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Abstrac t  

This paper has two roughly independent parts. The first is devoted to the automation 
of program construction. The Kestrel Interactive Development System (KIDS) provides 
knowledge-based support for the derivation of correct and efficient programs from spec- 
ifications. We trace the use of KIDS in deriving a scheduling algorithm. The derivation 
illustrates algorithm design, deductive inference, simplification, finite differencing, partial 
evaluation, data type refinement, and other techniques. All of the KIDS operations are 
automatic except the algorithm design tactics which require some interaction at present. 
Dozens of programs have been derived using, the KIDS environment. 

The second part discusses the theory of algorithm design used in KIDS. Concepts 
include problem theories, algorithm theories, program schemes as parameterized theories, 
design as interpretation between theories (theory morphisms), algorithm design tactics, 
and refinement hierarchies of algorithm theories and the incremental construction of 
algorithms. 

1 Introduction 

There are many researchers working towards the goal of an effective software engineer- 
ing discipline. It is clear that sound mathematical foundations for such a discipline are 
required. Within the software engineering community there is far from universal concen- 
sus regarding what such foundations are and whether they are relevant. There is little 
agreement as to the direction of future progress. On the other hand, in the theoretical 
community, there seems to he a eoncensus that concepts from mathematical logic and 
algebra provide the necessary foundations and that programming should be treated as 
calculation within a suitable logic. A wide variety of logics and calculi are currently under 
investigation. 

Several well-known program derivation methodologies, such as the deductive synthe- 
sis approach of Manna and Waldinger [8] or the calculus of Dijkstra [4], are based on 
inference rules for various programming language constructs - rules for inferring state- 
ment sequences, conditionals, loops, and so on. Our complementary approach can be 
viewed as providing inference rules for various problem-solving methods or algorithmic 
paradigms. Our view is that when we are solving a problem we don't think in terms of 
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loops or case statements, but more typically we may think of a certain kind of algorithm 
that may be effective, such as divide-and-conquer or a greedy method. 

This rest of this paper has two parts, which can be read more-or-less independently. 
In Section 2, we describe the KIDS (Kestrel Interactive Development System) approach 
to automating the construction of programs. KIDS supports the interactive development 
of correct, efficient programs from formal specifications [13]. Users can apply automated 
tools for performing deductive inference, algorithm design, expression simplification, fi- 
nite differencing, partial evaluation, data type refinement, and other program transfor- 
mations. After briefly discussing the environment underlying KIDS, we step through the 
derivation of a program for enumerating all solutions to a scheduling problem. The steps 
are as follows. First we build up a domain theory in order to state and reason about 
the problem. Then, a well-structured but inefficient backtrack algorithm is created that 
works by extending partial schedules. To improve efficiency we apply simplification and 
partial evaluation operations. We also perform finite differencing which results in the 
introduction of data Structures. Next, high-level datatypes such as sets and sequences 
are refined into more machine-oriented types such as bit-vectors and linked lists. Finally, 
the resulting code is compiled. 

In Section 3, we describe a theory of algorithm design that is based on formalizing 
knowledge about various classes of algorithms. The essential structure of a class of al- 
gorithms is captured via a first-order theory presentation and the process of designing 
an instance of the class is construction of a theory morphism (interpretation between 
theories) [14]. For each class we have specialized design tactics for constructing instances 
of the class. The algorithm theories can be arranged in a refinement hierarchy and this 
hierarchy can be used to make the algorithm design incremental. 

2 A u t o m a t e d  S u p p o r t  f o r  P r o g r a m  C o n s t r u c t i o n  

A computer program can be viewed as a composition of several kinds of knowledge: knowl- 
edge about the particular problem being solved, general knowledge about the application 
domain, and programming knowledge about architectures, algorithms, data structures, 
optimization techniques, performance analysis, etc. KIDS serves as a testbed for exploring 
automated support for this compositional approach to program construction. 

A user of KIDS develops a formal specification into a program by interactively ap- 
plying a sequence of high-level transformations. During development, the user views a 
partially implemented specification annotated with input assumptions, invariants, and 
output conditions (a snapshot of a typical screen appears in Figure 1). A mouse is used 
to select a transformation from a command menu and to apply it to a subexpression 
of the specification. In effect, the user makes high-level design decisions and the system 
carries them out. 

Perhaps the most unique features of KIDS are its algorithm design tactics and its 
deductive inference component. Its other operations, such as simplification and finite 
differencing, are well-known, but have not been integrated before in one system. All of the 
KIDS transformations are correctness-preserving, automatic (except the algorithm design 
tactics which require some interaction at present) and perform significant, meaningful 
steps from the user's point of view. 
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2 . 1  G e n e r a l  C h a r a c t e r i s t i c s  o f  K I D S  

KIDS is built on top of REFINE 1, a commercial knowledge-based programming environ- 
ment which provides 

- an object-attribute-style database that is used to represent software-related objects 
via annotated abstract syntax trees; 

- grammar-based parser/unparsers that translate between text and abstract syntax; 
- a very-high-level language (also called REFINE) and compiler. The language supports 

first-order logic, set-theoretic data types and operations, transformation and pattern 
constructs that  support the creation of rules. The compiler generates CommonLisp 
code. 

KIDS is almost entirely written in REFINE and all of its operations work on the 
annotated abstract syntax tree representation of specifications in the REFINE database. 
A key feature of the unparsers/pretty-printers is the option for mouse-sensitive syntax 
- -  the user can refer to an expression on the screen by pointing to it. 

KIDS is a program transformation system - one applies a sequence of consistency- 
preserving transformations to an initial specification and achieves a correct and hopefully 
efficient program. The system emphasizes the application of complex high-level transfor- 
mations that perform significant and meaningful actions. From the user's point of view 
the system allows the user to make high-level design decisions like, "design a divide- 
and-conquer algorithm for that specification" or "simplify that expression in context". 
We hope that decisions at this level will be both intuitive to the user and be high-level 
enough that useful programs can be derived within a reasonable number of steps. 

The user typically goes through the following steps in using KIDS for program devel- 
opment. 

1. Deve lop  a doma in  theory - The user builds up a domain theory that defines the 
basic concepts and operations of the domain and the laws for reasoning about them. 
Currently, KIDS has over 100 theories in its library, ranging from basic theories (e.g. 
for booleans, natural numbers, linear orders, and finite sequences) to problem-specific 
theories. Support for theory development in KIDS includes mechanisms to import 
theories from the library and some automated support for consistently extending 
theories by deriving laws from definitions. However, users typically must provide 
most of the problem-specific information in a domain theory. 

2. Creale  a specif ication - The user enters a specification stated in terms of the under- 
lying domain theory. 

3. A p p l y  a design l a c t i c -  The user selects an algorithm design tactic from a menu and 
applies it to a specification. Currently KIDS has tactics for simple problem reduction 
(reducing a specification to a library routine) [10], divide-and-conquer [10], global 
search (binary search, backtrack, branch-and-bound) [12], problem reduction gener- 
ators (dynamic programming, generalized branch-and-bound, game-tree search) [15], 
local search (hillclimbing) [7], and others. 

t REFINE is a trademark of Reasoning Systems, Inc., Palo Alto, California. 
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4. App ly  op t imiza t ions  - The KIDS system allows the application of optimization tech- 
niques such as simplification, partial evaluation, finite differencing, case analysis, ab- 
straction, unfold, and other transformations. The user selects an optimization method 
from a menu and applies it by pointing to a program expression. Each of the opti- 
mization methods are fully automatic and take only a few seconds, with the exception 
of simplification (which is arbitrarily hard). 

5. App ly  data type re f inements  - The user can select implementations for the high-level 
data types in the program. Data type refinement rules automatically carry out the 
details of constructing the implementation. 

6. Compile  - The resulting code is compiled to executable form. In a sense, KIDS can 
be regarded as a front-end to a conventional compiler. 

Actually, the user is free to apply any subset of the KIDS operations in any order - 
the above sequence is typical of our experiments in algorithm design and is followed in 
this paper. The screen dump in Figure 1 shows the interface at the point after algorithm 
design when the user has just selected the Simplify operation on the command menu at 
the top and is pointing to an expression as the argument to simplify. 

KIDS is supported by a deductive inference system called RAINBOW II. All of the 
laws used by RAINBOW II during program development are supplied via the problem 
domain theory. That  is, the current version of KIDS has no built-in knowledge - -  the 
first step in performing a derivation is building and loading its domain theory. Loading 
a theory has the effect of installing definitions, laws, and inference rules in the Refine 
object base in way that is accessible to RAINBOW II. 

2.2 D o m a i n  T h e o r y  and Specification for  Schedu l ing  

Suppose that  we wish to schedule a set of jobs on a processor subject to a precedence 
relation that constrains the order in which jobs can run. Farther suppose that each job 
completes in unit time, that each job has a deadline, and that we wish to minimize the 
number of jobs that fail to complete before their deadlines. If we define a schedule to 
be an ordering of a given set of jobs that is consistent with a given precedence relation, 
then this is an optimization problem where the feasible space is the set of schedules, and 
the cost function is the number of jobs in a schedule that fail to complete before their 
deadline. 

Before a specification can be written, the relevant concepts, operations, relationships, 
and properties of the problem must be defined. Thus the first, and often the hardest, step 
in deriving an algorithm for solving a problem is the formalization of its domain theory. 

KIDS provides rudimentary support for the development Of dorrmin theories. A theory 
presentation is comprised of sets of imported theories, type definitions, function specifi- 
cations with optional operational definitions, laws (axioms and theorems), and rules of 
inference. A hierarchic library of theories is maintained with importation as the principal 
link. Users can enter definitions of new functions or create new definitions by abstraction 
on existing expressions. The inference system can be used to verify common properties 
such as associativity, commutativity, or idempotence. More interestingly, we have used 
RAINBOW II to automatically derive distributive, monotonicity, and other kinds of laws. 
For some problems, we have derived almost all of the laws needed to support design and 
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optimization (see for example [17]). The scheduling problem reported here was performed 
before these theory development tools were available and the domain theory was entered 
entirely by hand. 

The scheduling domain theory is summarized below. The concept that  a schedule is 
a linear arrangement of a set of jobs can be expressed in terms of a bijection. 

Injective(M : seq(integer), S :  set(integer)): boolean 
= range(M) C_ S 

A V(i,j)(i E domain(M) A j E domain(M) A i ~ j ~ M(i) ~ M( j ) )  

Bijeetive(M : seq(integer), S : set(integer)): boolean 
= Inject ive(M,S) A range(M)= S 

That  is, a sequence M is injective into a set S if all elements of M are in S and no 
element of M occurs twice. A sequence M is bijective into a set S if it is injective and 
each element of S occurs in M. 

Distributive laws for the Injective predicate are as follows. 

V( S)( Injective([ ], S) = true) 

V(W, a, S) (Injective(append(W, a), S) = (Injective(W, S) A a E S A a ~_ range(W))) 

V(W1, W2, S) (Injective(concat(Wl, W2), S) 
= (Injeclive(Wl, S) A Injective(W2, S) A range(W1) N range(W2) = {})) 

The concept that a schedule must be consistent with the given precedence relation is 
captured in the following definition and associated laws: 

Consistent(S: seq( J O B), P :  binrel( J O B, JOB) ) :  boolean 
= V( i , j ) ( iErange(S)  A jErange(S )  A (i,j} E P  

==~ Index(i, S) < Index(j, S)) 

where Index(i, S) returns the index of element i in sequence S. 

y( P)( Consistent(D , e )  = true) 

V(a, P) (Consistent([a], P) = true) 

V(S1, $2, P) ( Consistent(concat( S1, $2), P)  
= (Consistent(S1, P) A Consistent(S2, P) 

A Cross---Consistent(range(S1), range(S2), P))) 

where 

Cross-Consistent(R1 : set(JOB), R2 : set(JOB), P : binrel(JOB, JOB))  : boolean 
= V(I, J) ( I  E R1 ^ J ~ R2 ~ (J,I) q~ P) 

Formally, the problem of enumerating schedules can be specified as follows. 
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Schedules(Jobs: set(JOB), Precedes: binrel( S O B, JOB)) 
w h e r e  Irre fle•ive( Precedes, Jobs) 
r e t u r n s  { S :  seq(JOB) I Bijective(S, Jobs) A Consistent(S, Precedes)} 

Here Jobs is the set of jobs that we wish to schedule. The parameter Precedes is 
a binary relation over Jobs and satisfies the input condition that  it is irreflexive (with 
respect to the set Jobs). The output is specified to be the set of all sequences S of Jobs 
that  are bijective with respect to Jobs and are consistent with the Precedes relation. 
The constraint Bijective(S, Jobs) A Consistent(S, Precedes) is called the output con- 
dition, The following is a specification of the schedule optimization problem, called S W D  
(Scheduling With Deadlines). 

SWD(JObs : set(JOB), Precedes : binrel(JOB, JOB), Deadline : map(JOB, Nat)) 
w h e r e  Irre flezive( Precedes, Jobs) A domain(Deadline) = Jobs 
r e t u r n s  eztremum( )~( S1, $2) SW D--Cost( S1, Deadline) < S W  D--Cost( S2, Deadline), 

{ S I Bijective( S, Jobs) A Consistent(S, Precedes)}) 

SWD-Cost (S  : seq(JOB), Deadline : map(JOB, Nat)) : Nat 
= size({j I J E range(S) A Deadline(j) < indez(S,j)}) 

The input Deadline is a mapping from jobs to deadline times (represented as natural 
numbers). The (nondeterministic) function eztremum returns an extremal element: 

extremum(f, C) = some(z)(x E C A V(y)(y E C ==~ f(x)  < f(y))). 

The function SWD-Cost computes the number of jobs that miss their deadline. Thus this 
specification seeks a schedule that minimizes the number of missed deadlines. 

2.3 Algorithm Design 

The next step is to develop a correct, high-level algorithm for enumerating schedules. 
KIDS has specialized tactics for creating algorithms of various kinds such as divide-and- 
conquer [10], local search [7], and global search [12]. The latter class (which will be applied 
here) generalizes binary search, backtracking, branch-and-bound, constraint satisfaction, 
and other algorithmic paradigms. The algorithm design tactics are discussed further in 
Section 3. 

The basic idea of global search is to represent and manipulate sets of candidate 
solutions. The principal operations are to extract candidate solutions from a set and 
to split a set into subsets. Derived operations include various filters which are used to 
eliminate sets containing no feasible or optimal solutions. Global search algorithms work 
as follows: starting from an initial set that  contains all solutions to the given problem 
instance, the algorithm repeatedly extracts solutions, splits sets, and eliminates sets via 
filters until no sets remain to be split. The process is often described as a tree (or DAG) 
search in which a node represents a set of candidates and an arc represents the split 
relationship between set and subset. The filters serve to prune off branches of the tree 
that  cannot lead to solutions. 

The sets of candidate solutions are often infinite and even when finite they are rarely 
represented extensionally. Thus global search algorithms are based on an abstract data 
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type of intensional representations called space descriptors (denoted by hatted symbols). 
In addition to the extraction and splitting operations mentioned above, the type also 
includes a predicate satisfies that determines when a candidate solution is in the set 
denoted by a descriptor. 

The various operations in the abstract data type of space descriptors together with 
problem specification can be packaged together as a theory. Formally, abstract global 
search theory (or simply gs--theory) ~ is presented as follows: 

Sorts 
D input domain 
R output domain 
[l subspace descriptors 

Operations 
I : D ---+ boolean 
0 : D • R ---* boolean 

: D • [~ ~ boolean 
2o:D---~ h 
Satisfies : R x [~ --+ boolean 
Splits-into : D • h • h ---+ boolean 
Extractable : R x [~ ~ boolean 

A x i o m s  
GSO. t(x) 
GS1. l (x )  
GS2. I(~) 
GS3. I (x)  

input condition 
input/output condition 
subspace descriptors condition 
initial space 
denotation of descriptors 
split relation 
extractor of solutions from spaces 

[(x, 2o(~)) 
A I(x,  2) A Splits-into(x, ~, g) ~ [(x, g) 
A O(x,z)  ==r Satisfies(z, 2o(x)) 
^ i(x,  2) 

(Satisfies(z, § = 3(3) ( Splits-into*(x, § 3) A Extractable(z, g))) 

where D is the input domain, R is the output domain, I is the input condition, O is the 
output condition, /~ is the type of space descriptors, I defines legal space descriptors; 2 
and g vary over descriptors, r0 (z) is the descriptor of the initial set of candidate solutions, 
Satisfies(z, ~) means that z is in the set denoted by descriptor 2 or that z satisfies the 
constraints that  § represents, Splits-into(x, 2, ~) means that  ~ is a subspace of § with 
respect to input x, and Extractable(z, 2) means that z is directly extractable from § 
Axiom GS0 asserts that  the initial descriptor ~0(x) is a legal descriptor. Axiom GS1 
asserts that  legal descriptors split into legal descriptors and that Splits-into induces 
a well-founded ordering on spaces. Axiom GS2 constrains the denotation of the initial 
descriptor - -  all feasible solutions are contained in the initial space. Axiom GS3 gives 
the denotation of an arbitrary descriptor 2 - -  an output object z is in the set denoted 
by ~ if and only if z can be extracted after finitely many applications of Splits-into to 
where 

Splits-into*(x, 2, g) r 3(k : Nat)  ( Splits-intok(z, 2, ~) ) 

and 

Splits-into~ 2, i) r162 2 = [ 
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and for all natural numbers k 

Splits-intok+l(r, ~, i) r 3 ( i : / ~ )  ( Splits-into(z, r ~) A Splits-intok(z, i, i)). 

Note that  all variables are assumed to be universally quantified unless explicitly spec- 
ified otherwise. 

Ezample: Enumerating sequences 
Consider the problem of enumerating sequences over a given finite set S. A space 

is a set of sequences with common prefix ps. The descriptor for the initial space is 
just ~. Splitting is performed by appending an element from S onto the end of the 
common prefix ps. The sequence ps itself is directly extractable from the space. This 
global search theory for enumerating sequences can be presented via a correspondence 
between the components of abstract gs-theory and a concrete gs-theory (technically this 
correspondence is known as a theory morphism or interpretation between theories). 

D ~-* set(a) x integer 
I ~ A(S) true 
R ~'* seq(a) 
o ~ a(s,  q) range(q) _C S 
h ~ seq(a) 
J ~ ~(s, ps) range(ps) C s 

Satisfies ~-* X(q, ps) ] ( r )  (q = eoneat(ps, r)) 
~0 ~ ~ ( s ) [ ]  

Splits-into ~ .~(& ps, ps') 3(i) (i ~ S ^ ps' = append(ps, i)) 
Eztraetable ~ X(q, ps) q = ps 
End of Ezample 
In addition to the above components of global search theory, there are various derived 

operations which may play a role in producing an efficient algorithm. Filters, described 
next, are crucial to the efficiency of a global search algorithm. Filters correspond to the 
notion of pruning branches in backtrack algorithms and to pruning via lower bounds 
and dominance relations in branch-and-bound. A filter r : D • R ~ boolean is used 
to eliminate spaces from further processing. The ideal filter decides the question "Does 
there exist a feasible solution in space § or, formally, 

3 (z :  R) ( Satisfies(z, § A O(z, z) ). (1) 

However, to use (1) directly as a filter would usually be too expensive, so instead we use 
an approximation to it. A necessary filter ~ satisfies 

3 ( z :  n )  ( Satisfies(z, § ^ O(z, z) ) ~ $(z ,  § (2) 

By the contrapositive of this definition, if ~.li(z, f) is false for some space § then there 
does not exist a solution in ~. Thus necessary filters can be used to eliminate spaces that 
do not contain solutions. 

The design tactic for global search in KIDS is based on the following theorems. The 
proofs may be found in [12]. The first shows how to produce a correct program from a 
given global search theory. Consequently, construction of a correct global search program 
reduces to the problem of constructing a global search theory. The second theorem tells 
us how to obtain a global search theory for a given problem by specializing an existing 
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global search theory. This theorem suggests that we set up a library of global search 
theories for the various data types of our language and simply select and specialize these 
library theories. 

Theorem 1. Let ~ be a global search theory, l f  ~ is a necessary filter then the following 
program specification is consistent 

function F(x:  D): set(R) 
where I(x) 
returns {z [ O(x, z)} 
= if ~(z, § 

then F_gs(z, ~o(z)) 
else { } 

function F_gs(z: D, § R): set(R) 
where I(x) ^ i(x, S) ^ ~(x, ~) 
returns {z I Satisfies(z, § ^ O(z, z)} 
= {z I Extractable(~, § ^ O(x, z)} 

V reduce(U, { F_gs(x, ~) I Splits-into(z, § i) ^ ~(z ,  ~)}). 

In this abstract program and Inter programs we mainly use conventional notations 
from first-order logic and set theory. Our notation for reduction is reduce(U, SS) which 
could be written U s e s s  S or U/SS. 

In words, the abstract global search program works as follows. On input x the program 
F calls F_gs with the initial space S0(x) if the filter holds, otherwise there are no feasible 
solutions. The program F_gs unions together two sets: (1) all solutions that can be 
directly extracted from the space S, and (2) the union of all solutions found recursively 
in spaces g that are obtained by splitting S and that survive the filter. In terms of the 
search tree model, F_gs unions together the solutions found at the current node with the 
solutions found at descendants. Note that �9 is an input invariant in F_gs. 

If we were to apply Theorem 1 to gs_sequences_over_finite_set then we would get a 
generator of all sequences over the input set S. 

The following definition gives conditions under which an algorithm for solving problem 
B can be used to enumerate all solutions to A. Specification 13A = (DA, RA, IA, OA) 
completely reduces to specification BB = (DB, RB, IB, OB) if 

(RA = RB) A V(x : Do) : l (y:  OB) V(Z : RA) ([A(~) ^ OA(X, z) ~ OB(y, Z)). (3) 

BA completely reduces to BB with substitution 0 if O(y) : t(x) and RA = RBO 

v(x: Do) V(z: no) (to(x) ^ Oa(x, z) ~ 0B(t(x), ~)). (4) 

Theorem 2. Let ~B = (BB, [~, ], So, Satisfies, Splits-into, Extractable) be a global search 
theory, and let B^ be a specification that completely reduces to I3B with substitution O, 
then the structure G^ = (BA, hO, ]0, Satisfies0, § Splits-intoO, ExtractableO) is a global 
search theory. 

In this theorem PO denotes the application of substitution 0 to expression P.  
A simplified tactic for designing global search algorithms has four steps. 
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1. Select a global search theory GB from a library which solves the problem of enumer- 
ating the output type for the given problem A. 

2. Find a substitution 0 whereby BA completely reduces to BB by verifying Formula 
(3). Apply Theorem 2 to create a specialized global search theory GA. 

3. Derive a necessary filter �9 via Formula (2). That is, use directed inference to derive 
a necessary condition of Formula (1) expressed over the variables {z, ~}. 

4. Apply Theorem 1 to create a global search program. 

The tactic is sound and thus only generates correct programs. The interested reader 
should consult [12] for the full generality of the global search model and design tactic. 

The KIDS library currently contains global search theories for a number of problem 
domains, such as enumerating sets, sequences, maps, and integers. For the Scheduling 
problem we select from a library a standard global search theory for enumerating se- 
quences over a finite domain - #s_sequences_over_finite_set. In accord with step 2, the 
following inference :specification is created. 

set(JOB) = set(a) A 
V(Jobs : set(JOB), Precedes: binrel(JOB, JOB)) 
3(S : set(integer)) 
V(assign : seq(integer)) 

( Bijeetive(assign, Jobs) A Consistent(assign, Precedes) 
range(assign) C_ S). 

The proof process is simple and proceeds as follows: The types are unified yielding 
substitution {a ~-~ JOB}.  By forward inference from Bijective(assign, Jobs) the infer- 
ence system derives Injective(assign, Jobs) and range(assign) = Jobs, then 

range(assign) C_ S 

applying range(assign) = Jobs 

Jobs C_ S 

r162 unifying with the reflexivity law V(R)(R C R) 

true with substitution {S ~ Jobs}. 

Thus, altogether the Scheduling problem completely reduces to 
gs_sequences_over_finite_set with substitution {a ~-* integer, S ~-* Jobs}. The construc- 
tion in Theorem 2 yields the following global search theory for scheduling. 
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D v--, set(JOB) • binrel(JOB, JOB) 
I ~-* •(Jobs, Precedes) Irreflexive(Precedes, Jobs) 
R ~ seq(integer) 
0 ~-* A(Jobs, Precedes, p) Bijective(p, Jobs) A Consistent(p, Precedes) 
[l ~-~ seq(integer) 
] ~-~ )~(Jobs, Precedes, ps) range(ps) C Jobs 

Satisfies ~-* )~(p, ps) 3(r)(p = coneat(ps, r)) 
§ [ ]  

Spllts-into ~ 2(Jobs, erecedes, ps, ps') 3( i )( i  E Jobs A ps' = append(ps, i)) 
Eztractable ~-* )~(p, ps) p = ps 
This theory defines a generator of partial schedules. Some of these partial schedules 

cannot possibly be extended to complete schedules. For example, if a E Jobs then partial 
schedules [a, a], [a, a, a], and so on, would be generated. The next design step is to derive 
mechanisms for pruning away such useless nodes of the search tree. The effect of this 
step is to incorporate problem-specific information into the generator in order to improve 
efficiency. 

To derive a necessary filter for the Scheduling problem, the inference system is directed 
to produce necessary conditions on the existence of an extension of a partial solution ps 
that  satisfies all the Scheduling constraints; formally 

find some (~) 
(3(p) ( 3(r)(p -= concat(ps, r)) 

A Bijective(p, Jobs) 
A Consistent(p, Precedes)) 

�9 (Jobs, Precedes, ps)). 

Any such �9 serves as a filter since if ~ does not hold for some partial solution, then by 
the contrapositive of the implication there does not exist an extension that satisfies the 
Scheduling constraints. The derivations proceed as follows. 

Biject ive (p, Jobs) 

r162 by definition of Bijective 

Injective(p, Jobs) A range(p) = Jobs 

: : ~  applying p = concat(ps, r) to the first conjunct 

Injective(concat(ps, r), Jobs) 

distributing Injective over concat 

Injective(ps, Jobs) A Injective(r, Jobs) 
A range(ps) N range(r)= {} 

==~ dropping conjuncts 

Injective (ps, Jobs). 
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Also 
Consistent(p,Precedes) 

4---4- applying p = concat(ps, r) 

Consistent(concat(ps, r), Precedes) 

r  distributing Consistent@rover@eoneat 

Consistent(ps, Precedes) 
^ Cross--Consistent(range(ps), range(r), Precedes) 
A Consistent(r, Precedes) 

@fusing@range(r) = Jobs \ range(ps) 

Consistent(ps, Precedes) 
A Cross--Consistent(range(ps), Jobs \ range(ps), Precedes) 

s among the many derived consequents RAINBOW discards useless ones and 
presents a menu of possibilities for the user to choose from. The conjunction of any subset 
will result in a correct algorithm. It is possible to automate the selection of filters using 
dependency tracking but we have not done so at this writing. 

Inject ire (ps, Jobs) 
A Consistent(ps, Precedes) 
A Cross--Consistent(ps, Jobs \ range(ps), Precedes) 

In words, the partial solution must itself be Consistent with Precedes, contain no 
duplicate elements, and satisfy the cross-consistency condition - no element in the partial 
solution can be preceded by an uncommitted JOB. 

Finally the recursive REFINE program in Figure 2 is produced by applying Theorem 
1. That  is, the correspondence between the symbols of abstract gs-theory and concrete 
expressions is used to instantiate the program scheme in Theorem 1. Note that the filter 
derived above is tested prior to each call to the backtracking function SCHEDULES-GS 
and thus the filter is displayed as an input invariant. Being produced as an instance of a 
program abstraction, this algorithm obviously has some inefficiencies, even though it is 
correct. The goal of a design tactic is to produce a correct, very-high-level, well-structured 
algorithm. Subsequent refinement and optimization is necessary in order to realize the 
potential of the algorithm. 

2.4 Simplification 

KIDS provides two expression simplifiers. The simplest and fastest, called the Contezt- 
Independent Simplier (CI-SIMPLIFY), applies rewrite rules that  are fired exhaustively. 
Only those laws from the domain theory that are treated as rewrite rules are fired by 
CI-SIMPLIFY. Some typical equations used as rewrite rules are 

tength@ = o 
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function SCHEDULES-GS 
(JOBS : set(JOB), 
Precedes : binrel( JOB, JOB), 
ps : seq( integer ) ) 

where  Irreflexive( Precedes, Jobs) A range(ps ) C Jobs 
A Consistent(ps, Precedes) 
A Injective(ps, Jobs) 
^ @iCross - Consistent@(range(ps), Jobs \ range(ps), Precedes) 

returns {SCHED I 
Extends( SCHED, ps) A Consistent( SCHED, Precedes) 

^ Bijective(SCHED, Jobs)} 
= {SCHED [ Consistent(SCHED, Precedes) 

A Bijective(SCnED, Jobs) A SCHED = ps} 
U reduce(U, 

{SCHEDULES-GS(Jobs, Precedes, @iNew -ps@)] 
Consistent( @iNew - ps@, Precedes) 
^ Injective(~iNew - ps i ,  Jobs) 
A ~iCross - Consistent@(range(~iNew - ps i ) ,  

Jobs \ range( ~iNew - ps@ ), Precedes) 
A 3(I) (~iNew - ps~ = append(ps, I) A I E Jobs) 

}) 

function @iSCHEDULES@( Jobs : set(JOB), Precedes : binrel(@iJOB@, @i JOB@)) 
where lrreflezive (Precedes, Jobs)) 
returns {SCHED ] Bijective(SCHED, Jobs) 

A Consistent(SCHED, Precedes)}) 
= if @iCross - Consistent@(range([]), Jobs \ range([]), Precedes) 

^ lnjective([], Jobs) ^ Consistent([], Precedes) 
then SCHEDULES-GS( Jobs, Precedes, []) 
else {} 

Fig. 2. Global search algorithm for the scheduling problem 

(from sequence theory) and 

if true then P else Q = P 

(from boolean theory). We also treat the distributive laws in Scheduling theory as rewrite 
rules: e.g. 

Inject ive(D,S)  r true 

and 

Inject ive(append(W, a), S) r ( ln ject ive(W,  S) h a E S ^ a f~ range(W)) .  

We apply CI-Simplify to the body of all newly derived programs. As a result, the 
conditional 
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if @iCross-  Consistenl@(range([]), Jobs \ range([]), Precedes) 
A lnjective([], Jobs) A Consistent([], Precedes) 

then SCHEDULES-GS(Jobs,  Precedes, []) 
etse {} 

simplifies to S C H E D U L E S  - GS(Jobs, Precedes, []). 
Another rule modifies a set former by replacing all occurrences of a local variable that 

is defined by an equality: 

{C(x)  l x = e  A g ( x ) }  = {C(e)  l P ( e ) } .  

For example, this rule will replace New-ps by append(ps, i) everywhere in SCHEDULES- 
GS. This replacement in turn triggers the application of the laws for distributing 
Consistent,  Injective and so on, over append. 

The result of applying CI-Simplify to the bodies of SCHEDULES and SCHEDULES- 
GS is shown in Figure 3. (For brevity we will sometimes omit or use ellipsis in place of 
expressions that remain unchanged after a transformation). 

f u n c t i o n  SCHEDULES-GS 
(Jobs: set(JOB), Precedes: binrei( JOB, JOB), ps : seq( integer)) 

w h e r e  Irreflexive( Precedes, Jobs) A range(ps) C_ Jobs 
A Consistent(ps, Precedes) 
A Injective(ps, Jobs) 
A @iCross - Consistent@(range(ps), Jobs \ range(ps), Precedes) 

r e t u r n s . . .  
= {ps[ Consistent(ps, Precedes) A Bijective(ps, Jobs)} 

U 
reduce(U, { SCHEDULES-GS( Jobs, Precedes, append(ps, 1))1 

1 e Jobs ^ I q~ range(ps) A (I, I) ~ Precedes 
A ~iCross-  Consistent~(range(ps), {1}, Precedes) 
A Consistent(ps, Precedes) 
A lnjective(ps, Jobs) 
^ @iCross - Consistent@({l}, (Jobs \ range(ps)) \ {I}, Precedes) 
^ @iCross - Consistbnt~(range(ps), (Jobs \ range(ps)) \ {I}, Precedes)}) 

f u n c t i o n  SCHEDULES(Jobs : set(JOB), Precedes : binrel( JOB, JOB)) 
w h e r e  Irreflexive (Precedes, Jobs) 
r e t u r n s  ... 
= SCHEDULES-GS(Jobs, Precedes, []) 

Fig. 3. Scheduling code after context-independent simplification 

There are other simplification opportunities in this code. For example, notice that the 
predicate Injective(ps, Jobs) is being tested in SCHEDULES-GS, but it is already true 
because it is an input invariant. The second expression simplifier, Contezt-Dependent 
Simplify (CD-Simplify), is designed to simplify a given expression with respect to its 
context. CD-Simplify gathers all predicates that hold in the context of the expression 
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by walking up the abstract syntax tree gathering the test of encompassing conditionals, 
sibling conjuncts in the condition of a set-former, etc. and ultimately the input conditions 
of the encompassing function. The expression is then simplified with respect to this rich 
assumption set and the laws in the underlying domain theory. Technically, the inference 
system infers a variety of equivalent forms of the given expression, selecting one of these 
that minimizes a built-in heuristic measure of complexity. 

In applying CD-Simplify to the predicate of the first set-former in SCHEDULES-GS, 
we analyze the context to find all properties that hold when the expression is evaluated: 

Irreflcxive( Precedes, Jobs) 
A range(ps) C_ Jobs 
A Consistent(ps, Precedes) 
A Injective(ps, Jobs) 
A @iCross - Consistent@(range(ps), Jobs \ range(ps), Precedes) 

When we attempt to simplify the expression 

Consistent(ps, Precedes) A Bijective(ps, Jobs) 

the first conjunct immediately unifies with an assumption and thus simplifies to true. 
For the second conjunct: 

Bijective(ps, Jobs) 

by definition of Bijective 

Injective(ps, Jobs) A range(ps) = Jobs 

unifying the first conjunct with an assumption 

range(ps) = Jobs 

r by definition of set equality : (S = T) = (S C_ T A T C S) 

ra.ge(ps) C Jobs ^ Jobs C_ ra.ge(ps) 

r  unifying the first conjunct with an assumption 

Jobs C range(ps). 
The resulting simplified expression is Jobs C_ range(ps ). After applying CD-Simplify 

to the predicates of both set-formers in SCHEDULES-GS we obtain the code in Figure 
4. 

2.5 Part ia l  Evaluat ion 

Next we notice that the call to Cross-Consistent has an argument of a restricted form - -  a 
singleton set. This suggests the application of partial evaluation [1]. KIDS has the classic 
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function SCHEDULES-GS 
(Jobs: set(JOB), Precedes: binrel ( J O B, JOB), ps : seq( integer) ) 

where  lrreflexive( Precedes, Jobs) 
A range(ps) C_ Jobs 
A Consistent(ps, Precedes) 
A Injective(ps, Jobs) 
A GiCross - Consistent@(range(ps), Jobs \ range(ps), Precedes) 

= { V I Jobs C range(ps)} 
U reduce(U, 

{ SCHEDULES-GS( Jobs, Precedes, append(ps, I))1 
I E Jobs A I ~ range(ps) 

A @iCross - Consistent@({I}, (Jobs \ range(ps))\ {I}, Precedes) 
}) 

Fig. 4. Scheduling Algorithm after CD-Simplify 

UNFOLD transformation that replaces a function call by its definition (with arguments 
replacing parameters). Partial evaluation proceeds by first UNFOLDing then simplifying. 

UNFOLDing @iCross - Consistent@({I}, (Jobs \ range(ps)) \ {I}, Precedes), we 
obtain 

V(H : @i JOB@, J : @i JOB@) 
( / /  �9 {I} A J �9 (Jobs \ range(ps)) \ {I} ~ --,(J, II)  E Precedes) 

The rules 

V(X, y l , . . . ,yn) (Q(X)  A X = e  ~ P(z)) ~ V(yl , . . . ,~n)(Q(e) ~ P(e)). 

(imported with finite set theory and boolean theory) and others are used by CI-Simplify 
resulting in 

V(J)(J  E Jobs \ ran#e(ps) A J ~s I ~ {J, I) ~ Precedes). 

2.6 Fini te  Differencing 

Notice that the expression range(ps) in Figure 4 is computed each time SCHEDULES- 
GS is invoked and that the parameter ps changes in a regular way. This suggests that 
we create a new variable whose value is maintained equal to range(ps) and which allows 
for incremental computation - a significant speedup. This transformation is known as 
strength reduction or finite differencing [9] (see also [6]). We have developed and imple- 
mented a version of finite differencing for functional programs. 

Finite differencing can be decomposed into two more basic operations: abstraction 
followed by simplification. The abstraction operation is presented informally in Figure 
5. Abstraction of function f with respect to expression E(x) adds a new parameter c to 
f ' s  parameter list (now f(x,  c)) and acids c = E(x) as a new input invariant to f .  Any 
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function @rg@(y) 

function @rf@(x) 
where l(x) 

E(x) 

~rf~(u(~)) 

function @rg@(y) 

~rI@(V, E(V)) 

function ~r/@(z,  c) 
where I ( x )  A c = E ( x )  

. ~  

fW(~), E(V(~))) 

Fig. 5. Abstraction operation underlying the finite differencing optimization 

call to f ,  whether a recursive call within f or an external call, must now be changed to 
supply the appropriate new argument that satisfies the invariant - .f(U) is changed to 
f(U, E(U)). 

It now becomes possible to simplify various expressions within f and calls to f .  In 
the KIDS implementation, CI-Simplify is applied to the new argument in all external 
calls. In terms of Figure 5, within f we temporarily add the invariant E(x) = c as a 
rule and apply CI-Simplify to the body of f .  This replaces all occurrences of E(x) by c. 
Often, distributive laws apply to E(V(x)) yielding an expression of the form V'(E(x)) 
and then U'(c). The real benefit of this optimization comes from the last step, because 
this is where the new value of the expression E(U(x)) is computed in terms of the old 
value E(x). 

Our approach to finite differencing differs from that in Paige's RAPTS system [9] in 
several respects. KIDS can incrementally maintain expressions containing user-defined 
terms as long as appropriate distributive laws are available. Also the initialization and 
update codes are performed in parallel with the modification to the dependent variable. 
Also there is considerable flexibility gained by relying on a common knowledge-base of 
laws rather than a specialized format as in RAPTS. On the other hand our functional 
approach relies on inference to perform simplifications whereas the RAPTS approach is 
specialized. Also, Paige has analyzed various set-theoretic expressions in order to ascer- 
tain sufficient conditions under which finite differencing results in a net improvement 
with respect to a simple performance model. 

The evolving algorithm is prepared for finite differencing by subjecting it to a col- 
lection og built-in conditioning transformations. In this case they transform the two 
conjuncts 

I ~ range(ps) A I E Jobs 

to 
I ~ Jobs \ ra.ge(ps). 
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The rationale is to group together information concerning a local variable. 
We select the set difference as an expression to maintain incrementally. The changes 

include (1) the addition of a new input parameter, named Unscheduled-Jobs ,  and 
its invariant to SCHEDULES-GS, (2) all occurrences of the term Jobs \ range(ps) in 
SCHEDULES-GS are replaced by Unscheduled-Jobs,  (3) appropriate arguments are 
created and simplified for all calls to the function SCHEDULES-GS. The initial call to 
SCHEDULES- GS becomes 

S C H E D U L E S  - G S( Jobs, Precedes, [1, Jobs \ range(D)) 

which simplifies to 

S C H E D U L E S  - GS( Jobs, Precedes, [], Jobs). 

The recursive call to SCHEDULES-GS becomes 

S C H E D U L E S  - G S (Jobs, Precedes, append(ps, I),  Jobs \ rangc( append(ps, I ) ) ) 

which simplifies to 

S C H E D U L E S  - GS  (Jobs, Precedes, append(ps, I),  Unscheduled-Jobs \ {I}). 

The resulting code is shown in Figure 6. 

funct ion SCHEDULES-GS 
(Jobs: set(JOB), Precedes: binrei( JOB, JOB), ps : seq( integer), 

Unscheduled-Jobs : set(JOB)) 
where Unscheduled-Jobs = Jobs \ range(ps) ^ ... 

= {ps l e,npty(Unscheduled-Jobs)} 
U reduce(u, 
{SCHEDULES-GS( Jobs, Precedes, append(ps, I), Unscheduled-Jobs \ {l})l 

I E Unscheduled-Jobs 
^ size({J t (J, I) 6 Precedes A J e Unscheduled-Jobs A J • I}) = @toO@}) 

Fig. 6. Scheduling algorithm after one finite differencing step 

Notice how finite differencing introduces a meaningful data structure at this point. 
The concept of which elements of Jobs have not yet been added to the partial solution ps 
would naturally occur to many programmers who are developing a scheduling algorithm. 
Here it is introduced by a problem-independent transformation technique. Not only is 
the concept natural in the context of the problem, but its incremental computation 
dramatically improves the efficiency of the algorithm. Note also the need for a software 
database - this transformation needs global access to all invocations of a function in 
order to consistently modify its interface. 

Notice also that a minor simplification can be applied at this point; the expression 
J r I is redundant in 

{gl (J , I )  G Precedes A J G Unscheduled-Jobs A J r I} .  
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CD-Simplify reduces J ~: I to true since irreflezive(Precedes, Jobs) and (J, I )  E Precedes  
imply J ~ L 

After this simplification we select 

s i z e ( { J  I ( J , I )  E Precedes  A J E Unschedu led-Jobs} )  

for incremental maintenance. This finite differencing operation is somewhat more complex 
since the target  expression involves a local variable I .  The FD operat ion must  analyze the 
context of the expression to determine a finite set of values that  I ranges over. This  finite 
bound becomes the domain of a map da ta  structure. Here the analysis is relatively easy, 
since the expression 1 E Unscheduled-Jobs occurs in the immediate context.  Thus KIDS 
produces a map da ta  structure which we name N U M - P R E D S  (number of predecessors): 

{I / ~ s i ze ( {J l (J ,  I )  E Precedes  A J E Unscheduled-Jobs}) I I E Unscheduled-Jobsl}  ). 

KIDS produces the code in Figure 7. 

funct ion  SCHEDULES-GS 
(Jobs: set(JOB), Precedes: binrei( JOB, JOB), ps : seq( integer), 

Unscheduled-Jobs : set(JOB), 
Numpreds : map(JOB, integer)) 

where  Numpreds = {I I ---* size({J [ (J, I) E Precedes ^ J e Unscheduled-Jobs}) 
[ 1 E Unscheduled-Jobs I} 

A Unscheduled-Jobs = Jobs \ range(ps) A ... 
= {ps I empty( UnscheduZed-Jobs)} 

U reduce(U, {SCHEDULES - GS 
(Jobs, Precedes, 
append(ps, 1), Unscheduled-Jobs \ {I}, 
{I z l  -~ q (~, i1)  e P~cedes 

then Numpreds ( l l ) -  1 
else Numpreds( H ) 

I l l  # 1 ^ 11 ~ Unscheduted-Jobs I}) 
I 1 E Unscheduled-Jobs ^ Numpreds(1) = @toO@}) 

Fig.  7. Scheduling algorithm after finite differencing 

2.7 C a s e  A n a l y s i s  

The SCHEDULES-GS algorithm is a union of two set-valued expressions. Notice tha t  
these two sets t reat  disjoint cases - when one is nonempty the other is empty. This 
suggests the use of case-analysis to clarify and simplify the code. The idea of the case 
analysis transformation in KIDS is simple: an expression e is replaced with the expression 
i f  P then  e else e, where P is a predicate whose variables are all bound in e 's  context .  
The payoff from this transformation rule comes from applying CD-simplification to the 
branches of the conditional. For S C H E D U L E S - G S  we select the whole body as e and use 
empty (Unschedu led-Jobs )  as the case analysis predicate. After simplification we get the 
code in Figure 8. 
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function SCHEDULES-GS (...) 
= i] empty(Unscheduled-Jobs) 

then {ps} 
else reduce(U, 

{@iSCHEDULES- GS@ 
(Jobs, Precedes, 
append(ps, I), 
Unscheduled-Jobs \ {I}, 
{I 11 --* if (I, I1) �9 Precedes 

then Numpreds( I1 ) - 1 
else Numpreds(11 ) 

[ 11 • I A 11 E Unscheduled-Jobs I}) 
I I E Unscheduled-Jobs A Numpreds(1) = ~mO~}) 

Fig. 8. Scheduling algorithm after case analysis 

2.8 Data  Type  Refinement 

Our next step is to choose implementations for the abstract data types in the algorithm. 
Compilers typically provide a standard implementation for each type in their program- 
ming language. However as the level of the language rises, and higher-level data types, 
such as sets, sequences, and mappings, are included in the language, or as users spec- 
ify their own abstract data types, standard implementations cease to be satisfactory. 
The difficulty is that the higher-level datatypes can be implemented in many different 
ways; e.g. sets may be implemented as lists, arrays, trees, etc. Depending on the mix of 
operations, their relative frequency of invocation, size information, and dataflow consid- 
erations, one implementation may be much better than another. Thus no single default 
implementation will give good performance for all instances of an abstract type. 

We are currently integrating a data type refinement system, called DTRE [2], with 
KIDS. DTRE allows interactive specification of implementation annotations for data 
types in programs. It also provides machinery for specifying data type refinements as the- 
ory morphisms and a modified compiler that automatically translates high-level types to 
low-level implementations. The following refinements have been performed using DTRE, 
but required some manual transformation in order to deal with special assumptions in 
the current version. We continue the derivation as if DTRE and KIDS were smoothly 
integrated. We see no fundamental impediment to this integration. 

Consider the sequence-valued parameter ps which denotes a partial schedule: it is 
initialized to the empty sequence once, the operation append is applied many times, 
and occasionally it is copied to the output. A standard representation for sequences is 
linked lists; however, this representation is expensive for ps because it entails copying 
ps every time the @iappend@ operation is performed. A better representation is shown 
in Figure 9 where alternative versions of ps coexist and share common structure. The 
data structure ps is simply a pointer to the last element of the sequence. In this reversed 
list representation, initialization and ~iappend~ take constant time, and the assignment 
operation takes time linear in the length of ps (by tracing upwards from the element 
pointed to by ps). 
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Fig.  9. A Structure-Sharing Representation of Sequences 

The parameter  Numpreds is map from J O B  to integers. The further refinement and 
implementat ion of this da ta  structure as a stack is detailed in [3]. 

2.9 Explo i t ing  the  Cost  Function 

We have derived a generator of schedules. The next task is to exploit the cost function 
SWD-cost (see Section 2.2) so that  we can efficiently find minimal cost schedules. In 
Section 2.3 we showed how to use necessary conditions to prune away search paths  tha t  
cannot lead to feasible solutions. Similarly we now use necessary conditions to prune 
away search paths that  cannot lead to minimal cost solutions - we derive a necessary 
condition on the existence of optimal solutions. In [12] we show that  several common 
pruning techniques such as lower bound pruning and dominance relations can be derived 
in this way. 

Lower bound pruning works in the following way. Suppose that  lb(x, ~) computes a 
lower bound on the cost of any solution in the space § i.e. 

V(x:  D, §  R, z :  R) ( / (x )  A J(z,  ~) A Satisfies(z, f) A O(x, z) ==r lb(z, § < f ( x ,  z)) 
(s) 

where f (x ,  z) denotes the cost of solution z. Suppose that  during search we have a 
schedule of cost c. Any space ~ whose lower bound exceeds c cannot contain a bet ter  
schedule than the one we have, so f can be eliminated from further consideration. Pruning 
via dominance relations generalizes lower hounds and is discussed in detail  in [12]. 
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Here we focus on the derivation of a lower bound function for S W D  and how it can 
be used to improve the search proces. Interpreting (5), we assume 

Irre flexive( Precedes, Jobs) 
A S = concat(ps, qs) 
A Bijective(S, Jobs) 
A Consistent(S, Precedes) 

and then derive a lower bound on the scheduling cost function 

size({J I J E range(S) A Deadline(J) < Index(S, J)}). 

The derivation in Figure 10 results in a bound that is the number of Jobs in the partial 
schedule ps that have already missed their deadlines. Other terms which we have derived 
manually (but not presented in the figure) would measure (1) the number of Jobs not in ps 
that have already missed their deadlines (i.e. their deadline lies between 1 and size(ps)) 
and (2) the number of jobs J not yet in ps that could not possibly meet their deadline 
(because too many predecessors must be executed before J ' s  earliest possible execution 
time). This additional term would improve the bound and thus improve performance of 
the search procedure. The lower bound function can be computed incrementally via finite 
differencing. 

Exploiting the lower bound function gives us a classic branch-and-bound algorithm. 
It records the best schedule found so far in the search process and its cost ub, and deletes 
from consideration any subspace whose lower bound is not less than ub. Program schemes 
that incorporate lower bound functions and dominance relations are given in [12]. 

2.10 Summary 

The final scheduling algorithm is apparently not very complicated, however we see that 
it is an intricate combination of knowledge of the scheduling problem, the global search 
algorithm paradigm, various program optimization techniques and data structure refine- 
ment. The derivation has left us not only with an efficient, correct program but also 
assertions that characterize the meaning of all data structures and subprograms. These 
invariants together with the derivation itself serve to explain and justify the structure 
of the program. The explicit nature of the derivation process allows us to formally cap- 
ture all design decisions and reuse them for purposes of documenting the derivation and 
helping to evolve the specifications and code as the user's needs change. 

KIDS is unique among systems of its kind for having been used to design, optimize, 
and refine programs for over 50 problems. Applications areas have included scheduling, 
combinatorial design, sorting and searching, computational geometry, pattern matching, 
and linear programming. We have had good success in using KIDS to account for the 
structure of many well-known algorithms and have often derived algorithms that were as 
good or better than previously known algorithms (see for example [11]). As an example, 
recently we have been working with the U.S. Transportation Command on transporta- 
tion scheduling [18]. The transportation scheduling problem under study is much richer 
than the problem solved in this paper. We derived a global search algorithm that ex- 
ploits constraint propagation. We compared our algorithm with a well-known scheduler 
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s ize({J  I J E range(S) A Deadline(J) < index(S, J)}) 

= ~rbyassumption~S = eoneat(ps, qs) 

s ize({J  I J E range(eoneat(ps, qs)) 
A Deadline(J) < indez(eoneat(ps, qs), J)}) 

= ~rdistributing~range~rover~eoneat 

s ize({J  I (J  e range(ps) V J E range(qs)) 
A Deadline(J) < indez(eoncat(ps, qs), J)}) 

= ~rdistributin#~ 

s ize({J  I J C range(ps) 
A Deadline(J) < index(eoneat(ps, qs), J)} 

U {JI J e range(qs) 
A Deadline(J) < inde~(eoneat(ps, qs), J)}) 

>_ ~rbymontonieitypropertieso f sets~ 

s ize({J  I J ~ range(ps) 
A Deadline(J) < index(eoncat(ps, qs), J)} 

= ~rsirnplifying@ 

size({J  I J ~ range(ps) A Deadline(J) < index(ps, J)}). 

Fig. 10. Deriving a lower bound function 

( O P I S ) .  On one data set with about 500 transportation requirements, O P I S  takes over 
30 minutes and finds a near-feasible schedule. Our derived scheduler finds a complete 
feasible schedule in less than .5 seconds, a factor of over 3600 times faster. 

3 Theory of Algorithm Design 

The discussion of algorithm design in Section 2.3 was limited to the class of global search 
algorithms. In this section we discuss a general theory of algorithm design. Our approach 
is based on representing the essential structure of various classes of algorithms as al- 
gorithm theories. An algorithm design tactic based on such algorithm theories provides 
a formal method for constructing instances of the class from a problem specification. 
Algorithm theories are abstract in several senses, the most important being problem- 
independence. They also abstract away implementation concerns about control strategy, 
target programming language, and, to some extent, the target architecture. By factoring 
out what is common to a class we hope to make it easier to apply the abstraction to 
particular problems. 



348 Douglas R. Smith 

3.1 P r o b l e m  Theor ies  

A first-order theory presentation (or more simply a theory) is a triple (S, 27, A) consisting 
of sorts S, operations over those sorts 27, and axioms A to constrain the meaning of 
the operations. A theory morphism (interpretation between theories) maps from the sorts 
and operations of one theory to the sorts and expressions over the operations of another 
theory such that the image of each source theory axiom is valid in the target theory. A 
parameterized theory has formal parameters that are themselves theories [5]. The binding 
of actual values to formal parameters is accomplished by a theory morphism. Theory 

= (Sz, $2, A2) eaends (or is an eaension of) theory T1 = (Sx, 271, A1) if 81 C_ $2, 
271 C 272, and A1 C_ A2. 

Problem theories define a problem by specifying a domain of problem instances or 
inputs and the notion of what constitutes a solution to a given problem instance. Formally, 
a problem theory B has the following structure. 

Sorts  D, R 
Opera t ions  I : D -+ Boolean 

0 : D • R ~ Boolean 

The input condition I (z)  constrains the input domain D. The output condition O(z, z) 
describes the conditions under which output domain value z : R is a feasible solution with 
respect to input z : D. Theories of booleans and sets are implicitly imported. Problems 
of finding optimal feasible solutions can be treated as extensions of problem theory by 
adding a cost domain, cost function, and ordering on the cost domain. 

For example, the problem of finding feasible schedules can be presented as a problem 
theory via a theory morphism: 

D ~-~ set (JOB)•  binrei(JOB, JOB) 
I ~-, ~(Jobs, Precedes) Irreflezive(Preeedes, Jobs) 
R ~-~ seq(JOB) 
0 ~-* ~(gobs, Precedes, S) (S, Jobs) A Consistent(S, Precedes) 

3.2 A l g o r i t h m  Theor ies  

An algorithm theory represents the essential structure of a certain class of algorithms A. 
Algorithm theory .4 extends problem theory B with any additional sorts, operators, and 
axioms needed to support the correct construction of an ,4 algorithm for B. A theory 
morphism from the algorithm theory into some problem domain theory provides the 
problem-specific concepts needed to construct an instance of an A algorithm. 

For example, gs-theory presented in Section 2.3 extends problem theory with the basic 
concepts of backtracking: subspace descriptors, initial space, the splitting and extraction 
operations, filters, and so on. A divide-and-conquer theory would extend problem theory 
with concepts such as decomposition operators and composition operators [10, 15]. 

3.3 P r o g r a m  Theor ies  

A program theory represents an executable program and its properties such as invariants, 
termination, and correctness with respect to a problem theory. Formally, a program theory 
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is parameterized with an algorithm theory. The sort and operator symbols of the 
theory parameter can be used in defining programs in P. Parameter instantiation, which 
is expressed as a theory morphism from the parameter theory, results in the replacement 
of each sort and operator symbol in P by its image under the theory morphism. The 
program theory introduces operator symbols for various functions and defines them and 
their correctness conditions via axioms. The main function would be defined as follows 
in the case where all feasible solutions are desired. 

Operations 

Axioms 

F : D --~ set(R) 

V(z: D) ( l ( z )  ~ F(z) = {z I O(z, z)} ) 
V(z : D)(l(z) :~ F(z) = Body(z) ) 
. . ,  

where Body is code that can be executed to compute F. In order to express Body it 
is generally necessary to import the theory of a prograImning language. Consistency of 
the program theory entails that the function computed by the code (Body) must return 
all feasible solutions. The axioms for other functions would be similar. 

For example, Theorem 1 asserts the consistency of one particular program theory 
for global search algorithms. This program uses recursion and is defined in the Refine 
language. 

3.4 Ref inement  Hierarchy of Algor i thm Theories 

The algorithm theories that we have studied can be arranged in a refinement hierarchy as 
in Figure 11. Below each algorithm theory in this hierarchy are listed various well-known 
classes of algorithms or computational paradigms that are based on it. The refinement 
relation between theories is expressed as a theory morphism. 

Starting at the root of the hierarchy, we briefly describe the various algorithm theories. 
Given a problem theory, it is possible to create a generate-and-test algorithm which 
simply enumerates the output domain checking for feasible solutions. Because generate- 
and-test requires no additional structure than problem theory it can be viewed as a most 
general algorithm paradigm. 

Local structure results from the imposition of a discrete neighborhood structure 
(graph) on the output domain. Local search algorithms start with a candidate solution 
and then iteratively traverse from candidate to neighboring candidate until a feasible (or 
optimal) solution is found. Examples of local search algorithms include steepest ascent 
algorithms, simulated annealing, closure algorithms, and many network flow algorithms. 
A theory of local search and a design tactic based on it are presented in [7]. The imple- 
mented tactic has been used to derive a variant of the classic simplex algorithm for linear 
programming. 

Problem reduction involves the reduction of a problem to a structure of subproblems. 
Solutions to the subproblems are composed to form a solution to the initial problem. A 
simple example is the reduction of a given problem to the problem solved by a library 
subroutine. 
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Problem Theory 
generate-and-test 

Problem Redu ction Local Structure 
local search 
steepest ascent 
simulated annealing 
closure algorithms 

Complementation 
sieves 

And/Or-reduction 
dynamic programming 
branch-and-bound (AO*) 
game tree search 

And-reduction 
divide-and-conquer 
simple loops 

Or-reduction 
global search 
binary search 
backtrack 
branch-and-bound (,4") 
conditionals 

Fig.  11. Refinement Hierarchy of Algorithm Theories 
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Complementation structure is useful when it is easier to enumerate infeasible solutions 
than feasible solutions. The initial problem is reduced to two subproblems: (1) enumer- 
ate a superset of feasible solutions and (2) enumerate infeasible solutions. The feasible 
solutions can then be found by set subtraction. Sieve algorithms are based on comple- 
mentation structure. Typically the superset of feasible solutions is explicitly represented 
and set subtraction is interleaved with the enumeration of infeasible solutions. 

And-reduction (divide-and:conquer) involves the reduction of a problem to a structure 
of subproblems all of whose solutions are required in order to compose a solution to the 
initial problem. The subproblems typically include an instance of the initial problem so 
that the reduction is recursive [10]. 

Or-reduction (global search) involves the reduction of a problem to a structure of 
subproblems at least one of whose solutions are required in order to obtain a solution to 
the initial problem. Solutions to the initial problem are obtained by selecting solutions 
to subproblems [12]. 

And/or-reduction involves a combination of And- and Or-reductions resulting in al- 
ternative ways to decompose an initial problem [15]. This theory supports the design of 
dynamic programming, general branch-and-bound, and game tree search. 

3.5 Design Tactics 

Once we have characterized a class of algorithms A via an algorithm theory, and developed 
at least one program theory, the problem of constructing an A algorithm for a problem 
P is reduced to the construction of a theory morphism from the algorithm theory into 
the domain theory for P. 

We have developed specialized design tactics for several algorithm theories. An .A- 
design tactic constructs an A-algorithm for a given problem theory. Each tactic uses 
various techniques for constructing a theory morphism from .4 into the problem domain 
theory, and then instantiates the parameter of a program theory to produce a concrete 
program. 

The first three steps of the global search design tactic construct the theory morphism 
(~ is regarded as a defined function in gs-theory) and the last applies a program theory. 

The global search tactic relies on a preexisting library of global search theories (for 
enumerating sets, sequences, maps, and so) and constructs a "connection" between the 
library theory and the problem domain theory [16]. In the scheduling problem we con- 
structed a global search theory of scheduling via a connection from the gs-theory for 
sequences and scheduling theory. 

The various steps of a tactic typicMly involve inference tasks. The highly structured 
context of these inference tasks tends to keep them relatively simple and thus tractable. 

3.6 Class l f i ca t ion-Based  Design 

A key problem in algorithm design is the choice of an appropriate algorithm theory. The 
refinement hierarchy provides a framework for solving this problem. The stronger a theory 
is, the more problem structure can be exploited in a program theory. Consequently, we 
want to construct a morphism from the deepest possible theories in the hierarchy to the 
given problem domain theory. This suggests the following procedure for accessing into the 
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library. First, construct a morphism from the root theory of the hierarchy - this is simply 
a matter of viewing a specification as a problem (as we did above for scheduling). Next, 
once we have a morphism from some algorithm theory, then we attempt to incrementally 
construct an morphism from the children theories. If several succeed, then we can select 
one or keep several and repeat the process. If none succeed, then we know that (with 
respect to this classification hierarchy of algorithms) the current algorithm theory exploits 
as much of the problem structure as possible and the corresponding program theories 
should yield a fairly efficient program. 

The process of incrementally constructing a morphism is illustrated in the "ladder 
construction" diagram on the left: 

Problem m0 
Theory ) Speco 

P~ >S~ 

I 1 Satisfaction > Specl Ii 

t 1 ' 
Pi+l mi+~ 

i+1 

Si+~ 

Linear m3 
Programming > Spec3 

, 

I 

I 

I 

I 

Transshipment V 
Problem . . . .  ~ ? 

The left-hand side of the ladder is a path in a refinement hierarchy of algorithm 
theories starting at the root (Problem Theory). Speco is a given specification theory of 
a problem. The ladder is constructed a rung at a time from the top down. The initial 
arrow (theory morphism) from problem theory to Speco is trivial. Subsequent rungs 
are constructed abstractly as in the diagram on the right above, where Pi+l @ Si is 
the pushout theory (in the category of theories and theory morphisms) and Si+l is an 
extension of Si determined by constructing the theory morphism m~. 1. The morphism 
mi+l is determined by composition. 

The creative step is the construction of mi+ 1 . ' '  Recently, we analyzed the algorithm 
design tactics in KIDS and abstracted out four general mechanisms for completing the 
construction of theory morphisms: verification, composition, unskolemization, and con- 
nections between specifications (see [16] for details). These are being implemented in 
KIDS and used to support algorithm design directly from algorithm theories. 

3.7 Concluding Remarks 

The preceeding approach to algorithm design raises several issues for further research. 
First, it builds on logical concepts of theories and interpretations between theories. Most 
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of our work has been in first-order logic. However many problems have features of time, 
state, exceptions, uncertainty, and so on that suggest the need for a variety of richer 
logics and inference mechanisms. How do the concepts of algorithm theory generalize to 
these new logics? A second issue concerns the very notion of a classification hierarchy of 
algorithms. How much coverage could such a hierarchy provide? This depends of course 
on the extent of the hierarchy and how fine the refinement relationships are. Some re- 
searchers believe that only a domain-specific hierarchy can provide the kind of coverage 
necessary to be economically useful. A related issue is how hard is would be to populate a 
useful hierarchy. The theories discussed above have required significant effort to develop. 
Are there effective techniques for identifying and formalizing new classes of algorithms? 
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