
Towards a Formally Based Component Description Language
J. Cramer*, W. Fey*, M. Goedicke*, M. GroBe-Rhode* 1

t STZ GmbH * TU Berlin * University of Essen
FB 20 / FR 6-1 FB 6/Informatik

Helenenbergweg 19 Franklinstral~ 28-29 Posffach 10 37 64
D 4600 Dortmund 50 D 1000 Berlin 10 D 4300 Essen 1
Germany Germany Germany

Abstrac t The importance of a precise definition of what constitutes a so f tware
component and how to describe it have become critical issues in the con-
siderations about.enhancements of the software development process in gen-
eral and reuse of software pieces in particular (see e.g. [Boo 87]). We con-
sider these issues by first determining some requirements for component de-
scription languages. Based on that we discuss the R-language as a candidate
for a component description language. The H-language was developed pri-
marily for the specification of distributed modular systems, where the no-
tions of data abstraction and concurrency play an equally important role.
After describing the underlying concepts and the syntax of the R-language
we outline an attempt to define its formal semantics by means of algebraic
module specifications.

1 The Need for Component Description Languages
In the short history of software engineering software development methods with associ-
ated languages have been developed in order to improve the software development pro-
cess. Due to the increasing complexity of the problems attacked in current software de-
velopment processes aU these methods and languages are required to provide means for
the support of large development teams with varying members. Furthermore, in order
to improve the productivity of these teams and the quality of the developed software 2
they are also required to support the reuse of existing software components at any desir-
able level of abstraction.

For both issues a precise notion of the term software component and appropriate lan-
guages for their description are crffical issues. We concentrate here on the languages for
the description of software components called CDLs for short (Component Description
Languages) rather than the methods. Concerning a comparable approach w.r.t, methods
we refer to the concept of ViewPoints [FKG 90]. In order to judge to what degree a
CDL supports team-work and reuse we determine some requirements a CDL should ex-
hibit. Then we discuss to what degree several CDLs satisfy these requirements.

1 Part of the work reported herein was funded by the CEC under the ESPRIT I Project PEACOCK (266), by the Minislry of
Wissenschaft and Forschung of Nordrhein Wesffalen and by the German Ministry for Research ~Mb-T) under the Eureka
project ESF (Grant-No. ITS 8802)

2 The term software not only means source or object code but all other types of documents produced during a software
development process like e.g. requirements specification, design,..

359

1.1 Requirements for Component Description Languages
In order to support the work of large teams, a CDL must allow to divide the description
of a complex software system into possibly independent components which can ulti-
mately be conquered by individual team members. This system decomposition will not
fall from heaven. A CDL therefore should enforce a clear component concept. This
helps during system decomposition to identify the components. Furthermore, it assures
that there is a clean semantics for the composition of the system out of these components.

Nevertheless, a decomposition will not be done as a single shot, but rather evolve during
the development process. A CDL therefore must allow an incremental system decom-
position. This requires particularly, that components can be described at any level of
abstraction in the same way. This uniformity assures, that at any point in time of a de-
velopment process a system is composed out of homogeneous but maybe different ab-
stract components. It is worth noting, that in this context abstraction has a dual meaning.
At first it refers to the complexity of the component. Secondly it refers to the level of
precision of its description.

Such an incremental development approach requires, that the components can be de-
veloped independently to a large extent. A prerequisite for that is, that a component has
a high internal cohesion and a low extemal coupling [Mye 75]. This can be achieved by a
clear component concept in which components interact only via well defined interfaces.
A CDL therefore should provide means for the precise definition of component inter-
faces. In order to avoid ambiguities and to enease reuse, precise definition not only
refers to the syntax but also to the semantics of the interface.

The last requirement is that a CDL should provide means for a structured component
description. In particular, it should allow to describe different properties of a compo-
nent separately in a dedicated formalism. Furthermore, as some of these aspects might
be irrelevant in one context while some new aspects become important, a CDL should
provide a concept for the flexible omission or addition of the description of the various
aspects of a component.

All these requirements are independent from a specific application domain and we don't
claim that they are the only important ones. But they still allow to evaluate sample CDLs
w.r.t, their suitability for large development teams and for reuse. In that evaluation we
concentrate on languages for the design and implementation of software systems, as the
I-I-language is meant to support these steps in a software development process.

1.2 Evaluation of Component Description Languages
None of the requirements for a CDL is met by the imperative programming languages
like e.g. Pascal or C as ultimately a system in these cases is just a single program. The
only kind of component is that of a procedure so that a system is just a set of interrelated
procedures. This kind of procedural abstraction is not sufficient for programming in the
large. The same is analogously valid for languages allowing functional programming
like LISP and the logic programming language PROLOG.

Some descendants of these languages overcome this drawback. Modula-2, Modula-3
[CDGJKN 89] and OBERON [Wir 88] as the descendants of Pascal provide the notion of
modules as a component for programming in the large. Furthermore, they allow to
precisely define the syntax of a module interface. Ada adds to these languages the pos-
sibility to describe generic modules and to specify exceptions. But they all still lack
w.r.t, the other requirements.

360

The same holds for the descendants of C like C++ [Str 86] and Objective-C [Cox 86]. But
a disadvantage of these and some other so called object oriented languages like Simula,
and Smalltalk is that they rely on the inheritance- and use-relation between their objects
without the possibility to define the interfaces precisely. W.r.t. the object-oriented pro-
gramming language Eiffel [Mey 88] provides more support. Eiffel also offers the inheri-
tance relation and a use-relation but allows to control the use-relation by an explicit
(syntactic) interface definition. Furthermore, due to controlled export it is possible to
built up configurations of classes, which can't be accessed by other ones via the use-rela-
tionship. But the problem with that is, that the inheritance relation is not controlled by
that interface definition. A further aspect worth noting is, that the Eiffel environment
provides tools which resolve the inheritance relation and generate a complete interface
description. This complete interface description also covers some semantical information
by means of assertions. A similar situation can be found for the object oriented extension
of CommonLisp the so-called CLOS [Moo 89]. Here multiple inheritance etc. is sup-
ported without control via explicit interfaces. A different situation applies to modem
functional programming languages which in contrast to Lisp have a static type system.
ML [MHT 90], for example, has a well developed module concept although it remains on
the level of syntactic interface declarations.

An analogous development has been taken place w.r.t, descendants of Prolog (c.f. [Die
89]) like M-Prolog or PROTOS-L [Bei 88], which particularly add a kind of module
concept and the possibility to explicitly define their interfaces. PROTOS-L furthermore
provides a type system. P4 [Hei 89] adds to that the investigation of a inheritance relation
and of concurrency. Other relations for the composition of logic programs are discussed
in [Roh 90].

The precise definition of such relations between components and their composition are
the main contribution of the algebraic specification languages OBJ-2 [FGMO 87], ACT-
TWO [Fey 88], COLD [FJ 89] and ASL [Wir 86]. There main drawback is, that they are
restricted to the specification of the static properties of a component. A further disad-
vantage of some of them is, that they don't provide means for a semantical complete in-
terface definition.

At the same time it is clear that each language cited has its own specialities to express
certain aspects of software components quite well and naturally and falls short in other
aspects. On one hand a description in a declarative style using functional or logic lan-
guages is desirable to express abstract, high level properties. On the other hand the same
languages are less suited to express concurrent distributed systems with sideeffects on a
detailed level. Thus it is necessary to offer a combined approach to describe software
components on various levels of abstraction without loosing structural and semantic in-
formation when moving from one level to another of these levels, e.g. by adding more
detail to a description.

In the following we now introduce the H-language as such an approach. First, important
concepts of the H-language are explained using fragments of an example specification.
Then an outline for a formal semantics in an algebraic setting is given.

2. The H-Language as Component Description Language
We now discuss a candidate for a Component Description Language, the l~-language. It
was developed within PEACOCK [GDS 89], [Goe 90]. The aim of PEACOCK was to
develop a specification language which provides only one kind of building block for

361

software systems and corresponding specification concepts. This is quite near to the
notion of component although other desirable features to describe components are under
development e.g. the notion of quantitative performance or non standard transaction
concepts for distributed systems.

First a survey of basic assumptions for the I-I-language is given. Then the conceptual
model of the software structure is described. The chapter concludes with a survey of the
language concepts of l-I using an example.

2.1 Basic Assumptions
The l-I language is aimed at the specification of distributed modular systems, where the
notions of data abstraction and concurrency play an equally important role.The main
concept of H is an object oriented structuring of software, where objects serve as the
unit to encapsulate data by operations. A software system comprises a hierarchy of such
objects. Thus we follow arguments of [Sim 84] and [Res 89] and apply the general de-
sign principle divide & conquer. In describing properties of objects the developer wants
the possibility to define the 'type' or 'class' of objects in order to use instances of it, ob-
jects, to configure an actual system. A 'class' of H-objects is called a CEM (Concur-
rently Executable Module and its associated objects). Thus the properties of objects are
specified in a CEM specification for which the I-[language is the appropriate formalism.

Another important requirement for 17[was proper support for incremental develop-
ment.This means that development is done in small increments or steps that address dif-
ferent aspects of the software product. Such a working schema is in our and many other
people's opinion superior to what might be termed the traditional or "big-bang" ap-
proach.

The H-language employs the concept of views to structure the specifications of object
properties. Views are partial specifications each using its own representation scheme, to
express the desired properties. This concept is based on the principle of separation of
concerns and hence forms a good basis for incremental development. This means that by
looking at a single view at a time we ignore the other views for a moment.

How can incremental development of component based software systems be supported?
In the H-language we separate the incremental development of a system architecture
from the incremental development of each CEM specification. This approach is similar
to that used in the CONIC toolkit [KMS 89] where configurations of logical (processing)
nodes are specified independently of the nodes" implementation. Thus the development
using I-[is characterized by a frequent switch back and forth between the development
of single components - CEM specifications - and configuration of components - CEM
and related object interconnections.

2.2 Conceptual model of the software structure
Objects are the building blocks of the software in its running form 3. This means that
objects provide a capsule for a piece of the entire system state and some operations,
which are the only means to inspect and / or manipulate that piece of state. This concept
is depicted in figure 1.

3 In some authors" terminology our approach is object based since 1-1 does not support inheritance as Srnalltalk and Eiffel do.
Instead we are in favour of explicitly stating all properties used from other components including their semantics as far as it
is possible.

362

olmtaliolla

e~c~pml l~ male

fa~ c m ft./at/an

Fig. 1 The structure of objects

Objects provide operations which can be used by other objects. Since the object's opera-
tions can manipulate the object's state (shaded circle enclosed by rectangle in the figure
above) a superior object uses the state of the underlying objects as well. Thus we say that
a complex object is constructed from lower level ones in terms of their state. However,
the only way objects communicate is via operation call. In the case an operation call is
made to an object it controls when the requested operation is executed since it must pre-
serve its internal consistency. This is also the way concurrency comes in naturally. Since
the various operations an object offers can be invoked any time this concept includes
parallel invocations of different or the same operation(s). The object, of course, can al-
low the execution of more than one execution request at a time if this situation is not en-
dangering its consistency.

An entire system is represented by an object configuration. This has to be a hierarchy
which means that the directed graph derived from the objects" usage relation has to be
acyclic. This also allows for multiple root-objects and shared objects as well. These are
purposely built into the concept since they enable to structure distributed and especially
autonomous loosely coupled cooperating systems. In such systems often peer level com-
munication is desired. This is accomplished by sharing a communication-channel object
between two or more top level objects of an object configuration.

In the following we will use the example of the patient monitoring system (see also
[Kra 90]).

n e ~
remove..pat[i]~ ward_manager ~remove_patient[i]
set range[i] ~//near_patient[I] ~
remove_palient[1] / new_patient~N~ // "'"

set_range[l]///]1 nurse]
]] / get_readings[l]

11/ / / , , / ~ t

I m tor [-77;--I

Fig. 2 Object structure of a sample patient monitoring system

363

Parts of this example will be used in the sequel of the paper to highlight features of the
H-language. As with the other object oriented approaches the structuring of a system
with H objects yields a natural decomposition where the artificial objects resemble the
real world entities. In our examples these are the patients, the nurse and the ward
manager. The relations between these objects reflect the various real world relations e.g.
responsibilities and tasks of persons and equipment. The figure 2 above shows the entire
object configuration of a sample patient monitoring system. Thus the system consists of
3 classes of objects. The ward_manager object creates and removes patients from the system
while the nurse object scans the various patient objects for life critical conditions. Thus
central to the system are the monitored_patient - objects. They have the task to check a real
patient's values, like blood pressure, in order to check whether they fall within a given
patient specific safety range. If a value falls outside the safety range a bed alarm is set.
Consequently monit0red..patient objects offer operations like set_range for changing the safety
range of values, get readings for retuming the current patient's values and get_alarm_status for
returning whether the alarm is on or not. The nurse & ward_manager -objects share each
m0nit0red_patient object. The m0nit0red_patient objects are not primitive, but consist of a configu-
ration of 4 objects (not including the real human being see figure 3). The central
component is the monitor whose main task is to constantly read the scanner'S value, check it
with the range stored in the range-component and set the bedalarm accordingly. The scanner
object is shared between the monitor and the real patient. This has to be interpreted that the
sensors of the scanner are set by the patient's physical conditions.

monitor

Fig. 3 Object configuration of a monitored patient

2.3 Survey of the H-language concepts
We first introduce in this chapter the notion of CEM specification as a means to describe
components. Thus a CEM specification serves as a description of all its instances -the
objects. There are three views available to describe such components in isolation from
other ones. These views will be introduced below. Then a description follows of how
such component descriptions can be configured to form new component descriptions and
eventually entire system specifications. This is reflected in the H-language's syntax
which starts with the rule:

<component_specification> ::= <cem_specification> 1 <configuration_specification> (G1)

Thus a component is described by either a CEM specification or a configuration of such
component specifications (see chapter 2.3.2 below).

2.3.1 CEM Views

In order to achieve the desired information hiding within the hierarchical structure of
components comprising the system each CEM-specification is divided into 4 sections:
export , import, common parameter and body. The task of the export and import sec-

364

tions is to describe the interfaces to other CEM specifications. The import is a so called
formal one which means that only requirements to potential other CEM-specifications
are stated. The common parameters section contains the specification of those properties
which are imported and exported unchanged thus allows to see some (specifier chosen)
parts of the import at the export interface. The body describes the realization of the ex-
ported properties of a CEM in terms of the imported ones. This structure of a specifica-
tion is orthogonal to the structure of views i.e. in general each view has these 4 sections.
Thus a CEM specification is given by

<cem_specification> ::= "CEM" <cem__name>
["general description" <comment>]
[<type_view_specification>] (G2)
[<imperative_view_specification>]
[<concurrency_view_specification>]
"end CEM" <cem_name>

Type View

In the type view a description of the static (i.e. execution independent) properties of a
CEM is given. It can also be seen as to define the 'functionality' of a CEM. This is done
by specifying an abstract data type using algebraic techniques. Thus we define on a very
abstract level the execution effects of all operations of a CEM, i.e. the effect a CEM's
operation can have in principle.

In order to achieve an abstract data type (ADT)-oriented structure of the desired soft-
ware system it is important for our concept that each CEM may introduce at most one
new sort with associated operations. Thus with the exception of the import and common
parameter section each of the aforementioned sections in the syntax rule defines one
ADT algebraically by giving sorts, operations and equations. The import and common
parameter resp. are defined as a number of ADT specifications each defining properties
of a CEM specification to be imported. These can be either satisfied by a single CEM
specification or a configuration of these later on (see chapter 2.3.2). The body describes
the CEM's underlying ADT. The export makes only a part of this abstract data type ac-
cessible outside by exporting those operations whose execution does not unveil the inter-
nal construction of the ADT. Thus the abstract data type of the export is a sub-data type
of the one defined in the body.

In our example the CEM MONITOR introduces the new sort Monitor. In the export the associated
operations create, OeLreadings, seLrange, geLrange and geLalarm__stalus are stated. Important proper-
ties are given by some equations stating, for example, the relationship between the
alarmstate and the patient's value readings.

CF.M MONITOR

type view speclficaUon

export
sort Monitor

opera~
opera~
oper=~

equaf~

create : Range -> Monitor
geLreadings: Monitor -> Value
seLrange : Range Monitor -> Monitor
rngl,rng2: Range

seLrange(rngl,create(mg2)) = create(rngt)
operation get_range : Monitor-> Range
variables rn: Monitor; rag: Range
equa~ms
get_range(seLrange(rng,m)) = rng
geLrange(create(rng)) = m g

operation get_alarm_status : Monitor -> Boolean
valables m: Monitor;

geLalarm_statue(m) =
within_range(geLreadings(m),geLrange(m))

Fig. 4 Export section of the type view specification of CEM MONITOR

365

In the common parameter section the properties of e.g. Range are stated. This specifies
that a sort and 3 operations are required (and exported as well) where the operation
~thin__range provides the service to check a value against a safety range

sort Scanner
operaf~m makescanner :-> Scanner
opera~n read : Scanner-> Value

ewamn I~mme~s
Boolean

• [specilication of the usual Beoleans comes here]..•
Range

~*rat ton withinjange : Value Range -> Boolean

v a r l ~ r: Range; v: Value
ecpaliw=
within_range(v,r) = and(leq(min(r),v),leq(v,max(r)))

operation min : Range -> Value
operation max: Range -> Value
' , ~ r: Range;

leq(min(r),max(r)) = true
sort Value

~-~taUon leq : Value Value -> Boolean

Fig. 5 Fragment of the import and common parameter type view specification of CEM
MONITOR

In the import section properties of Scanner, Bed_alarm etc are stated. In the body section the
various exported operations are defined along with some internal not exported auxiliary
operations. For example the operation check_range expresses the crucial consistency condi-
tion of the CEM's objects that the bed__aJarm component reflects the relation of the current
patient's value reading to the safety range properly.

boay
¢ 0 ~ of SOrt Monitor IS lnlernal

operation make_monitu: Range Scanner Bed_alarm ->
Monitor

opera,on create :Range -> Monitor
variables rng: Range
equallom
create(rng) = make_monitor(rng, make_scanner,

make_bed_alarm)

o ~ l o n geLreadings : Monitor -> Value
Yadal~es v:Value; rag: Range; se: Scanner;

bed_al: Bed_alarm

geLreadings(make_monitor(mg,sc,bed_al)) = read(sc)

~n 'a~on setjange: Range Monitor -> Monitor
variables rngl,rng2:Range; sc: Scanner;

bed_al: Bed_alarm

eomom
seLrange(rngt,make_rnonitor(rng2,sc,bed._ai)) =

check_range(make_monitor(rngl ,sc,bed_al))
~x, ta~on geLrange: Monitor -> Range
v a ~ rag:Range; sc: Scanner;

bed__al: Bed alarm

geLrange(make_monitor(mg,sc,bed_al)) = m g
checkrange: Monitor -> Monitor
nag: Range; so: Scanner; bed_al: Bed_alarm

check range(make_monitor(rng,se,bed_al)) =
make_monitor(rng,sc,
seLalarm(within_range(read(sc),rng),bed_al))

q;~,tallon get_alarm_status : Monitor -> Boolean
varlabl~ rng: Range; sc:Scanner; bed_al: Bed_alarm;

get_alarm_status(make_monitor(mg,sc,bed_al)) =
get_alarm(bed_al)

Fig. 6 Body section of the type view specification of CEM MONITOR

This shall suffice as an example for the type view specification.

Imperative View

The imperative view contains specification information which relates to how a request to
execute an operation - if admitted - is actually carried through including the desired
side effects of executions. In principle the operations which are specified in the type
view in a functional style are defined imperatively here. Therefore an operation is called
a p rocedure in the imperative view. The execution aspect is specified by introducing

366

thread(s) of control. Thus in the body for each operation it is defined which thread(s) of
control to follow when the operation is executed. Also the possibility exists to fork one
thread of control into more than one thread of control in parallel. Thus the imperative
view describes effects on 'storage' and algorithmic concurrency.

The detailed specification of the operation in the imperative view is contained in the
body section. In the remaining sections it is necessary to give the procedure headings of
the operations which are exported and imported respectively. The imperative view
specification for the export section and for each ADT listed in the common parameter
and import section is given by a list of procedure headings. Thus e.g.

Imperative view specification procedure set_range (In m : Range Inout m: Monitor)
export type Monitor procedure get_range (In m : Monitor) returns Range
procedure create (in rag: Range) returns Monitor procedure get_alarm_status (in m : Monitor) returns Boolean
procedure get_readngs(In m : Monitor) returns Value

Fig. 7 Export section of the imperative view specification o f CEM MONITOR

In_parameters may only be examined within the procedure's body while an
in0ut_parameter (as in procedure seLrange) may be altered as well.A procedure which has
no in0uL.parameter is returning a new object of the given type.

In the body, however, the operations are fully specified in an imperative style. The
primitives of the sub-language available for describing the imperative properties of
operations are assignment and procedure invocation. The usual control-flow combina-
tors like sequence, selection and repetition are available including the parallel combina-
tor e0begin..e0end to express the potential parallel execution of more than one statement se-
quence. Here we give the imperative version of check range, where an auxiliary operation
select bed alarm is used to access the bed_alarm-component of the MONITOR-object passed as pa-
rameter. Such access operations are unnecessary in the type view since the argument
matching of the equational logic used there expresses the same kind of access.

body a¢l
_ procedure checking(Inout m:Monitor)
procedure check_range(Inout re:Monitor) begin
¢lo¢iare rag:Range; while true() do

v: Value; check_range(m);
begin end

rng:= getjange(m); end
v:= gel_readings(m);
set_alarm(within(v,mg),select bed alarm(m));

Fig. 8 Fragment of the body section of the imperative view specification of CEM MONITOR
In order to express the constant checking of the patient's value - a typical control-flow
oriented problem not expressible in the equational logic of the type view - a new proce-
dure for this purpose is introduced: checking as given in the above fragment of the impera-
tive view body.

Concurrency View
The concurrency view defines the necessary ordering of operation executions to main-
tain the consistency of the data object by specifying the restriction of the potential full
concurrency. Thus in this view the question is addressed when a request to execute an
operation can be granted. We use the notation of path expressions over operation names
for this purpose. [CH 74] introduced path expressions and [See 87] provided the work

367

on modular path expressions which is also the basis for our work. In the various sections
(export, common parameters, import, and body) the restrictions defined by a path ex-
pression in each of the sections play slightly different roles. The path expression in the
body defines the necessary execution orderings to maintain the integrity of the object.
The path expression in the export gives the information which degree of concurrency
can be delivered by each object of the CEM. This can be the same as or less than the
concurrency possible in the body. From the algorithms in the body the requirements to
the imported objects are derived. The desired degree of concurrency to be delivered by
imported objects is defined as a path expression in the import section.
The MONITOR'S export and partial import section of the concurrency view is shown below
and defines that the modifying operation set_range have to run exclusively while opera-
tions which merely inspect a MONITOR object (geLreadings,get_range,get alarm_status) can be exe-
cuted any time unless a modifying operation is running. In the import the path expres-
sion specifies the requirements that any reasonable scanner has to be created first and
then can be inspected by the read operation any time.

concun~cy view ~ (*get._alarrn_staltls*) }
export I (*set. range *)]
path ~presslon Import

create;[{ (*get_readings*) + type Scanner
(*get_range *) + p a l t ~ e ~ o n

make_scanner;{read}

Fig. 9 Fragment of the concurrency view specification of CEM MONITOR

2.3.2 System Views

A system is a configuration of objects. Therefore it is necessary to discuss the important
issue of connections between CEM specifications to describe system properties. Thus
configurations of CEM specifications and related object configurations are considered
now. For distribution and other system aspects see [PEA 88]. Syntactically a configura-
tion specification is the 2nd alternative of syntax rule GI"

<configuration_specification> ::= "configuration" <configuration_name>
["general description" <comment>]
<type_configuration> (G3)
[<object_configuration>]
"end configuration" <configuration_name>

Three aspects are defined in the configuration specification:

1) how objects are connected in principle according to their type,
2) which objects exist in the configuration,
3) which of the objects are shared.

The first aspect is defined by actualizing the formal import along the type view
(nonterminal <type_configuration>). The latter two aspects are expressible by the sub-
language given by the nonterminal <object_configuration>.

For an actualization of the formal import the condition for a match between the import
of an importing and the export of the imported CEM is that

- after possible renaming the signatures match (i.e. each required sort and opera-
tion is available in the export),

368

the mapping defined above is a specification morphism between the two ADTs
i.e. the properties stated in the requirements (import section of importing CEM)
are satisfied in the ADT in the export of the imported CEM,

- the procedure headings of the imperative view match, i.e. in and inout parame-
ters must correspond,

- the path expressions defined in the interface sections of the concurrency view
have to be compatible.

If more than one CEM specification is actually imported, then first the imported CEM
specifications are internally "unified" and then used to fulfil the import requirements of
the importing CEM specification. This process is based in the type view on those con-
cepts of union and composition of module specifications described later in chapter 3.
The match in the imperative view implies a simple syntactic check which is sufficient,
since the relevant execution invariant information about an operation is already covered
by the involved type view specifications. For the concurrency view the various possible
degrees of compatibility are defined in [See 87]. Below a fragment is given which shows
how these CEM specification connections are established in the case of our monitored_patient
example which assumes that suitable CEMs exist.

configuration MONITORED_PATIENT
type configuration
export

Monitored~oatient : Monitor
body
component Incarnations

Monitored_patient:
Sc:
Rng:
Bed:
Mes:
Pat:

emvim'ent emr, ee~m

MONITOR;
SCANNER_DEVICE;
TUPLE OF MEASUREMENT;
BED
MEASUREMENT;
REAL_PATIENT;

connection of Monitored_patient
from Sc Import
sort Scanner IS actualized by Scan~r_device
operaeons

rnake_sca~ner Is actualized by n e w _ ~
read Is actualized by return meaa~,ement

from Bed import
sort Bed_alarm Is actualized by Bed

operatiorm
get alarm status Is actualized by return_alarm_signal
make_bed a l ~ Is actualized by make_bed
seLalarm Is actualized by seLalarm_signal

from Rng Import
sort Range Is actualized by Tuple_of_measurement
operations

rain Is actualized by first
max Is actuaUzed by second
within is actualized by in interval

front Mes Import
sort Value Is actualized by Measurement
q~raltons

leq is actualized by leq

contraction of Pat
from Sc import

sensor IS actLmllz~l by ,~mn~r reed

set_sensor Is actualized by receivemeasurement

Fig. 10 Fragment of the type connections of the MONITORED_PATIENT configuration

In the above fragment one can see that the same segmentation into sections is maintained.
The export is given by an actualized so called incarnation of CEM MONITOR. Thus the export
of this actualized CEM is accessible from outside as the component MONITORE0_PATIENT. In
the body appropriate other component specifications are named and properly connected
via specification morphism declaration (which are given by the renaming of sorts and
operations).

The crucial sharing of the scanner object and the real patient has to be expressed in the
object configuration section of the MONITORED_PATIENT configuration. Below we give the
fragment of the object configuration specification stating exactly this.

369

~ie~ ~guration
export
configuration action new_patient(In r: Rng out

re:Monitored_patient)
{sets up a new configuration of monitor, patient etc
and shares the scanner between patient and monitor.}

configuration action remove_patient(..)

body
contiguraUon action newpatient(In r: Rng out

m:Monitored_patient)
declare

p: Pat;
ena declare

Pat.new_real_patient(p);
Monitored_patient.create(r,m);
share Pat.geLscanner<p> with

Monitored_patient.select_scanner<m>
end

{select_scanner of Monitored_patient and get_scanner of
Realpatient are subcompenent accessing operations net stated
in the other views for the sake of shortness]

Fig. 11 Fragment of the object configuration specification of the MONiTORED_PATIENT
configuration

The so-called configuration actions are able to create and manipulate configurations of
CEMs" objects. In the example above the configuration action new_patient introduces a new
real patient by Pat.new_real_patient and a new object of Monitored_patient by the appropriate create
operation. Then the share configuration action declares the scanner component of both ob-
jects as a shared object between both newly created objects. Thus the object configura-
tion shown in figure 3 comes into existence.

Configuration actions shall to some degree (in contrast to ordinary operations) resemble
those activities in the initial configuration and later management of systems which cannot
in principle or not economically implemented by some software based mechanism. In
our example this is the connection of the real patient to the scanner device expressed in
the configuration action above as the share action.

3. Formal Concepts for Functional Semantics of [] as COL

In this section we describe the semantical basic for the I-I-language especially for the
type, type connection, imperative, and concurrency view introduced already in section 2.
We use algebraic module specifications and their interconnection mechanisms (see [BEP
87], [EM 90] for the type view and type-configuration of the configuration specification,
and formal operational semantics for the imperative and concurrency views. The formal
basic for all that are algebraic specifications which originally where developed for data
type specifications (see [GTW 76]). Therefore, let us start with a short review of alge-
braic specification.

3.1 Algebraic Specification

A data type in a programming language consists of data structure together with opera-
tions that create and modify this structure, where the operations are given by pro-
gramming language constructs, like functions and procedures. The basic idea of an alge-
braic specification is to specify data types independent of any specific representation or
programming language.

1. Constituent Parts of Algebraic Specification
An algebraic specification SPEC = (S, OP, E) consists of a signature (S, OP) with a set
S of sorts and a set OP of constant and operation symbols over S, and a set E of equa-
tions or axioms over OP. Each sort represents a domain of a data structure, and each
operation symbol represents an operation on that domains. More precisely an operation
symbol declaration

N:sl ... sn---> s (n > 0),

370

consists of an operation name N, a list of argument sorts sl sn and a range (or result)
sort s.

So far we only have names for domains of data structures and declarations for opera-
tions but no description of what the operations should do. The third component of
SPEC, the set E of equations, provides this description in an "axiomatic" or in a
"constructive" way.

Algebraic Specifications SPECi=(Si,OPi,Ei) for i=1,2 can be related by a specification
morphism f:SPEC1---~SPEC2 which is a pair t=(fs:S1--~S2, fop:OPl-~OP2 of functions
such that for each N:sl...sn--~s in OP1 we have fop(N):fs(sl).. .fs(sn)-~fs(s) in OP2 -
then t is called signature morphism-, and for each e in E1 the translated equation f#(e) is
provable from E2 with the equational calculus.

2. SPEC-Algebras, Data Types and Semantic8
Given an algebraic specification SPEC = (S, OP, E) a SPEC-algebra A is a model of the
specification SPEC which consists of

domains As for each s~ S (defining the data structure)
constants NA ~ As for each N: ~ s in OP

- operations NA:Asl × ... × Ash -4 As for each N:sl ... sn ~ s in OP(n _> 1)

such that all equations in E are satisfied.

A SPEC-algebra A can be considered as a data t ~ e over SPEC if it is termgenerated,
i.e. each ae As ~ (se S) can be constructed by a term of constants and operations of A.

The initial semantics of an algebraic specification SPEC is represented by the quotient
term algebra TspEc defined as quotient of the termalgebra Tsi6 of all terms over the
signature SIG = (S, OP) by the congruence generated by all the equations in E. A simi-
lar construction is possible for positive conditional equations and universal Horn axioms
but not for general first order axioms. The initial semantic of SPEC is the abstract data
type (ADT) defined by SPEC.

In some cases it is also useful to consider the classical or loose semantics of an algebraic
specification SPEC which is given by the class of all SPEC-algebras or - as preferred by
some other authors - the class of data types over SPEC.

Main constructions and results for equational algebraic specifications are existence and
uniqueness (up to isomorphism) of initial and free algebras, the Birkhoff-
Characterization of equational classes, the equational calculus and term rewriting, and
correctness and extension criteria of specifications as given in chapters 1 to 6 of [EM
85].
3. Algebraic Specifications with Constraints
The restriction of all algebras to termgenerated algebras (i.e. data types) corresponds to
the fact that we have a "termgenerating constraint". Constraints C on a specification
SPEC in general are some first or higher order logical conditions for SPEC-algebras A
leading to the notion of an algebraic specification with constraints, written SPECC =
(SPEC, C), and all SPEC-algebras A satisfying the constraints C are called SPECC-alge-
bras. Other interesting examples of constraints are "initial", "generating", and "free gen-
erating" constraints meaning that algebras satisfying these constraints must have certain
subalgebras which are initial, or they are generated (resp. free generated) algebras over
some data elements. Also first order logical axioms can be used as constraints. So, alge-

371

braic specifications with initial or loose semantics can be seen as special case of algebraic
specifications with constraints.

Although most of the results for equational algebraic specifications mentioned above are
no longer valid for specifications with constraints these more general specifications are
most important for all kinds of applications in the software development process. See
chapter 7 of [EM 90] for more details and some basic results conceming algebraic spec-
ifications with constraints.

3.2 Foundations of a Formal Semantics of the Type and Type Connection
View

A functional semantics of the type view and type-configuration of I] may be given di-
rectly by a denotational semantic description or indirectly by a translation to the module
specification and interconnection language ACT TWO (see [Fey 88]). Because both are
based on algebraic module specifications and their interconnection mechanisms we in-
troduce here these concepts.

3.2.1 Module Specification
The importance of decomposing large software systems into smaller components, called
modules, to improve their clarity, facilitate proofs of correctness, and support reusabil-
ity has been widely recognized within the programming and software engineering com-
munity. For all stages within the software development process modules resp. module
specifications are seen as completely self-contained components which can be developed
independently and interconnected with each other. Algebraic module specifications can
be used to define the functional semantics of the type view of CEMs.

1. An aleebraic module specification MOD = (EXP, IMP, PAR, BOD) consists of
four algebraic specifications

PAR EXP

MOD:
IMP BOD

which are normally related by inclusion morphisms. The export EXP and the import
IMP represent the interfaces of a module while the parameter PAR is a part common to
both import and export and represents a part of the parameter of a whole modular sys-
tem. These interface specifications PAR, EXP, and IMP are allowed to be algebraic
specifications with constraints (see 3.1.3) in order to be able to express requirements and
properties for operations and domains in the interfaces by suitable logical formalisms.
Note, that - as in 1-I - the import interface describes only a formal import, i.e. the re-
sources it requires rather then naming specific modules which provide those resources.
The body BOD, which makes use of the resources provided by the import and offers the
resources provided by the export, represents the constructive part of a module.

2. The ~emantics of a module specification MOD is given by the loose semantics with
constraints of the interface specifications PAR, EXP, and IMP, a "free construction" F
from import to body algebras which defines for each IMP-algebra A a BOD-algebra
F(A) freely constructed over A, and a "behaviour construction" from body to export al-
gebras given by restriction of the free construction to the export part.

A module specification is called (internally) g0rrect if the free construction "protects"
import algebras and together with the behaviour construction transforms import alge-

372

bras satisfying the import constraints into export algebras satisfying the export con-
straints.

3. In the l~-language the (abstract)syntax of such module specifications is deemed by

<type_view_specification> ::=
"export" eq-SPECT1
"import" eq-SPECT2
"common parameters" eq-SPEC
"body" eq-SPECT3

where eq-SPEC is an equational algebraic specification (see 3.1.1) for the common pa-
rameters and eq-SPECTi=(Si,OPi,Ei) for i=1,2,3 are equational algebraic specification
torsos for the export, the import and the body respectively. These torsos are algebraic
specifications but the operation symbol declarations OPi and the equations Ei need not be
over the sorts Si and OPi respectively. For convenience we have here abstracted from
the concrete syntax for algebraic specifications which can be seen in the example of sec-
tion 2.

4. Such type view specifications can be given a formal semantics by algebraic module
specifications via the following semantical constroction mod-unit defined on the domains
eq-SPECT of algebraic specification torsos, ea-SPEC of algebraic specifications, and
mod-SPEC of algebraic module specifications together with the undefined module spec-
ification mod-undef.

mod-unit : eq-SPECT x eq-SPECT x eq-SPEC x eq-SPECT ~ mod-SPEC

defined by
mod-unit (eq-SPECTb eq-SPECT2, eq-SPEC, eq-SPECT3) =

i f eq-SPEC ~J eq-SPECT1 e eq-SPEC, (1)
eq-SPEC u eq-SPECT2 ~ eq-SPEC, (2)
eq-SPEC u eq-SPECT2 tj eq-SPECT3e eq-SPEC, (3)
SIG (eq-SPECT1) c_ Sig (eq-SPECT2 u eq-SPECT3) (4), and
equations E1 are provable from equations EuE2uE3 (5)

then (eq-SPEC u eq-SPECTI, eq-SPEC u SPECT2, eq-SPEC,
eq-SPEC u eq-SPECT2 u eq-SPECT3)

else mod-undef.

where (1), (2), and (3) are conditions for getting (complete) algebraic specification for
the export, import and body respectively, condition (4) reads that all the sorts and op-
eration symbols of the export should also be declared in the body or already required by
the import, and condition (5) requires that all the equation of the export should be prov-
able from the equations of the body, the import and the parameter.

The result of the semantical construction mod-unit (eq-SPECT1, eq-SPECT2, eq-SPEC,
eq-SPECT3) is a module specification if all the conditions (1)-(5) above are satisfied.

3.2.2 Interconnection Mechanisms
Basic interconnection mechanisms to structure modular system specifications are com-
position, union and actualization. Such mechanisms can be used to define the type-con-
figuration of the configuration specification of the II-language. Other interconnections
are extension, recursion, product and iteration (see [EM 90]). But in the following we
only explain the basic interconnections. Each of them gets their algebraic semantic via a
module specification constructed by "flattening" the structure.

373

1. Composition or imoort actualization: the import part of module MOD1 is con-
nected to the export part of module MOD2. The connection is established by a specifica-
tion morphism h=(hl,h2) which maps sorts and operations in the import part of MOD1
to sorts and operations in the export part of MOD2 by h2 such that it is compatible with
the map of the parameter part of MOD1 to the one of MOD2 by hl .

MODI:

MOD2:

P ~ I E ~ I

J ~ 1 BOD1 PAR1 EXP1
hl ~ MOD3:

IMP2 BOD3
PAR2 EXI'2

IMP2 BOD2

The result MOD3 of the composition is denoted by MOD1 °h MOD2.

For the semantics the corresponding module specification MOD3 has the same import
part as MOD2, the same export and parameter parts as MOD1, and a body BOD3 which
can be constructed by textual substitution of IMP1 in BOD1 by BOD2, i.e. BOD3 =
BOD1 +r~cn~l BOD2.

The (abstract) syntax of such a composition of a module specification mod-SPEC1 with
name mod-namel by another module specification mod-SPEC2 with name mod-name2
via a signature morphism sigmor, -relating the import of mod-namel to the export of
rood-name2-, is defined in the]-I-language within the <type-configuration> view by

<component_connection_description> ::=
connection of" mod-namel

"from" rood-name2 "import sigmor

Note, that we have here abstracted from the concrete syntax of I-[by taking terminals
for signature morphisms and names of module specifications.

Such a component connection description denotes the module specification Import-
Actualize(mod-SPEC1, mod-SPEC2, sigmor) got by the following semantical construc-
tion defined on the domains of module specifications mod-SPEC and signature mor-
phisms SIGMOR

Import-Actualize : mod-SPEC x rnod-SPEC x SIGMOR --) mod-SPEC

defined by
Import-Actualize (mod-SPEC1, mod-SPEC2, sigmor) =

i f mod-SPECi ~ mod-undef for i=1,2, (1)
PAR1 c_ PAR2 (2)
sigmor induces h2:IMP1 ~ EXP2 s. th. h2/PAR1 is inclusion (3)
bodies BOD2 and BOD1 without IMP1 have nothing in common (4)

then mod-SPEC1 °sigmor mod-SPEC2
else mod-undef

If the condition (1)-(4) above are satisfied the composition is defined and results in a
module specification unequal to the undefined one mod-undef.

374

.

submodule
fi:MOD0--->MODi for i=1,2.

specification MOD0 indicated by
Union: Two module specifications MOD1 and MOD2 are connected via a shared

"module specification morphisms"

MODe. ,/
i

PAR1

MODI:
IMP1

f2 PAR3 EXP3
MOD3:

IMP3 BOD3

EX/r2 EXP1 PAR2

MOD2~
BOD 1 IMP2 BOD2

For the algebraic semantics the corresponding module specification MOD3 is exactly the
set theoretical union in each component, if MOD0 is equal to the intersection of MODI
and MOD2. Otherwise all those parts in the intersection of MOD1 and MOD2, which
are not in MOD0, are duplicated. In other words each component
SPEC3=SPECI+sPEc0SPEC2 is constructed as disjoint union of SPEC1 and SPEC2
where, however, the SPEC0 part of SPEC1 and SPEC2 are "glued together".

3. Actualization: The parameter part of a module specification MOD1 is connected
by a specification morphism to the export part of a module specification MOD2.

PAR 1 EXP 1

MODI: h / IMP1 BOD1

I
MOD2: PAR2 EXP2 MOD3:

IMP2 BOD2

For the semantics the corresponding module specification MOD3 has the same parameter
part as MOD2, but the other parts are constructed as "unions" EXP3=EXP2+PARtEXP1,
BOD3=BOD2+PAR]BOD1 and IMP3=IMP2+IMP10IMP12, where however
IMP1=PAR1+IMP10IMP12 with IMP10 subspecification of IMP2 is assumed.

The last two module interconnection mechanisms - union and actualization of the pa-
rameter - are only implicitly available in l-I. Therefore we gave no syntax and semanti-
cal construction here.

4. As main results for module specifications we can show that the basic interconnec-
tion mechanisms are operations on module specifications which are preserving correct-
ness and which are compositional w.r.t, the semantics. This means that correctness of
modular system specification can be deduced from correctness of its parts and its se-
mantics can be composed from that of its components using their interconnections.
Moreover, there are nice compatibility results between these operations which can be
expressed by associativity, commutativity and distributivity results and allow the restruc-
turing of modular systems (see chapters 2, 3, 4, and 8 of [EM 90]).

3.3 Towards a Formal Semantics of the Imperative, (and Concurrency) View
In the preceding sections a formal semantics for the type view and type-configurations
of the H-language has been introduced. The aim of a semantical foundation of the whole

PAR2 EXP3

IMP3 BOD3

PAR0 EXP0

IMP0 BOD0

375

U-language is to define a formal semantics for each view, such that all views can be
shown to be compatible; i.e. common features specified in different views have the same
abstract semantics. Therefore it is necessary to have a well defined mathematical model
for the semantics of a view specification.

In this section we sketch an approach for a formal operational semantics of an the type
view. This is a first step towards a formal semantics of the imperative view of the 17-
language where the execution of operations - specified in the type view - is specified via
imperative procedures. They define threads of control, i.e. possible algorithmic concur-
rency. Objects are introduced as local variables to support concurrency and distributed
execution of operations. The computations defined in the imperative view by algortihms
must comply with the equational rules defined for the operations in the type view.

The semantical model is constructed analogously. For a given operation - specified in
the type view - an algebraic graph grammar [Ehr 79] specifies its concurrent evaluation,
i.e. we use a form of concurrent term rewriting as semantical model. A term is assigned
to a local variable (or object) which manages its evaluation. It may invoke simple
rewriting steps on the whole term, or create new objects to delegate the parallel evalua-
tion of some of the subterms.

A graph grammar rule (see figure below) is given by three parts: a left handside which
describes the subgraph which will be substituted by the right hand side. The middle part
of the rule identifies a subgraph of the left hand side which remains intact by the graph
substitution. Thus it is called glueing part. Boxes denote labelled nodes in the graph,
while thin arrows denote the connecting edges. Bold arrows denote graph homomor-
phisms which define how to replace subgraphs.

left handside glueing part right hand side

I I

Figure 12 Sample Graph grammar rule

The algebraic graph grammar for the evaluation of a given term t0 is defined as follows.

START GRAPH
x0 an identifier
START GRAPH associates the identifier x0 with tO

REWRITE RULE

SPLIT RULE

~ ~ m l D ~ . - I xi:a<xil,...,xin> I

where ti --~ ti" is a rewriting step
induced by the equations of the type view

if a<til/xil tin/xin> = ti; here a<til tin>
denotes a term with outermost operation symbol
a and subterms til tin; in contrast with
a(til tin) the subterms in a<til tin> need
not be direct subterms and can occur several
times.

376

The SPLIT RULE replaces some of the subterms of the current term ti by local vari-
ables which are therefore created and associated with the corresponding subterms.

JOIN RULE

I xi:a<xilr...rxin> I" '1 xi:a<xil,...,xin> l-I l :a<av i> I
\

...

The JOIN RULE substitutes the term variable xij in the current term ti by the subterm
tij which is associated with xij.

A derivation in this algebraic graph grammar has a result, if the last graph is a single

node ~ and t0" contains no variables (object identifiers), tO" is then called the re-
sult of the distributed rewriting of tO.

The parallelism theorem in [EBHL 87] shows that the rewrite rule can be applied to all
subterms in parallel, and that the result of this distributed rewriting is not affected by
the ordering of the local evaluations.

Since distributed rewriting defines a congruence on terms it can be compared with the
congruence on terms defined in the type view specification. In other words: we have
mathematical models for an operational version of the type view which can be compared
with the mathematical model of the imperative view based on the same formalism to
show their compatibility.

The 'distributed rewrite graph grammar' is based upon simple term rewriting for alge-
braic specifications and thus suitable to specify operational aspects of the type view. To
find appropriate rules for the specification of algorithms, however, is future work.

Having defined a formal semantics for each view in such a way, also the object-configu-
ration aspect of configuration-specifications should be specified and integrated to obtain
a formal semantical foundation of the whole language. A hint towards this aim may be
found in [GM87], [Gro89], [GE90]. However, this is problem is currently investigated
and its solution depends on a detailed, worked out semantical model of the other views.

For the further development of formal semantical models for the other views we may
derive the following guidelines:

A view may refine other views: The algebraic semantics of the type view defines
the abstract semantics of operation, the distributed rewrite graph grammar defines
how the operations are evaluated. It does not affect the semantics of the type
view, but adds a further aspect.

A view may restrict other views: The path expressions of the concurrency view
may be used to exclude in certain circumstances the application of particular op-
erations (e.g. reading from an empty list). Thus it restricts the semantics of the
type view in that it discards terms or elements from the corresponding data types.

- A view may extend other views: The object-configuration aspect of configura-
tion-specifications defines the creation and connection of objects, configuration
actions define how objects communicate and the distribution of operations. The
invariants of these operations are already specified in the type view; the object-

377

configuration aspect extends the type view taking into account possible distribu-
tions, dependency on the states of objects etc.

In each case, however, we must have a formal criterion to check whether the views fit
together, refining, restricting or extending each other.

4. Conclusion

Above we introduced the concepts of the I-I-language. As was shown it exhibits a num-
ber of properties required to be a CDL. Worth noting in this context is the modular ap-
proach and especially the formal import together with the configuration configuration
specification capabilities. They offer flexible mechanisms to build systems from compo-
nents. The possibility to state syntactic ~nd semantic properties in the interfaces gives
rise to the required precision necessary for building large and reliable software systems.
The possibility to specify a system incrementally by employing the available views pro-
vides an approach to specify the components" properties covering a wide range of ab-
straction levels in a structure preserving way. Moreover for each abstraction level a
suitable representation scheme is offered by the respective view. Thus the entire specifi-
cation is obtained by the superposition of all views. In this way the multiple representa-
tion schemes can be used as a mental vehicle to find the desired component properties. In
the second part of the paper we outlined a formal foundation for the H-language.
However, much work in this direction has still to be done. The presented results for the
type view will be used as a starting point and by extending the algebraic framework us-
ing the graph grammar approach the algorithmic aspect including concurrency will be
defined. Thus a formally based CDL for incremental development of software compo-
nents will be obtained. In addition the production of suitable tools to support the appli-
cation of the I-I-language is in progress.

References
[Bei 88] Beierle C. PROTOS-L: Design and Implementation in: Proceedings of the t-n-st workshop of

the EUREKA project EU56 PROTOS, Lugano-Morcote, Switzerland, September 1988
[BEP87] E.K.Blum, H.Ehrig, F.Parisi-Presicce Algebraic Specification of Modules and Their Basic

Interconnections. Journal of Computer and System Sciences Vol.34,Nos.2/3, NewYork-
London 1987, pp. 293-339

[Boo 87] Booth, Grady Software Components with ADA Structure, Tools, and Subsystems
Benjamin Cummings, 1987

[CDGJKN 89] Cardelli L, Donahue J., Glassman L., Jordan M., Kaslow B., Nelson G. Modula-3
Report (revised) Distal Systems Research Center, Technical Report, Oct 1989

[CH 74] Campbell,R.H. Habermann,A.N. The Specification of Process Synchronization by Path
Expressions Lecture Notes in Computer Science Vol 16, pp 89-102 Springer Verlag New
York 1974

[Cox 86] Cox B.J. Object-Oriented Programming: An Evolutionary Approach Addison-Wesley
Publishing Company 1986

[Die 89] Dietrich R. A Preprocessor Based Module System for Prolog in: Proceedings of the
TAPSOFr, Barcelona, 1989

[EBHL87] I-I. Ehrig, P. Boehm, U. Hummert, and M. Loewe Distributed parallelism of graph
transformation, in 13th International Workshop on Graphtheoretic Concepts in Computer
Science, pages 1-19, Springer Lecture Notes in Computer Science 314, Berlin, t988

[EM85] H. Ehrig, B. Mahr Fundamentals of Algebraic Specification 1, Equations and Initial
Semantics. EATCS Monographs on Theoretical Computer Science, Vol. 6, Springer-Verlag
(1985)

~M90] H.Ehrig, B.Mahr Fundamentals of Algebraic Specifications 2 : Modules and Constraints.
EATCS Monographs on Theoretical Computer Science, Vol. 21, Springer-Verlag (1990)

378

[Fey 88] W. Fey Pragmatics, Concepts, Syntax, Semantics, and Correctness Notions of ACT TWO:
An Algebraic Module Specification and lnterconnection Language. Diss. TU Berlin 1988; also
Techn. Report No. 1988/26, TU Berlin, FB 20

[FGMO 87] K. Futatsugi, J.Goguen, J.Meseguer, K. Okada Parameterized Programming in OBJ2 in
Proc. 9th Intl. Conf. on Software Engineering, ACM 1987 pp51-60

[FJ 89] Feijs L.M.G., Jonkers H.B.M. METEOR and Beyond: Industrializing Formal Methods in:
K.H. Bennett (ed.): Software Engineering Environments: Research and Practice John Wiley &
Sons 1989

[FKG 90] Finkelstein,A. Kramer,J. Goedicke, M. ViewPoint oriented Software Development in Proc.
3rd Inil Workshop Software engineering & its Applications, Toulouse 1990

[GDS 89] Goedicke M., Ditt W., Schippers H. The H-Language Reference Manual - Version 0.1
Research Report No. 295, University of Dortmund, Department of Computer Science, January
1989

[GE90] M. GroBe-Rhode, H. Ehrig Transformation of Combined Data Type and Process
Specifications Using Projection Algebras. Technical Report No. 1990/1, TU Berlin, FB 20

[GM87] J.A.Goguen, J.Meseguer Unifying Functional, Object-Oriented and Relational Programming
with Logical Semantics. in: Research Directions in Object-Oriented Programming, ed. by
B.Shriver and Peter Wegner, MIT Press, pp. 417-477, 1987

[Goe 90] Goedicke,M Paradigms of Modular Software Developmen" in Mitchell R.J. (F.d); Managing
Complexity in Software Engineering; lEE Computing Series, Vol 17 Peter Peregrinus,
Stevenage, England 1990

[Gro89] M.GroBe-Rhode Parameterized Data Type and Process Specifications Using Projection
Algebras. in: Categorical Methods in Computer Science with Aspects from Topology,
H.Ehrig, M.Herrlich, H.J.Kreowski G.Preul3 (eds,), LNCS 393, Springer-Verlag (1989),
pp. 185-197

[GTW76] J.A. Goguen, J.W. Thatcher, E.G. Wagner An initial algebra approach to the specification,
correctness and implementation of abstract data types IBM Research Report RC 6487, 1976.
Also: Current Trends in Programming Methodology IV: Data Structuring (R. Yeh, ed.),
Prentice Hall (1978), 80-144

[Hei 89] Heimbigner D. P4: A Logic Language for Process Programming in: Proceedings of the 5th
International Software Process Workshop

[KMS 89] Kramer, J. Magee,J. Sloman,M. Constructing Distributed Systems in Conic in IEEE
Transactions on Software Engineering, Vot SE 15 No 6 June 1989

[Kra 90] Kramer, J. Configuration Programming - A Framework for the Development of Distributable
Systems Proc. of IEEE Int. Conf. on Computer Systems and Software Engineering
(CompEuro 90), Tel-Aviv, Israel, May t990, 374-384.

[Mey 88] Meyer,B. Object-oriented Software Constrcution Prentice Hall Intl. Series in Computer
Science, London, 1988

[MHT 90] R. Milner, M. Tofte, R. Harper. The Definition of Standard ML MIT Press, 1990
[Moo 89] Moon, D.A. The CommonLisp Object -Oriented Programming Language Standard in Kiln,

W. Loehovsky,F. (eds) Object Oriented Concepts, Databases, and Applications. ACM Press,
Addison Wesley, New York 1989

[Mye75] Myers G.J. Reliable Software Through Composite Design VanNostrand/Reinhold 1975
[PEA 88] The Peacock Project The Peacock Language Reference Manual Deliverable, Brussels, March

1988
[Res 89] Resnikoff, H.L. The Illusion of Reality Springer Verlag,New York 1989
[Rob 90] Rohen,.M. Semantics of composed modular logic programs in a progamming environment

with integrated object inheritance mechanisms (in german), PhD.Dissertation forthcoming
University of Dortmund, Dept. of Computer Science 1990

[See 87] Seehusen,S. Determination of Concurrency Properties in Modular Systems with Path
Expressions Dissertation, University of Dortmund, Fachbereieh Informatik, 1987 (in german)

[Sim 84] Simon,H.A. The Sciences of the Artificial 2nd Edition, The Mit Press, 1984
[Str 86] Strouslrup B. The C++ Programming Language Addison-Wesley, Menlo-Park (California),

1986
[Wir 86] Wirsing M. Structured algebraic specifications: a kernel language Theoretical Computer

Science 42, 1986
[Wir 88] Wirth N. The Programming Language Oberon Software Practice and Experience, No. 18,

1988

