure CP-Semigroups and Their Dilations	299
8.12. Notes and Remarks	302
Chapter 9. Index Theory for <i>CP</i> -Semigroups	304
9.1. Metric Operator Spaces	304
9.2. Compositions of Completely Positive Maps	308
9.3. Numerical Index	312
9.4. Index of the Dilation	319
9.5. Notes and Remarks	323
	004
Chapter 10. Bounded Generators	324
10.1. Geometry of the Symbol	324
10.2. Perturbations, Rank of the Symbol	333
10.3. Computation of Units	338
10.4. Completeness of the Covariance Function	345
10.5. Subordinate <i>CP</i> -Semigroups	348
10.6. Type of the Minimal Dilation	351
10.7. Notes and Remarks	354
Part 4. Causality and Dynamics	355
Chapter 11. Pure Perturbations of CAR/CCR Flows	356
11.1. Constructions in Matrix Algebras	357
11.2. Ergodicity Versus Purity in Matrix Algebras	363
11.3. Existence of Cocycle Perturbations	367
11.4. Notes and Remarks	372
11.4. Notes and Itemarks	012
Chapter 12. Interaction Theory	374
12.1. Index and the Existence of Dynamics	374
12.2. Eigenvalue Lists of Normal States	376
12.3. Towers: Convergence of Eigenvalue Lists	378
12.4. The Interaction Inequality	385
12.5. Notes, Remarks, Problems	387
Part 5. Type III Examples	389
Chapter 13. Powers' Examples	390
13.1. Quasi-free States of the CAR Algebra	390
13.2. Examples Based on Quasi-free States	393
13.3. Role of Toeplitz and Hankel Operators	397
13.4. A Trace Formula	402
13.5. Almost Invariant Subspaces	402
13.5. The Nonexistence of Units	403 406
13.7. Notes and Remarks	400
10.1. NOUES AND IVEINAINS	411
Chapter 14. Tsirelson–Vershik Product Systems	412
14.1. Correlation Functions and Quasi–orthogonality	412
14.2. Gaussian Spaces	415
14.3. Equivalence Operators on Gaussian Spaces	417
14.4. The L^2 Space of a Measure Class	419

CONTENTS

ix

14.5.	Product Systems of Type III	423
14.6.	Notes and Remarks	425
Bibliogra	aphy	427
Index		431