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Abstrac t  The importance of a precise definition of what constitutes a so f tware  
component and how to describe it have become critical issues in the con- 
siderations about.enhancements of the software development process in gen- 
eral and reuse of software pieces in particular (see e.g. [Boo 87]). We con- 
sider these issues by first determining some requirements for component de- 
scription languages. Based on that we discuss the R-language as a candidate 
for a component description language. The H-language was developed pri- 
marily for the specification of distributed modular systems, where the no- 
tions of data abstraction and concurrency play an equally important role. 
After describing the underlying concepts and the syntax of the R-language 
we outline an attempt to define its formal semantics by means of algebraic 
module specifications. 

1 The Need for Component Description Languages 
In the short history of software engineering software development methods with associ- 
ated languages have been developed in order to improve the software development pro- 
cess. Due to the increasing complexity of the problems attacked in current software de- 
velopment processes aU these methods and languages are required to provide means for 
the support of large development teams with varying members. Furthermore, in order 
to improve the productivity of these teams and the quality of the developed software 2 
they are also required to support the reuse of existing software components at any desir- 
able level of abstraction. 

For both issues a precise notion of the term software component and appropriate lan- 
guages for their description are crffical issues. We concentrate here on the languages for 
the description of software components called CDLs for short (Component Description 
Languages) rather than the methods. Concerning a comparable approach w.r.t, methods 
we refer to the concept of ViewPoints [FKG 90]. In order to judge to what degree a 
CDL supports team-work and reuse we determine some requirements a CDL should ex- 
hibit. Then we discuss to what degree several CDLs satisfy these requirements. 

1 Part of the work reported herein was funded by the CEC under the ESPRIT I Project PEACOCK (266), by the Minislry of 
Wissenschaft and Forschung of Nordrhein Wesffalen and by the German Ministry for Research ~Mb-T) under the Eureka 
project ESF (Grant-No. ITS 8802) 

2 The term software not only means source or object code but all other types of documents produced during a software 
development process like e.g. requirements specification, design,.. 
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1.1 Requirements for Component Description Languages 
In order to support the work of large teams, a CDL must allow to divide the description 
of a complex software system into possibly independent components which can ulti- 
mately be conquered by individual team members. This system decomposition will not 
fall from heaven. A CDL therefore should enforce a clear component concept. This 
helps during system decomposition to identify the components. Furthermore, it assures 
that there is a clean semantics for the composition of the system out of these components. 

Nevertheless, a decomposition will not be done as a single shot, but rather evolve during 
the development process. A CDL therefore must allow an incremental system decom- 
position. This requires particularly, that components can be described at any level of 
abstraction in the same way. This uniformity assures, that at any point in time of a de- 
velopment process a system is composed out of homogeneous but maybe different ab- 
stract components. It is worth noting, that in this context abstraction has a dual meaning. 
At first it refers to the complexity of the component. Secondly it refers to the level of 
precision of its description. 

Such an incremental development approach requires, that the components can be de- 
veloped independently to a large extent. A prerequisite for that is, that a component has 
a high internal cohesion and a low extemal coupling [Mye 75]. This can be achieved by a 
clear component concept in which components interact only via well defined interfaces. 
A CDL therefore should provide means for the precise definition of component inter- 
faces. In order to avoid ambiguities and to enease reuse, precise definition not only 
refers to the syntax but also to the semantics of the interface. 

The last requirement is that a CDL should provide means for a structured component 
description. In particular, it should allow to describe different properties of a compo- 
nent separately in a dedicated formalism. Furthermore, as some of these aspects might 
be irrelevant in one context while some new aspects become important, a CDL should 
provide a concept for the flexible omission or addition of the description of the various 
aspects of a component. 

All these requirements are independent from a specific application domain and we don't 
claim that they are the only important ones. But they still allow to evaluate sample CDLs 
w.r.t, their suitability for large development teams and for reuse. In that evaluation we 
concentrate on languages for the design and implementation of software systems, as the 
I-I-language is meant to support these steps in a software development process. 

1.2 Evaluation of Component Description Languages 
None of the requirements for a CDL is met by the imperative programming languages 
like e.g. Pascal or C as ultimately a system in these cases is just a single program. The 
only kind of component is that of a procedure so that a system is just a set of interrelated 
procedures. This kind of procedural abstraction is not sufficient for programming in the 
large. The same is analogously valid for languages allowing functional programming 
like LISP and the logic programming language PROLOG. 

Some descendants of these languages overcome this drawback. Modula-2, Modula-3 
[CDGJKN 89] and OBERON [Wir 88] as the descendants of Pascal provide the notion of 
modules as a component for programming in the large. Furthermore, they allow to 
precisely define the syntax of a module interface. Ada adds to these languages the pos- 
sibility to describe generic modules and to specify exceptions. But they all still lack 
w.r.t, the other requirements. 
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The same holds for the descendants of C like C++ [Str 86] and Objective-C [Cox 86]. But 
a disadvantage of these and some other so called object oriented languages like Simula, 
and Smalltalk is that they rely on the inheritance- and use-relation between their objects 
without the possibility to define the interfaces precisely. W.r.t. the object-oriented pro- 
gramming language Eiffel [Mey 88] provides more support. Eiffel also offers the inheri- 
tance relation and a use-relation but allows to control the use-relation by an explicit 
(syntactic) interface definition. Furthermore, due to controlled export it is possible to 
built up configurations of classes, which can't be accessed by other ones via the use-rela- 
tionship. But the problem with that is, that the inheritance relation is not controlled by 
that interface definition. A further aspect worth noting is, that the Eiffel environment 
provides tools which resolve the inheritance relation and generate a complete interface 
description. This complete interface description also covers some semantical information 
by means of assertions. A similar situation can be found for the object oriented extension 
of CommonLisp the so-called CLOS [Moo 89]. Here multiple inheritance etc. is sup- 
ported without control via explicit interfaces. A different situation applies to modem 
functional programming languages which in contrast to Lisp have a static type system. 
ML [MHT 90], for example, has a well developed module concept although it remains on 
the level of syntactic interface declarations. 

An analogous development has been taken place w.r.t, descendants of Prolog (c.f. [Die 
89]) like M-Prolog or PROTOS-L [Bei 88], which particularly add a kind of module 
concept and the possibility to explicitly define their interfaces. PROTOS-L furthermore 
provides a type system. P4 [Hei 89] adds to that the investigation of a inheritance relation 
and of concurrency. Other relations for the composition of logic programs are discussed 
in [Roh 90]. 

The precise definition of such relations between components and their composition are 
the main contribution of the algebraic specification languages OBJ-2 [FGMO 87], ACT- 
TWO [Fey 88], COLD [FJ 89] and ASL [Wir 86]. There main drawback is, that they are 
restricted to the specification of the static properties of a component. A further disad- 
vantage of some of them is, that they don't provide means for a semantical complete in- 
terface definition. 

At the same time it is clear that each language cited has its own specialities to express 
certain aspects of software components quite well and naturally and falls short in other 
aspects. On one hand a description in a declarative style using functional or logic lan- 
guages is desirable to express abstract, high level properties. On the other hand the same 
languages are less suited to express concurrent distributed systems with sideeffects on a 
detailed level. Thus it is necessary to offer a combined approach to describe software 
components on various levels of abstraction without loosing structural and semantic in- 
formation when moving from one level to another of these levels, e.g. by adding more 
detail to a description. 

In the following we now introduce the H-language as such an approach. First, important 
concepts of the H-language are explained using fragments of an example specification. 
Then an outline for a formal semantics in an algebraic setting is given. 

2. The H-Language as Component Description Language 
We now discuss a candidate for a Component Description Language, the l~-language. It 
was developed within PEACOCK [GDS 89], [Goe 90]. The aim of PEACOCK was to 
develop a specification language which provides only one kind of building block for 
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software systems and corresponding specification concepts. This is quite near to the 
notion of component although other desirable features to describe components are under 
development e.g. the notion of quantitative performance or non standard transaction 
concepts for distributed systems. 

First a survey of basic assumptions for the I-I-language is given. Then the conceptual 
model of the software structure is described. The chapter concludes with a survey of the 
language concepts of l-I using an example. 

2.1 Basic Assumptions 
The l-I language is aimed at the specification of distributed modular systems, where the 
notions of data abstraction and concurrency play an equally important role.The main 
concept of H is an object oriented structuring of software, where objects serve as the 
unit to encapsulate data by operations. A software system comprises a hierarchy of such 
objects. Thus we follow arguments of [Sim 84] and [Res 89] and apply the general de- 
sign principle divide & conquer. In describing properties of objects the developer wants 
the possibility to define the 'type' or 'class' of objects in order to use instances of it, ob- 
jects, to configure an actual system. A 'class' of H-objects is called a CEM (Concur- 
rently Executable Module and its associated objects). Thus the properties of objects are 
specified in a CEM specification for which the I-[ language is the appropriate formalism. 

Another important requirement for 17[ was proper support for incremental develop- 
ment.This means that development is done in small increments or steps that address dif- 
ferent aspects of the software product. Such a working schema is in our and many other 
people's opinion superior to what might be termed the traditional or "big-bang" ap- 
proach. 

The H-language employs the concept of views to structure the specifications of object 
properties. Views are partial specifications each using its own representation scheme, to 
express the desired properties. This concept is based on the principle of separation of 
concerns and hence forms a good basis for incremental development. This means that by 
looking at a single view at a time we ignore the other views for a moment. 

How can incremental development of component based software systems be supported? 
In the H-language we separate the incremental development of a system architecture 
from the incremental development of each CEM specification. This approach is similar 
to that used in the CONIC toolkit [KMS 89] where configurations of logical (processing) 
nodes are specified independently of the nodes" implementation. Thus the development 
using I-[ is characterized by a frequent switch back and forth between the development 
of single components - CEM specifications - and configuration of components - CEM 
and related object interconnections. 

2.2 Conceptual model of the software structure 
Objects are the building blocks of the software in its running form 3. This means that 
objects provide a capsule for a piece of the entire system state and some operations, 
which are the only means to inspect and / or manipulate that piece of state. This concept 
is depicted in figure 1. 

3 In some authors" terminology our approach is object based since 1-1 does not support inheritance as Srnalltalk and Eiffel do. 
Instead we are in favour of explicitly stating all properties used from other components including their semantics as far as it 
is possible. 
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Fig. 1 The structure of objects 

Objects provide operations which can be used by other objects. Since the object's opera- 
tions can manipulate the object's state (shaded circle enclosed by rectangle in the figure 
above) a superior object uses the state of the underlying objects as well. Thus we say that 
a complex object is constructed from lower level ones in terms of their state. However, 
the only way objects communicate is via operation call. In the case an operation call is 
made to an object it controls when the requested operation is executed since it must pre- 
serve its internal consistency. This is also the way concurrency comes in naturally. Since 
the various operations an object offers can be invoked any time this concept includes 
parallel invocations of different or the same operation(s). The object, of course, can al- 
low the execution of more than one execution request at a time if this situation is not en- 
dangering its consistency. 

An entire system is represented by an object configuration. This has to be a hierarchy 
which means that the directed graph derived from the objects" usage relation has to be 
acyclic. This also allows for multiple root-objects and shared objects as well. These are 
purposely built into the concept since they enable to structure distributed and especially 
autonomous loosely coupled cooperating systems. In such systems often peer level com- 
munication is desired. This is accomplished by sharing a communication-channel object 
between two or more top level objects of an object configuration. 

In the following we will use the example of the patient monitoring system (see also 
[Kra 90]). 

n e ~  
remove..pat[i]~ ward_manager ~remove_patient[i] 
set range[i] ~//near_patient[I] ~ 
remove_palient[1] / new_patient~N~ // "'" 

set_range[l]/// ]1 nurse ] 
] ] / get_readings[l] 

11/ / / , , / ~ t  

I m tor [-77;--I 

Fig. 2 Object structure of a sample patient monitoring system 
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Parts of this example will be used in the sequel of the paper to highlight features of the 
H-language. As with the other object oriented approaches the structuring of a system 
with H objects yields a natural decomposition where the artificial objects resemble the 
real world entities. In our examples these are the patients, the nurse and the ward 
manager. The relations between these objects reflect the various real world relations e.g. 
responsibilities and tasks of persons and equipment. The figure 2 above shows the entire 
object configuration of a sample patient monitoring system. Thus the system consists of 
3 classes of objects. The ward_manager object creates and removes patients from the system 
while the nurse object scans the various patient objects for life critical conditions. Thus 
central to the system are the monitored_patient - objects. They have the task to check a real 
patient's values, like blood pressure, in order to check whether they fall within a given 
patient specific safety range. If a value falls outside the safety range a bed alarm is set. 
Consequently monit0red..patient objects offer operations like set_range for changing the safety 
range of values, get readings for retuming the current patient's values and get_alarm_status for 
returning whether the alarm is on or not. The nurse & ward_manager -objects share each 
m0nit0red_patient object. The m0nit0red_patient objects are not primitive, but consist of a configu- 
ration of 4 objects (not including the real human being see figure 3). The central 
component is the monitor whose main task is to constantly read the scanner'S value, check it 
with the range stored in the range-component and set the bedalarm accordingly. The scanner 
object is shared between the monitor and the real patient. This has to be interpreted that the 
sensors of the scanner are set by the patient's physical conditions. 

monitor 

Fig. 3 Object configuration of a monitored patient 

2.3 Survey of the H-language concepts 
We first introduce in this chapter the notion of CEM specification as a means to describe 
components. Thus a CEM specification serves as a description of all its instances -the 
objects. There are three views available to describe such components in isolation from 
other ones. These views will be introduced below. Then a description follows of how 
such component descriptions can be configured to form new component descriptions and 
eventually entire system specifications. This is reflected in the H-language's syntax 
which starts with the rule: 

<component_specification> ::= <cem_specification> 1 <configuration_specification> (G1) 

Thus a component is described by either a CEM specification or a configuration of such 
component specifications (see chapter 2.3.2 below). 

2.3.1 CEM Views 

In order to achieve the desired information hiding within the hierarchical structure of 
components comprising the system each CEM-specification is divided into 4 sections: 
export ,  import, common parameter and body. The task of the export and import sec- 
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tions is to describe the interfaces to other CEM specifications. The import is a so called 
formal one which means that only requirements to potential other CEM-specifications 
are stated. The common parameters section contains the specification of those properties 
which are imported and exported unchanged thus allows to see some (specifier chosen) 
parts of the import at the export interface. The body describes the realization of the ex- 
ported properties of a CEM in terms of the imported ones. This structure of a specifica- 
tion is orthogonal to the structure of views i.e. in general each view has these 4 sections. 
Thus a CEM specification is given by 

<cem_specification> ::= "CEM" <cem__name> 
["general description" <comment>] 
[<type_view_specification>] (G2) 
[<imperative_view_specification>] 
[<concurrency_view_specification>] 
"end CEM" <cem_name> 

Type View 

In the type view a description of the static (i.e. execution independent) properties of a 
CEM is given. It can also be seen as to define the 'functionality' of a CEM. This is done 
by specifying an abstract data type using algebraic techniques. Thus we define on a very 
abstract level the execution effects of all operations of a CEM, i.e. the effect a CEM's 
operation can have in principle. 

In order to achieve an abstract data type (ADT)-oriented structure of the desired soft- 
ware system it is important for our concept that each CEM may introduce at most one 
new sort with associated operations. Thus with the exception of the import and common 
parameter section each of the aforementioned sections in the syntax rule defines one 
ADT algebraically by giving sorts, operations and equations. The import and common 
parameter resp. are defined as a number of ADT specifications each defining properties 
of a CEM specification to be imported. These can be either satisfied by a single CEM 
specification or a configuration of these later on (see chapter 2.3.2). The body describes 
the CEM's underlying ADT. The export makes only a part of this abstract data type ac- 
cessible outside by exporting those operations whose execution does not unveil the inter- 
nal construction of the ADT. Thus the abstract data type of the export is a sub-data type 
of the one defined in the body. 

In our example the CEM MONITOR introduces the new sort Monitor. In the export the associated 
operations create, OeLreadings, seLrange, geLrange and geLalarm__stalus are stated. Important proper- 
ties are given by some equations stating, for example, the relationship between the 
alarmstate and the patient's value readings. 

CF.M MONITOR 

type view speclficaUon 

export 
sort Monitor 

opera~ 
opera~ 
oper=~ 

equaf~ 

create : Range -> Monitor 
geLreadings: Monitor -> Value 
seLrange : Range Monitor -> Monitor 
rngl,rng2: Range 

seLrange(rngl,create(mg2)) = create(rngt) 
operation get_range : Monitor-> Range 
variables rn: Monitor; rag: Range 
equa~ms 
get_range(seLrange(rng,m)) = rng 
geLrange(create(rng)) = m g  

operation get_alarm_status : Monitor -> Boolean 
valables m: Monitor; 

geLalarm_statue(m) = 
within_range(geLreadings(m),geLrange(m)) 

Fig. 4 Export section of the type view specification of CEM MONITOR 
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In the common parameter section the properties of e.g. Range are stated. This specifies 
that a sort and 3 operations are required (and exported as well) where the operation 
~thin__range provides the service to check a value against a safety range 

sort Scanner 
operaf~m makescanner :-> Scanner 
opera~n read : Scanner-> Value 

ewamn I~mme~s 
Boolean 

• [specilication of the usual Beoleans comes here]..• 
Range 

~*rat ton withinjange : Value Range -> Boolean 

v a r l ~  r: Range; v: Value 
ecpaliw= 
within_range(v,r) = and(leq(min(r),v),leq(v,max(r))) 

operation min : Range -> Value 
operation max: Range -> Value 
' , ~  r: Range; 

leq(min(r),max(r)) = true 
sort Value 

~-~taUon leq : Value Value -> Boolean 

Fig. 5 Fragment of the import and common parameter type view specification of CEM 
MONITOR 

In the import section properties of Scanner, Bed_alarm etc are stated. In the body section the 
various exported operations are defined along with some internal not exported auxiliary 
operations. For example the operation check_range expresses the crucial consistency condi- 
tion of the CEM's objects that the bed__aJarm component reflects the relation of the current 
patient's value reading to the safety range properly. 

boay 
¢ 0 ~  of SOrt Monitor IS lnlernal 

operation make_monitu: Range Scanner Bed_alarm -> 
Monitor 

opera,on create :Range -> Monitor 
variables rng: Range 
equallom 
create(rng) = make_monitor(rng, make_scanner, 

make_bed_alarm) 

o ~ l o n  geLreadings : Monitor -> Value 
Yadal~es v:Value; rag: Range; se: Scanner; 

bed_al: Bed_alarm 

geLreadings(make_monitor(mg,sc,bed_al)) = read(sc) 

~n 'a~on setjange: Range Monitor -> Monitor 
variables rngl,rng2:Range; sc: Scanner; 

bed_al: Bed_alarm 

eomom 
seLrange(rngt,make_rnonitor(rng2,sc,bed._ai)) = 

check_range(make_monitor(rngl ,sc,bed_al)) 
~x,  ta~on geLrange: Monitor -> Range 
v a ~  rag:Range; sc: Scanner; 

bed__al: Bed alarm 

geLrange(make_monitor(mg,sc,bed_al)) = m g  
checkrange: Monitor -> Monitor 
nag: Range; so: Scanner; bed_al: Bed_alarm 

check range(make_monitor(rng,se,bed_al)) = 
make_monitor(rng,sc, 
seLalarm(within_range(read(sc),rng),bed_al)) 

q;~,tallon get_alarm_status : Monitor -> Boolean 
varlabl~ rng: Range; sc:Scanner; bed_al: Bed_alarm; 

get_alarm_status(make_monitor(mg,sc,bed_al)) = 
get_alarm(bed_al) 

Fig. 6 Body section of the type view specification of CEM MONITOR 

This shall suffice as an example for the type view specification. 

Imperative View 

The imperative view contains specification information which relates to how a request to 
execute an operation - if admitted - is actually carried through including the desired 
side effects of executions. In principle the operations which are specified in the type 
view in a functional style are defined imperatively here. Therefore an operation is called 
a p rocedure  in the imperative view. The execution aspect is specified by introducing 



366 

thread(s) of control. Thus in the body for each operation it is defined which thread(s) of 
control to follow when the operation is executed. Also the possibility exists to fork one 
thread of control into more than one thread of control in parallel. Thus the imperative 
view describes effects on 'storage' and algorithmic concurrency. 

The detailed specification of the operation in the imperative view is contained in the 
body section. In the remaining sections it is necessary to give the procedure headings of 
the operations which are exported and imported respectively. The imperative view 
specification for the export section and for each ADT listed in the common parameter 
and import section is given by a list of procedure headings. Thus e.g. 

Imperative view specification procedure set_range (In m : Range Inout m: Monitor ) 
export type Monitor procedure get_range (In m : Monitor) returns Range 
procedure create (in rag: Range ) returns Monitor procedure get_alarm_status (in m : Monitor ) returns Boolean 
procedure get_readngs(In m : Monitor) returns Value 

Fig. 7 Export section of the imperative view specification o f  CEM MONITOR 

In_parameters may only be examined within the procedure's body while an 
in0ut_parameter (as in procedure seLrange) may be altered as well.A procedure which has 
no in0uL.parameter is returning a new object of the given type. 

In the body, however, the operations are fully specified in an imperative style. The 
primitives of the sub-language available for describing the imperative properties of 
operations are assignment and procedure invocation. The usual control-flow combina- 
tors like sequence, selection and repetition are available including the parallel combina- 
tor e0begin..e0end to express the potential parallel execution of more than one statement se- 
quence. Here we give the imperative version of check range, where an auxiliary operation 
select bed alarm is used to access the bed_alarm-component of the MONITOR-object passed as pa- 
rameter. Such access operations are unnecessary in the type view since the argument 
matching of the equational logic used there expresses the same kind of access. 

body a¢l 
_ procedure checking(Inout m:Monitor) 
procedure check_range(Inout re:Monitor) begin 
¢lo¢iare rag:Range; while true() do 

v: Value; check_range(m); 
begin end 

rng:= getjange(m); end 
v:= gel_readings(m); .... 
set_alarm(within(v,mg),select bed alarm(m)); 

Fig. 8 Fragment of the body section of the imperative view specification of CEM MONITOR 
In order to express the constant checking of the patient's value - a typical control-flow 
oriented problem not expressible in the equational logic of the type view - a new proce- 
dure for this purpose is introduced: checking as given in the above fragment of the impera- 
tive view body. 

Concurrency View 
The concurrency view defines the necessary ordering of operation executions to main- 
tain the consistency of the data object by specifying the restriction of the potential full 
concurrency. Thus in this view the question is addressed when a request to execute an 
operation can be granted. We use the notation of path expressions over operation names 
for this purpose. [CH 74] introduced path expressions and [See 87] provided the work 



367 

on modular path expressions which is also the basis for our work. In the various sections 
(export, common parameters, import, and body) the restrictions defined by a path ex- 
pression in each of the sections play slightly different roles. The path expression in the 
body defines the necessary execution orderings to maintain the integrity of the object. 
The path expression in the export gives the information which degree of concurrency 
can be delivered by each object of the CEM. This can be the same as or less than the 
concurrency possible in the body. From the algorithms in the body the requirements to 
the imported objects are derived. The desired degree of concurrency to be delivered by 
imported objects is defined as a path expression in the import section. 
The MONITOR'S export and partial import section of the concurrency view is shown below 
and defines that the modifying operation set_range have to run exclusively while opera- 
tions which merely inspect a MONITOR object (geLreadings,get_range,get alarm_status) can  be exe- 
cuted any time unless a modifying operation is running. In the import the path expres- 
sion specifies the requirements that any reasonable scanner has to be created first and 
then can be inspected by the read operation any time. 

concun~cy view ~ (*get._alarrn_staltls*) } 
export I (*set. range *)] 
path ~presslon Import 

create;[{ (*get_readings*) + type Scanner 
(*get_range *) + p a l t ~ e ~ o n  

make_scanner;{read} 

Fig. 9 Fragment of the concurrency view specification of CEM MONITOR 

2.3.2 System Views 

A system is a configuration of objects. Therefore it is necessary to discuss the important 
issue of connections between CEM specifications to describe system properties. Thus 
configurations of CEM specifications and related object configurations are considered 
now. For distribution and other system aspects see [PEA 88]. Syntactically a configura- 
tion specification is the 2nd alternative of syntax rule GI" 

<configuration_specification> ::= "configuration" <configuration_name> 
["general description" <comment>] 
<type_configuration> (G3) 
[<object_configuration>] 
"end configuration" <configuration_name> 

Three aspects are defined in the configuration specification: 

1) how objects are connected in principle according to their type, 
2) which objects exist in the configuration, 
3) which of the objects are shared. 

The first aspect is defined by actualizing the formal import along the type view 
(nonterminal <type_configuration>). The latter two aspects are expressible by the sub- 
language given by the nonterminal <object_configuration>. 

For an actualization of the formal import the condition for a match between the import 
of an importing and the export of the imported CEM is that 

- after possible renaming the signatures match (i.e. each required sort and opera- 
tion is available in the export), 
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the mapping defined above is a specification morphism between the two ADTs 
i.e. the properties stated in the requirements (import section of importing CEM) 
are satisfied in the ADT in the export of the imported CEM, 

- the procedure headings of the imperative view match, i.e. in and inout parame- 
ters must correspond, 

- the path expressions defined in the interface sections of the concurrency view 
have to be compatible. 

If more than one CEM specification is actually imported, then first the imported CEM 
specifications are internally "unified" and then used to fulfil the import requirements of 
the importing CEM specification. This process is based in the type view on those con- 
cepts of union and composition of module specifications described later in chapter 3. 
The match in the imperative view implies a simple syntactic check which is sufficient, 
since the relevant execution invariant information about an operation is already covered 
by the involved type view specifications. For the concurrency view the various possible 
degrees of compatibility are defined in [See 87]. Below a fragment is given which shows 
how these CEM specification connections are established in the case of our monitored_patient 
example which assumes that suitable CEMs exist. 

configuration MONITORED_PATIENT 
type configuration 
export 

Monitored~oatient : Monitor 
body 
component Incarnations 

Monitored_patient: 
Sc: 
Rng: 
Bed: 
Mes: 
Pat: 

emvim'ent emr, ee~m 

MONITOR; 
SCANNER_DEVICE; 
TUPLE OF MEASUREMENT; 
BED 
MEASUREMENT; 
REAL_PATIENT; 

connection of Monitored_patient 
from Sc Import 
sort Scanner IS actualized by Scan~r_device 
operaeons 

rnake_sca~ner Is actualized by n e w _ ~  
read Is actualized by return meaa~,ement 

from Bed import 
sort Bed_alarm Is actualized by Bed 

operatiorm 
get alarm status Is actualized by return_alarm_signal 
make_bed a l ~  Is actualized by make_bed 
seLalarm Is actualized by seLalarm_signal 

from Rng Import 
sort Range Is actualized by Tuple_of_measurement 
operations 

rain Is actualized by first 
max Is actuaUzed by second 
within is actualized by in interval 

front Mes Import 
sort Value Is actualized by Measurement 
q~raltons 

leq is actualized by leq 

contraction of Pat 
from Sc import 

sensor IS actLmllz~l by ,~mn~r reed 

set_sensor Is actualized by receivemeasurement 

Fig. 10 Fragment of the type connections of the MONITORED_PATIENT configuration 

In the above fragment one can see that the same segmentation into sections is maintained. 
The export is given by an actualized so called incarnation of CEM MONITOR. Thus the export 
of this actualized CEM is accessible from outside as the component MONITORE0_PATIENT. In 
the body appropriate other component specifications are named and properly connected 
via specification morphism declaration (which are given by the renaming of sorts and 
operations). 

The crucial sharing of the scanner object and the real patient has to be expressed in the 
object configuration section of the MONITORED_PATIENT configuration. Below we give the 
fragment of the object configuration specification stating exactly this. 
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~ie~ ~guration 
export 
configuration action new_patient( In r: Rng out 

re:Monitored_patient ) 
{sets up a new configuration of monitor, patient etc 
and shares the scanner between patient and monitor.} 

configuration action remove_patient(..) 

body 
contiguraUon action newpatient( In r: Rng out 

m:Monitored_patient ) 
declare 

p: Pat; 
ena declare 

Pat.new_real_patient(p); 
Monitored_patient.create(r,m); 
share Pat.geLscanner<p> with 

Monitored_patient.select_scanner<m> 
end 

{select_scanner of Monitored_patient and get_scanner of 
Realpatient are subcompenent accessing operations net stated 
in the other views for the sake of shortness] 

Fig. 11 Fragment of the object configuration specification of the MONiTORED_PATIENT 
configuration 

The so-called configuration actions are able to create and manipulate configurations of 
CEMs" objects. In the example above the configuration action new_patient introduces a new 
real patient by Pat.new_real_patient and a new object of Monitored_patient by the appropriate create 
operation. Then the share configuration action declares the scanner component of both ob- 
jects as a shared object between both newly created objects. Thus the object configura- 
tion shown in figure 3 comes into existence. 

Configuration actions shall to some degree (in contrast to ordinary operations) resemble 
those activities in the initial configuration and later management of systems which cannot 
in principle or not economically implemented by some software based mechanism. In 
our example this is the connection of the real patient to the scanner device expressed in 
the configuration action above as the share action. 

3. Formal Concepts for Functional Semantics of [ ]  as COL 

In this section we describe the semantical basic for the I-I-language especially for the 
type, type connection, imperative, and concurrency view introduced already in section 2. 
We use algebraic module specifications and their interconnection mechanisms (see [BEP 
87], [EM 90] for the type view and type-configuration of the configuration specification, 
and formal operational semantics for the imperative and concurrency views. The formal 
basic for all that are algebraic specifications which originally where developed for data 
type specifications (see [GTW 76]). Therefore, let us start with a short review of alge- 
braic specification. 

3.1 Algebraic Specification 

A data type in a programming language consists of data structure together with opera- 
tions that create and modify this structure, where the operations are given by pro- 
gramming language constructs, like functions and procedures. The basic idea of an alge- 
braic specification is to specify data types independent of any specific representation or 
programming language. 

1. Constituent Parts of Algebraic Specification 
An algebraic specification SPEC = (S, OP, E) consists of a signature (S, OP) with a set 
S of sorts and a set OP of constant and operation symbols over S, and a set E of equa- 
tions or axioms over OP. Each sort represents a domain of a data structure, and each 
operation symbol represents an operation on that domains. More precisely an operation 
symbol declaration 

N:sl ... sn---> s (n > 0), 
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consists of an operation name N, a list of argument sorts sl ..... sn and a range (or result) 
sort s. 

So far we only have names for domains of data structures and declarations for opera- 
tions but no description of what the operations should do. The third component of 
SPEC, the set E of equations,  provides this description in an "axiomatic" or in a 
"constructive" way. 

Algebraic Specifications SPECi=(Si,OPi,Ei) for i=1,2 can be related by a specification 
morphism f:SPEC1---~SPEC2 which is a pair t=(fs:S1--~S2, fop:OPl-~OP2 of functions 
such that for each N:sl...sn--~s in OP1 we have fop(N):fs(sl).. .fs(sn)-~fs(s) in OP2 - 
then t is called signature morphism-, and for each e in E1 the translated equation f#(e) is 
provable from E2 with the equational calculus. 

2. SPEC-Algebras, Data Types and Semantic8 
Given an algebraic specification SPEC = (S, OP, E) a SPEC-algebra A is a model of the 
specification SPEC which consists of 

domains As for each s~ S (defining the data structure) 
constants NA ~ As for each N: ~ s in OP 

- operations NA:Asl × ... × Ash -4 As for each N:sl ... sn ~ s in OP(n _> 1) 

such that all equations in E are satisfied. 

A SPEC-algebra A can be considered as a data t ~ e  over SPEC if it is termgenerated, 
i.e. each ae As ~ (se S) can be constructed by a term of constants and operations of A. 

The initial semantics of an algebraic specification SPEC is represented by the quotient 
term algebra TspEc defined as quotient of the termalgebra Tsi6 of all terms over the 
signature SIG = (S, OP) by the congruence generated by all the equations in E. A simi- 
lar construction is possible for positive conditional equations and universal Horn axioms 
but not for general first order axioms. The initial semantic of SPEC is the abstract data 
type (ADT) defined by SPEC. 

In some cases it is also useful to consider the classical or loose semantics of an algebraic 
specification SPEC which is given by the class of all SPEC-algebras or - as preferred by 
some other authors - the class of data types over SPEC. 

Main constructions and results for equational algebraic specifications are existence and 
uniqueness (up to isomorphism) of  initial and free algebras, the Birkhoff- 
Characterization of equational classes, the equational calculus and term rewriting, and 
correctness and extension criteria of specifications as given in chapters 1 to 6 of [EM 
85]. 
3. Algebraic Specifications with Constraints 
The restriction of all algebras to termgenerated algebras (i.e. data types) corresponds to 
the fact that we have a "termgenerating constraint". Constraints C on a specification 
SPEC in general are some first or higher order logical conditions for SPEC-algebras A 
leading to the notion of an algebraic specification with constraints, written SPECC = 
(SPEC, C), and all SPEC-algebras A satisfying the constraints C are called SPECC-alge- 
bras. Other interesting examples of constraints are "initial", "generating", and "free gen- 
erating" constraints meaning that algebras satisfying these constraints must have certain 
subalgebras which are initial, or they are generated (resp. free generated) algebras over 
some data elements. Also first order logical axioms can be used as constraints. So, alge- 
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braic specifications with initial or loose semantics can be seen as special case of algebraic 
specifications with constraints. 

Although most of the results for equational algebraic specifications mentioned above are 
no longer valid for specifications with constraints these more general specifications are 
most important for all kinds of applications in the software development process. See 
chapter 7 of [EM 90] for more details and some basic results conceming algebraic spec- 
ifications with constraints. 

3.2 Foundations of a Formal Semantics of the Type and Type Connection 
View 

A functional semantics of the type view and type-configuration of I ]  may be given di- 
rectly by a denotational semantic description or indirectly by a translation to the module 
specification and interconnection language ACT TWO (see [Fey 88]). Because both are 
based on algebraic module specifications and their interconnection mechanisms we in- 
troduce here these concepts. 

3.2.1 Module Specification 
The importance of decomposing large software systems into smaller components, called 
modules, to improve their clarity, facilitate proofs of correctness, and support reusabil- 
ity has been widely recognized within the programming and software engineering com- 
munity. For all stages within the software development process modules resp. module 
specifications are seen as completely self-contained components which can be developed 
independently and interconnected with each other. Algebraic module specifications can 
be used to define the functional semantics of the type view of CEMs. 

1. An aleebraic module specification MOD = (EXP, IMP, PAR, BOD) consists of 
four algebraic specifications 

PAR EXP 

MOD: 
IMP BOD 

which are normally related by inclusion morphisms. The export EXP and the import 
IMP represent the interfaces of a module while the parameter PAR is a part common to 
both import and export and represents a part of the parameter of a whole modular sys- 
tem. These interface specifications PAR, EXP, and IMP are allowed to be algebraic 
specifications with constraints (see 3.1.3) in order to be able to express requirements and 
properties for operations and domains in the interfaces by suitable logical formalisms. 
Note, that - as in 1-I - the import interface describes only a formal import, i.e. the re- 
sources it requires rather then naming specific modules which provide those resources. 
The body BOD, which makes use of the resources provided by the import and offers the 
resources provided by the export, represents the constructive part of a module. 

2. The ~emantics of a module specification MOD is given by the loose semantics with 
constraints of the interface specifications PAR, EXP, and IMP, a "free construction" F 
from import to body algebras which defines for each IMP-algebra A a BOD-algebra 
F(A) freely constructed over A, and a "behaviour construction" from body to export al- 
gebras given by restriction of the free construction to the export part. 

A module specification is called (internally) g0rrect if the free construction "protects" 
import algebras and together with the behaviour construction transforms import alge- 
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bras satisfying the import constraints into export algebras satisfying the export con- 
straints. 

3. In the l~-language the (abstract)syntax of such module specifications is deemed by 

<type_view_specification> ::= 
"export" eq-SPECT1 
"import" eq-SPECT2 
"common parameters" eq-SPEC 
"body" eq-SPECT3 

where eq-SPEC is an equational algebraic specification (see 3.1.1) for the common pa- 
rameters and eq-SPECTi=(Si,OPi,Ei) for i=1,2,3 are equational algebraic specification 
torsos for the export, the import and the body respectively. These torsos are algebraic 
specifications but the operation symbol declarations OPi and the equations Ei need not be 
over the sorts Si and OPi respectively. For convenience we have here abstracted from 
the concrete syntax for algebraic specifications which can be seen in the example of sec- 
tion 2. 

4. Such type view specifications can be given a formal semantics by algebraic module 
specifications via the following semantical constroction mod-unit defined on the domains 
eq-SPECT of algebraic specification torsos, ea-SPEC of algebraic specifications, and 
mod-SPEC of algebraic module specifications together with the undefined module spec- 
ification mod-undef. 

mod-unit : eq-SPECT x eq-SPECT x eq-SPEC x eq-SPECT ~ mod-SPEC 

defined by 
mod-unit (eq-SPECTb eq-SPECT2, eq-SPEC, eq-SPECT3) = 

i f eq-SPEC ~J eq-SPECT1 e eq-SPEC, (1) 
eq-SPEC u eq-SPECT2 ~ eq-SPEC, (2) 
eq-SPEC u eq-SPECT2 tj eq-SPECT3e eq-SPEC, (3) 
SIG (eq-SPECT1) c_ Sig (eq-SPECT2 u eq-SPECT3) (4), and 
equations E1 are provable from equations EuE2uE3 (5) 

then (eq-SPEC u eq-SPECTI, eq-SPEC u SPECT2, eq-SPEC, 
eq-SPEC u eq-SPECT2 u eq-SPECT3) 

else mod-undef. 

where (1), (2), and (3) are conditions for getting (complete) algebraic specification for 
the export, import and body respectively, condition (4) reads that all the sorts and op- 
eration symbols of the export should also be declared in the body or already required by 
the import, and condition (5) requires that all the equation of the export should be prov- 
able from the equations of the body, the import and the parameter. 

The result of the semantical construction mod-unit (eq-SPECT1, eq-SPECT2, eq-SPEC, 
eq-SPECT3) is a module specification if all the conditions (1)-(5) above are satisfied. 

3.2.2 Interconnection Mechanisms 
Basic interconnection mechanisms to structure modular system specifications are com- 
position, union and actualization. Such mechanisms can be used to define the type-con- 
figuration of the configuration specification of the II-language. Other interconnections 
are extension, recursion, product and iteration (see [EM 90]). But in the following we 
only explain the basic interconnections. Each of them gets their algebraic semantic via a 
module specification constructed by "flattening" the structure. 
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1. Composition or imoort actualization: the import part of module MOD1 is con- 
nected to the export part of module MOD2. The connection is established by a specifica- 
tion morphism h=(hl,h2) which maps sorts and operations in the import part of MOD1 
to sorts and operations in the export part of MOD2 by h2 such that it is compatible with 
the map of the parameter part of MOD1 to the one of MOD2 by hl .  

MODI: 

MOD2: 

P ~ I  E ~ I  

J ~ 1  BOD1 PAR1 EXP1 
hl ~ MOD3: 

IMP2 BOD3 
PAR2 EXI'2 

IMP2 BOD2 

The result MOD3 of the composition is denoted by MOD1 °h MOD2. 

For the semantics the corresponding module specification MOD3 has the same import 
part as MOD2, the same export and parameter parts as MOD1, and a body BOD3 which 
can be constructed by textual substitution of IMP1 in BOD1 by BOD2, i.e. BOD3 = 
BOD1 +r~cn~l BOD2. 

The (abstract) syntax of such a composition of a module specification mod-SPEC1 with 
name mod-namel by another module specification mod-SPEC2 with name mod-name2 
via a signature morphism sigmor, -relating the import of mod-namel to the export of 
rood-name2-, is defined in the ]-I-language within the <type-configuration> view by 

<component_connection_description> ::= 
connection of" mod-namel 

"from" rood-name2 "import .... sigmor 

Note, that we have here abstracted from the concrete syntax of I-[ by taking terminals 
for signature morphisms and names of module specifications. 

Such a component connection description denotes the module specification Import- 
Actualize(mod-SPEC1, mod-SPEC2, sigmor) got by the following semantical construc- 
tion defined on the domains of module specifications mod-SPEC and signature mor- 
phisms SIGMOR 

Import-Actualize : mod-SPEC x rnod-SPEC x SIGMOR --) mod-SPEC 

defined by 
Import-Actualize (mod-SPEC1, mod-SPEC2, sigmor) = 

i f  mod-SPECi ~ mod-undef for i=1,2, (1) 
PAR1 c_ PAR2 (2) 
sigmor induces h2:IMP1 ~ EXP2 s. th. h2/PAR1 is inclusion (3) 
bodies BOD2 and BOD1 without IMP1 have nothing in common (4) 

then  mod-SPEC1 °sigmor mod-SPEC2 
else mod-undef 

If the condition (1)-(4) above are satisfied the composition is defined and results in a 
module specification unequal to the undefined one mod-undef. 



374 

. 

submodule 
fi:MOD0--->MODi for i=1,2. 

specification MOD0 indicated by 
Union: Two module specifications MOD1 and MOD2 are connected via a shared 

"module specification morphisms" 

MODe. ,/ 
i 

PAR1 

MODI: 
IMP1 

f2 PAR3 EXP3 
MOD3: 

IMP3 BOD3 

EX/r2 EXP1 PAR2 

MOD2~ 
BOD 1 IMP2 BOD2 

For the algebraic semantics the corresponding module specification MOD3 is exactly the 
set theoretical union in each component, if MOD0 is equal to the intersection of MODI 
and MOD2. Otherwise all those parts in the intersection of MOD1 and MOD2, which 
are not in MOD0, are duplicated. In other words each component  
SPEC3=SPECI+sPEc0SPEC2 is constructed as disjoint union of SPEC1 and SPEC2 
where, however, the SPEC0 part of SPEC1 and SPEC2 are "glued together". 

3. Actualization: The parameter part of a module specification MOD1 is connected 
by a specification morphism to the export part of a module specification MOD2. 

PAR 1 EXP 1 

MODI: h /  IMP1 BOD1 

I 
MOD2: PAR2 EXP2 MOD3: 

IMP2 BOD2 

For the semantics the corresponding module specification MOD3 has the same parameter 
part as MOD2, but the other parts are constructed as "unions" EXP3=EXP2+PARtEXP1, 
BOD3=BOD2+PAR]BOD1 and IMP3=IMP2+IMP10IMP12, where however  
IMP1=PAR1+IMP10IMP12 with IMP10 subspecification of IMP2 is assumed. 

The last two module interconnection mechanisms - union and actualization of the pa- 
rameter - are only implicitly available in l-I. Therefore we gave no syntax and semanti- 
cal construction here. 

4. As main results for module specifications we can show that the basic interconnec- 
tion mechanisms are operations on module specifications which are preserving correct- 
ness and which are compositional w.r.t, the semantics. This means that correctness of 
modular system specification can be deduced from correctness of its parts and its se- 
mantics can be composed from that of its components using their interconnections. 
Moreover, there are nice compatibility results between these operations which can be 
expressed by associativity, commutativity and distributivity results and allow the restruc- 
turing of modular systems (see chapters 2, 3, 4, and 8 of [EM 90]). 

3.3 Towards a Formal Semantics of the Imperative, (and Concurrency) View 
In the preceding sections a formal semantics for the type view and type-configurations 
of the H-language has been introduced. The aim of a semantical foundation of the whole 

PAR2 EXP3 

IMP3 BOD3 

PAR0 EXP0 

IMP0 BOD0 
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U-language is to define a formal semantics for each view, such that all views can be 
shown to be compatible; i.e. common features specified in different views have the same 
abstract semantics. Therefore it is necessary to have a well defined mathematical model 
for the semantics of a view specification. 

In this section we sketch an approach for a formal operational semantics of an the type 
view. This is a first step towards a formal semantics of the imperative view of the 17- 
language where the execution of operations - specified in the type view - is specified via 
imperative procedures. They define threads of control, i.e. possible algorithmic concur- 
rency. Objects are introduced as local variables to support concurrency and distributed 
execution of operations. The computations defined in the imperative view by algortihms 
must comply with the equational rules defined for the operations in the type view. 

The semantical model is constructed analogously. For a given operation - specified in 
the type view - an algebraic graph grammar [Ehr 79] specifies its concurrent evaluation, 
i.e. we use a form of concurrent term rewriting as semantical model. A term is assigned 
to a local variable (or object) which manages its evaluation. It may invoke simple 
rewriting steps on the whole term, or create new objects to delegate the parallel evalua- 
tion of some of the subterms. 

A graph grammar rule (see figure below) is given by three parts: a left handside which 
describes the subgraph which will be substituted by the right hand side. The middle part 
of the rule identifies a subgraph of the left hand side which remains intact by the graph 
substitution. Thus it is called glueing part. Boxes denote labelled nodes in the graph, 
while thin arrows denote the connecting edges. Bold arrows denote graph homomor- 
phisms which define how to replace subgraphs. 

left handside glueing part right hand side 

I I 

Figure 12 Sample Graph grammar rule 

The algebraic graph grammar for the evaluation of a given term t0 is defined as follows. 

START GRAPH 
x0 an identifier 
START GRAPH associates the identifier x0 with tO 

REWRITE RULE 

SPLIT RULE 

~ ~ m l D ~ . -  I xi:a<xil,...,xin> I 

where ti --~ ti" is a rewriting step 
induced by the equations of  the type view 

if a<til/xil ..... tin/xin> = ti; here a<til ..... tin> 
denotes a term with outermost operation symbol 
a and subterms til ..... tin; in contrast with 
a(til ..... tin) the subterms in a<til ..... tin> need 
not be direct subterms and can occur several 
times. 
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The SPLIT RULE replaces some of the subterms of the current term ti by local vari- 
ables which are therefore created and associated with the corresponding subterms. 

JOIN RULE 

I xi:a<xilr...rxin> I" '1 xi:a<xil,...,xin> l-I l  :a<av i> I 
\ 

... 

The JOIN RULE substitutes the term variable xij in the current term ti by the subterm 
tij which is associated with xij. 

A derivation in this algebraic graph grammar has a result, if the last graph is a single 

node ~ and t0" contains no variables (object identifiers), tO" is then called the re- 
sult of the distributed rewriting of tO. 

The parallelism theorem in [EBHL 87] shows that the rewrite rule can be applied to all 
subterms in parallel, and that the result of this distributed rewriting is not affected by 
the ordering of the local evaluations. 

Since distributed rewriting defines a congruence on terms it can be compared with the 
congruence on terms defined in the type view specification. In other words: we have 
mathematical models for an operational version of the type view which can be compared 
with the mathematical model of the imperative view based on the same formalism to 
show their compatibility. 

The 'distributed rewrite graph grammar' is based upon simple term rewriting for alge- 
braic specifications and thus suitable to specify operational aspects of the type view. To 
find appropriate rules for the specification of algorithms, however, is future work. 

Having defined a formal semantics for each view in such a way, also the object-configu- 
ration aspect of configuration-specifications should be specified and integrated to obtain 
a formal semantical foundation of the whole language. A hint towards this aim may be 
found in [GM87], [Gro89], [GE90]. However, this is problem is currently investigated 
and its solution depends on a detailed, worked out semantical model of the other views. 

For the further development of formal semantical models for the other views we may 
derive the following guidelines: 

A view may refine other views: The algebraic semantics of the type view defines 
the abstract semantics of operation, the distributed rewrite graph grammar defines 
how the operations are evaluated. It does not affect the semantics of the type 
view, but adds a further aspect. 

A view may restrict other views: The path expressions of the concurrency view 
may be used to exclude in certain circumstances the application of particular op- 
erations (e.g. reading from an empty list). Thus it restricts the semantics of the 
type view in that it discards terms or elements from the corresponding data types. 

- A view may extend other views: The object-configuration aspect of configura- 
tion-specifications defines the creation and connection of objects, configuration 
actions define how objects communicate and the distribution of operations. The 
invariants of these operations are already specified in the type view; the object- 
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configuration aspect extends the type view taking into account possible distribu- 
tions, dependency on the states of objects etc. 

In each case, however, we must have a formal criterion to check whether the views fit 
together, refining, restricting or extending each other. 

4. Conclusion 

Above we introduced the concepts of the I-I-language. As was shown it exhibits a num- 
ber of properties required to be a CDL. Worth noting in this context is the modular ap- 
proach and especially the formal import together with the configuration configuration 
specification capabilities. They offer flexible mechanisms to build systems from compo- 
nents. The possibility to state syntactic ~nd semantic properties in the interfaces gives 
rise to the required precision necessary for building large and reliable software systems. 
The possibility to specify a system incrementally by employing the available views pro- 
vides an approach to specify the components" properties covering a wide range of ab- 
straction levels in a structure preserving way. Moreover for each abstraction level a 
suitable representation scheme is offered by the respective view. Thus the entire specifi- 
cation is obtained by the superposition of all views. In this way the multiple representa- 
tion schemes can be used as a mental vehicle to find the desired component properties. In 
the second part of the paper we outlined a formal foundation for the H-language. 
However, much work in this direction has still to be done. The presented results for the 
type view will be used as a starting point and by extending the algebraic framework us- 
ing the graph grammar approach the algorithmic aspect including concurrency will be 
defined. Thus a formally based CDL for incremental development of software compo- 
nents will be obtained. In addition the production of suitable tools to support the appli- 
cation of the I-I-language is in progress. 
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