
Automating the Design of Algorithms

Douglas R. Smith

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, California 94304, USA

Abstrac t

This paper has two roughly independent parts. The first is devoted to the automation
of program construction. The Kestrel Interactive Development System (KIDS) provides
knowledge-based support for the derivation of correct and efficient programs from spec-
ifications. We trace the use of KIDS in deriving a scheduling algorithm. The derivation
illustrates algorithm design, deductive inference, simplification, finite differencing, partial
evaluation, data type refinement, and other techniques. All of the KIDS operations are
automatic except the algorithm design tactics which require some interaction at present.
Dozens of programs have been derived using, the KIDS environment.

The second part discusses the theory of algorithm design used in KIDS. Concepts
include problem theories, algorithm theories, program schemes as parameterized theories,
design as interpretation between theories (theory morphisms), algorithm design tactics,
and refinement hierarchies of algorithm theories and the incremental construction of
algorithms.

1 Introduction

There are many researchers working towards the goal of an effective software engineer-
ing discipline. It is clear that sound mathematical foundations for such a discipline are
required. Within the software engineering community there is far from universal concen-
sus regarding what such foundations are and whether they are relevant. There is little
agreement as to the direction of future progress. On the other hand, in the theoretical
community, there seems to he a eoncensus that concepts from mathematical logic and
algebra provide the necessary foundations and that programming should be treated as
calculation within a suitable logic. A wide variety of logics and calculi are currently under
investigation.

Several well-known program derivation methodologies, such as the deductive synthe-
sis approach of Manna and Waldinger [8] or the calculus of Dijkstra [4], are based on
inference rules for various programming language constructs - rules for inferring state-
ment sequences, conditionals, loops, and so on. Our complementary approach can be
viewed as providing inference rules for various problem-solving methods or algorithmic
paradigms. Our view is that when we are solving a problem we don't think in terms of

Automating the Design of Algorithms 325

loops or case statements, but more typically we may think of a certain kind of algorithm
that may be effective, such as divide-and-conquer or a greedy method.

This rest of this paper has two parts, which can be read more-or-less independently.
In Section 2, we describe the KIDS (Kestrel Interactive Development System) approach
to automating the construction of programs. KIDS supports the interactive development
of correct, efficient programs from formal specifications [13]. Users can apply automated
tools for performing deductive inference, algorithm design, expression simplification, fi-
nite differencing, partial evaluation, data type refinement, and other program transfor-
mations. After briefly discussing the environment underlying KIDS, we step through the
derivation of a program for enumerating all solutions to a scheduling problem. The steps
are as follows. First we build up a domain theory in order to state and reason about
the problem. Then, a well-structured but inefficient backtrack algorithm is created that
works by extending partial schedules. To improve efficiency we apply simplification and
partial evaluation operations. We also perform finite differencing which results in the
introduction of data Structures. Next, high-level datatypes such as sets and sequences
are refined into more machine-oriented types such as bit-vectors and linked lists. Finally,
the resulting code is compiled.

In Section 3, we describe a theory of algorithm design that is based on formalizing
knowledge about various classes of algorithms. The essential structure of a class of al-
gorithms is captured via a first-order theory presentation and the process of designing
an instance of the class is construction of a theory morphism (interpretation between
theories) [14]. For each class we have specialized design tactics for constructing instances
of the class. The algorithm theories can be arranged in a refinement hierarchy and this
hierarchy can be used to make the algorithm design incremental.

2 A u t o m a t e d S u p p o r t f o r P r o g r a m C o n s t r u c t i o n

A computer program can be viewed as a composition of several kinds of knowledge: knowl-
edge about the particular problem being solved, general knowledge about the application
domain, and programming knowledge about architectures, algorithms, data structures,
optimization techniques, performance analysis, etc. KIDS serves as a testbed for exploring
automated support for this compositional approach to program construction.

A user of KIDS develops a formal specification into a program by interactively ap-
plying a sequence of high-level transformations. During development, the user views a
partially implemented specification annotated with input assumptions, invariants, and
output conditions (a snapshot of a typical screen appears in Figure 1). A mouse is used
to select a transformation from a command menu and to apply it to a subexpression
of the specification. In effect, the user makes high-level design decisions and the system
carries them out.

Perhaps the most unique features of KIDS are its algorithm design tactics and its
deductive inference component. Its other operations, such as simplification and finite
differencing, are well-known, but have not been integrated before in one system. All of the
KIDS transformations are correctness-preserving, automatic (except the algorithm design
tactics which require some interaction at present) and perform significant, meaningful
steps from the user's point of view.

(J
O

B
S

:
se

t (
in

Le
ge

r)
,

~
IV

E
(B

R
E

C
~

D
E

S
,

JO
B

S)

&
 r

~
e(

v
)

su
b

se
t

JO
B

S
&

 C
0N

S
IS

TE
t~

(V
,

P~
ZC

ED
ES

)
&

 I
N

JE
C

T
IV

Z
(V

,
JO

B
S)

&

 C
R

O
S

S
-C

O
N

S
IS

TE
N

T(
ra

ng
e(

V
),

JO
B

S
 \

~

g
e

(V
),

pR

EC
1[

D
ES

)
re

tu
~n

~
(~

LL
-S

0~
.I~

U
LB

S
-S

E
T:

 s
e

t(
~

e
q

(~
e

g
e

r)
)

�9
 (S

C
Z~

D
 I

(S

~
;

e
e

q
(~

t~
g

e
r)

)
[~

S
(S

C
l~

.
V

)
&

 O
O

N
SI

S'
l~

k'E
(S

C
~m

~,
 P

R
K

C
~E

S
)

&
 B

Z
~

C
~

V
~

(S
C

~
.

JO
B

S
)}

)
�9
 (
V

I
0

JO
B

S
su

bs
et

~e
mg
e(
v)
)

u
~

o
n

l
~e

du
ce

(U

H
IO

B
I,

(k
l~

-S
C

m
m

~
Z

S
-0

S
-~

U
X

(J
0~

S
,

pB
EC

~D
ES

,
ap

pe
nd

(V
,

l)
)

JO
~S

 &

C
~O

S
S

-C
O

~S
X

S
~r

r(
~a

ng
e(

V
),

(Z
),

P

l~
c~

s)
 1

&

 <
l,

I)

-~

er

zc
~

s
a

C
0

~
S

IS
~

T
(V

.
B

~
C

~
E

S
)

&
 I

-~

n
ra

ng
e(

v)

&
 I

N
JE

C
TZ

V
E(

V
,

JO
B

S)

[
&

 C
R

O
SS

-O
O

M
SI

S'
I~

r~

I
((

I)
,

(J
O

BS
 \

r~
(v

))

le
e~

 I
,

PR
EC

ZD
ES

)
I

§
&

c
~
s
s
-
c
o
~
s
z
s
'
m
e

j
(r

~n
ge

(v
).

(J

O
BS

 \
~

an
ge

~
))

L

e
~

l,

pe

Z
cl

~
zS

)|

))

~
un

ct
io

n
/d

.J
. - S

01
9[

:D
UL

~S

(J
O

B
S

:
se

l~
(~

n~
eg

e~
),

P
R

~C
E

I~
S

: s
e

t(
t~

p
le

(i
n

to
g

e
r,

i~

9
e

r)
)

I
~

Z
X

Z
v~

c,
J~

S
.

JO
B

S
))

~e

t:u
z~

s
(A

LL
-S

C
~B

0~
E

S
-S

ZT
:

~
et

 (~
e

q
(i

~
e

g
e

r)
)

t
~J

.-S
C

I~
D

~I
~S

-S
L~

�9

 (S
C

~D

I
(S

C
~Q

):
eo

q(
~.

~t
to

ge
~)

)

�9
 N

.Z
.-S

C
~I

.E
S

-O
S

-~
U

X
(J

O
~S

,
p~

C
B

D
~S

,
[]

)

-
O

bj
ec

t
O

pe
ra

ti
on

C

ho
os

e
fr

o
a

th
e

M
n

u
 a

n
o

p
er

a.
o

n

to

ap
pl

y
to

#2

9<
er

a
~)

~-
O

P>
:

S
~

li
fy

C

ho
oa

e
fr

om
 t

he

~
~

ty
pe

 o
~

si
~

p
]~

fi
ca

t~
o

n
:

C
cm

~
xt

-D
ep

en
de

nt
-r

o
~

ea
r d

-O
-O

ac
kv

~
d-

4
C

ho
oa

e
fr

o
i

~
e

ur
pa

a

R
aW

.b
oy

 ~
od

e:

au
to

~
at

ic
,

~
L

e~
ae

d
~

a~

g
o

al
s

-
P

ro
g~

a~
 v

~n
do

v
O

pe
ra

ti
on

C

ho
oe

e
fr

o
.

th
e

m
en

u
a

p
ro

g
ra

a
vS

nd
ow

 o
pe

~
a~

io
n:

R

ed
ia

p~
ay

lo

ci

w
it

h
o

u
t

h
i~

ig
h

ti
n

g

-
si

~
pl

i ~
y

C
ho

os
e

f~

~
.e

~e

m
u

th
e

ty
pe

of

sl

~
p

l~
ic

a
~

io
n

:
C

on
te

xt
-D

ep
en

de
n~

-F
or

va
r

d
-0

-B
a~

d
-4

C

l~
ck

le

ft

on
 t

he

ex
p

rn
si

o
n

to

 b
e

s~
p

l~
fi

ed
:

...
...

...
...

...

I
IIIII

IIII
3.
 ~
;S
TI
~t
~T
(V
,

~
5

)

4.
 I

~
T
I
~
{
V
,

3D
]B
S)

~
l
:

B
I
~
I
~
(
V
,

~
)

~,
Jb
~)
oa
%:
 SE
TE
QI
Jf
L(
r~
(V
),

~
)

~
I
:

~
(

~

\
ri
ns
e(
V)
,
O
)

S
ub

st
 I t

~C
lO

n:
 0

.>

do
ne

.

IIII
III

I
II

0

Automating the Design of Algorithms 32"/

2 . 1 G e n e r a l C h a r a c t e r i s t i c s o f K I D S

KIDS is built on top of REFINE 1, a commercial knowledge-based programming environ-
ment which provides

- an object-attribute-style database that is used to represent software-related objects
via annotated abstract syntax trees;

- grammar-based parser/unparsers that translate between text and abstract syntax;
- a very-high-level language (also called REFINE) and compiler. The language supports

first-order logic, set-theoretic data types and operations, transformation and pattern
constructs that support the creation of rules. The compiler generates CommonLisp
code.

KIDS is almost entirely written in REFINE and all of its operations work on the
annotated abstract syntax tree representation of specifications in the REFINE database.
A key feature of the unparsers/pretty-printers is the option for mouse-sensitive syntax
- - the user can refer to an expression on the screen by pointing to it.

KIDS is a program transformation system - one applies a sequence of consistency-
preserving transformations to an initial specification and achieves a correct and hopefully
efficient program. The system emphasizes the application of complex high-level transfor-
mations that perform significant and meaningful actions. From the user's point of view
the system allows the user to make high-level design decisions like, "design a divide-
and-conquer algorithm for that specification" or "simplify that expression in context".
We hope that decisions at this level will be both intuitive to the user and be high-level
enough that useful programs can be derived within a reasonable number of steps.

The user typically goes through the following steps in using KIDS for program devel-
opment.

1. Deve lop a doma in theory - The user builds up a domain theory that defines the
basic concepts and operations of the domain and the laws for reasoning about them.
Currently, KIDS has over 100 theories in its library, ranging from basic theories (e.g.
for booleans, natural numbers, linear orders, and finite sequences) to problem-specific
theories. Support for theory development in KIDS includes mechanisms to import
theories from the library and some automated support for consistently extending
theories by deriving laws from definitions. However, users typically must provide
most of the problem-specific information in a domain theory.

2. Creale a specif ication - The user enters a specification stated in terms of the under-
lying domain theory.

3. A p p l y a design l a c t i c - The user selects an algorithm design tactic from a menu and
applies it to a specification. Currently KIDS has tactics for simple problem reduction
(reducing a specification to a library routine) [10], divide-and-conquer [10], global
search (binary search, backtrack, branch-and-bound) [12], problem reduction gener-
ators (dynamic programming, generalized branch-and-bound, game-tree search) [15],
local search (hillclimbing) [7], and others.

t REFINE is a trademark of Reasoning Systems, Inc., Palo Alto, California.

328 Douglas R. Smith

4. App ly op t imiza t ions - The KIDS system allows the application of optimization tech-
niques such as simplification, partial evaluation, finite differencing, case analysis, ab-
straction, unfold, and other transformations. The user selects an optimization method
from a menu and applies it by pointing to a program expression. Each of the opti-
mization methods are fully automatic and take only a few seconds, with the exception
of simplification (which is arbitrarily hard).

5. App ly data type re f inements - The user can select implementations for the high-level
data types in the program. Data type refinement rules automatically carry out the
details of constructing the implementation.

6. Compile - The resulting code is compiled to executable form. In a sense, KIDS can
be regarded as a front-end to a conventional compiler.

Actually, the user is free to apply any subset of the KIDS operations in any order -
the above sequence is typical of our experiments in algorithm design and is followed in
this paper. The screen dump in Figure 1 shows the interface at the point after algorithm
design when the user has just selected the Simplify operation on the command menu at
the top and is pointing to an expression as the argument to simplify.

KIDS is supported by a deductive inference system called RAINBOW II. All of the
laws used by RAINBOW II during program development are supplied via the problem
domain theory. That is, the current version of KIDS has no built-in knowledge - - the
first step in performing a derivation is building and loading its domain theory. Loading
a theory has the effect of installing definitions, laws, and inference rules in the Refine
object base in way that is accessible to RAINBOW II.

2.2 D o m a i n T h e o r y and Specification for Schedu l ing

Suppose that we wish to schedule a set of jobs on a processor subject to a precedence
relation that constrains the order in which jobs can run. Farther suppose that each job
completes in unit time, that each job has a deadline, and that we wish to minimize the
number of jobs that fail to complete before their deadlines. If we define a schedule to
be an ordering of a given set of jobs that is consistent with a given precedence relation,
then this is an optimization problem where the feasible space is the set of schedules, and
the cost function is the number of jobs in a schedule that fail to complete before their
deadline.

Before a specification can be written, the relevant concepts, operations, relationships,
and properties of the problem must be defined. Thus the first, and often the hardest, step
in deriving an algorithm for solving a problem is the formalization of its domain theory.

KIDS provides rudimentary support for the development Of dorrmin theories. A theory
presentation is comprised of sets of imported theories, type definitions, function specifi-
cations with optional operational definitions, laws (axioms and theorems), and rules of
inference. A hierarchic library of theories is maintained with importation as the principal
link. Users can enter definitions of new functions or create new definitions by abstraction
on existing expressions. The inference system can be used to verify common properties
such as associativity, commutativity, or idempotence. More interestingly, we have used
RAINBOW II to automatically derive distributive, monotonicity, and other kinds of laws.
For some problems, we have derived almost all of the laws needed to support design and

Automating the Design of Algorithms 329

optimization (see for example [17]). The scheduling problem reported here was performed
before these theory development tools were available and the domain theory was entered
entirely by hand.

The scheduling domain theory is summarized below. The concept that a schedule is
a linear arrangement of a set of jobs can be expressed in terms of a bijection.

Injective(M : seq(integer), S : set(integer)): boolean
= range(M) C_ S

A V(i,j)(i E domain(M) A j E domain(M) A i ~ j ~ M(i) ~ M(j))

Bijeetive(M : seq(integer), S : set(integer)): boolean
= Inject ive(M,S) A range(M)= S

That is, a sequence M is injective into a set S if all elements of M are in S and no
element of M occurs twice. A sequence M is bijective into a set S if it is injective and
each element of S occurs in M.

Distributive laws for the Injective predicate are as follows.

V(S)(Injective([], S) = true)

V(W, a, S) (Injective(append(W, a), S) = (Injective(W, S) A a E S A a ~_ range(W)))

V(W1, W2, S) (Injective(concat(Wl, W2), S)
= (Injeclive(Wl, S) A Injective(W2, S) A range(W1) N range(W2) = {}))

The concept that a schedule must be consistent with the given precedence relation is
captured in the following definition and associated laws:

Consistent(S: seq(J O B), P : binrel(J O B, JOB)) : boolean
= V(i , j) (iErange(S) A jErange(S) A (i,j} E P

==~ Index(i, S) < Index(j, S))

where Index(i, S) returns the index of element i in sequence S.

y(P)(Consistent(D , e) = true)

V(a, P) (Consistent([a], P) = true)

V(S1, $2, P) (Consistent(concat(S1, $2), P)
= (Consistent(S1, P) A Consistent(S2, P)

A Cross---Consistent(range(S1), range(S2), P)))

where

Cross-Consistent(R1 : set(JOB), R2 : set(JOB), P : binrel(JOB, JOB)) : boolean
= V(I, J) (I E R1 ^ J ~ R2 ~ (J,I) q~ P)

Formally, the problem of enumerating schedules can be specified as follows.

330 Douglas R. Smith

Schedules(Jobs: set(JOB), Precedes: binrel(S O B, JOB))
w h e r e Irre fle•ive(Precedes, Jobs)
r e t u r n s { S : seq(JOB) I Bijective(S, Jobs) A Consistent(S, Precedes)}

Here Jobs is the set of jobs that we wish to schedule. The parameter Precedes is
a binary relation over Jobs and satisfies the input condition that it is irreflexive (with
respect to the set Jobs). The output is specified to be the set of all sequences S of Jobs
that are bijective with respect to Jobs and are consistent with the Precedes relation.
The constraint Bijective(S, Jobs) A Consistent(S, Precedes) is called the output con-
dition, The following is a specification of the schedule optimization problem, called S W D
(Scheduling With Deadlines).

SWD(JObs : set(JOB), Precedes : binrel(JOB, JOB), Deadline : map(JOB, Nat))
w h e r e Irre flezive(Precedes, Jobs) A domain(Deadline) = Jobs
r e t u r n s eztremum()~(S1, $2) SW D--Cost(S1, Deadline) < S W D--Cost(S2, Deadline),

{ S I Bijective(S, Jobs) A Consistent(S, Precedes)})

SWD-Cost (S : seq(JOB), Deadline : map(JOB, Nat)) : Nat
= size({j I J E range(S) A Deadline(j) < indez(S,j)})

The input Deadline is a mapping from jobs to deadline times (represented as natural
numbers). The (nondeterministic) function eztremum returns an extremal element:

extremum(f, C) = some(z)(x E C A V(y)(y E C ==~ f(x) < f(y))).

The function SWD-Cost computes the number of jobs that miss their deadline. Thus this
specification seeks a schedule that minimizes the number of missed deadlines.

2.3 Algorithm Design

The next step is to develop a correct, high-level algorithm for enumerating schedules.
KIDS has specialized tactics for creating algorithms of various kinds such as divide-and-
conquer [10], local search [7], and global search [12]. The latter class (which will be applied
here) generalizes binary search, backtracking, branch-and-bound, constraint satisfaction,
and other algorithmic paradigms. The algorithm design tactics are discussed further in
Section 3.

The basic idea of global search is to represent and manipulate sets of candidate
solutions. The principal operations are to extract candidate solutions from a set and
to split a set into subsets. Derived operations include various filters which are used to
eliminate sets containing no feasible or optimal solutions. Global search algorithms work
as follows: starting from an initial set that contains all solutions to the given problem
instance, the algorithm repeatedly extracts solutions, splits sets, and eliminates sets via
filters until no sets remain to be split. The process is often described as a tree (or DAG)
search in which a node represents a set of candidates and an arc represents the split
relationship between set and subset. The filters serve to prune off branches of the tree
that cannot lead to solutions.

The sets of candidate solutions are often infinite and even when finite they are rarely
represented extensionally. Thus global search algorithms are based on an abstract data

Automating the Design of Algorithms 331

type of intensional representations called space descriptors (denoted by hatted symbols).
In addition to the extraction and splitting operations mentioned above, the type also
includes a predicate satisfies that determines when a candidate solution is in the set
denoted by a descriptor.

The various operations in the abstract data type of space descriptors together with
problem specification can be packaged together as a theory. Formally, abstract global
search theory (or simply gs--theory) ~ is presented as follows:

Sorts
D input domain
R output domain
[l subspace descriptors

Operations
I : D ---+ boolean
0 : D • R ---* boolean

: D • [~ ~ boolean
2o:D---~ h
Satisfies : R x [~ --+ boolean
Splits-into : D • h • h ---+ boolean
Extractable : R x [~ ~ boolean

A x i o m s
GSO. t(x)
GS1. l (x)
GS2. I(~)
GS3. I (x)

input condition
input/output condition
subspace descriptors condition
initial space
denotation of descriptors
split relation
extractor of solutions from spaces

[(x, 2o(~))
A I(x, 2) A Splits-into(x, ~, g) ~ [(x, g)
A O(x,z) ==r Satisfies(z, 2o(x))
^ i(x, 2)

(Satisfies(z, § = 3(3) (Splits-into*(x, § 3) A Extractable(z, g)))

where D is the input domain, R is the output domain, I is the input condition, O is the
output condition, /~ is the type of space descriptors, I defines legal space descriptors; 2
and g vary over descriptors, r0 (z) is the descriptor of the initial set of candidate solutions,
Satisfies(z, ~) means that z is in the set denoted by descriptor 2 or that z satisfies the
constraints that § represents, Splits-into(x, 2, ~) means that ~ is a subspace of § with
respect to input x, and Extractable(z, 2) means that z is directly extractable from §
Axiom GS0 asserts that the initial descriptor ~0(x) is a legal descriptor. Axiom GS1
asserts that legal descriptors split into legal descriptors and that Splits-into induces
a well-founded ordering on spaces. Axiom GS2 constrains the denotation of the initial
descriptor - - all feasible solutions are contained in the initial space. Axiom GS3 gives
the denotation of an arbitrary descriptor 2 - - an output object z is in the set denoted
by ~ if and only if z can be extracted after finitely many applications of Splits-into to
where

Splits-into*(x, 2, g) r 3(k : Nat) (Splits-intok(z, 2, ~))

and

Splits-into~ 2, i) r162 2 = [

332 Douglas R. Smith

and for all natural numbers k

Splits-intok+l(r, ~, i) r 3 (i : / ~) (Splits-into(z, r ~) A Splits-intok(z, i, i)).

Note that all variables are assumed to be universally quantified unless explicitly spec-
ified otherwise.

Ezample: Enumerating sequences
Consider the problem of enumerating sequences over a given finite set S. A space

is a set of sequences with common prefix ps. The descriptor for the initial space is
just ~. Splitting is performed by appending an element from S onto the end of the
common prefix ps. The sequence ps itself is directly extractable from the space. This
global search theory for enumerating sequences can be presented via a correspondence
between the components of abstract gs-theory and a concrete gs-theory (technically this
correspondence is known as a theory morphism or interpretation between theories).

D ~-* set(a) x integer
I ~ A(S) true
R ~'* seq(a)
o ~ a(s, q) range(q) _C S
h ~ seq(a)
J ~ ~(s, ps) range(ps) C s

Satisfies ~-* X(q, ps)] (r) (q = eoneat(ps, r))
~0 ~ ~ (s) []

Splits-into ~ .~(& ps, ps') 3(i) (i ~ S ^ ps' = append(ps, i))
Eztraetable ~ X(q, ps) q = ps
End of Ezample
In addition to the above components of global search theory, there are various derived

operations which may play a role in producing an efficient algorithm. Filters, described
next, are crucial to the efficiency of a global search algorithm. Filters correspond to the
notion of pruning branches in backtrack algorithms and to pruning via lower bounds
and dominance relations in branch-and-bound. A filter r : D • R ~ boolean is used
to eliminate spaces from further processing. The ideal filter decides the question "Does
there exist a feasible solution in space § or, formally,

3 (z : R) (Satisfies(z, § A O(z, z)). (1)

However, to use (1) directly as a filter would usually be too expensive, so instead we use
an approximation to it. A necessary filter ~ satisfies

3 (z : n) (Satisfies(z, § ^ O(z, z)) ~ $(z , § (2)

By the contrapositive of this definition, if ~.li(z, f) is false for some space § then there
does not exist a solution in ~. Thus necessary filters can be used to eliminate spaces that
do not contain solutions.

The design tactic for global search in KIDS is based on the following theorems. The
proofs may be found in [12]. The first shows how to produce a correct program from a
given global search theory. Consequently, construction of a correct global search program
reduces to the problem of constructing a global search theory. The second theorem tells
us how to obtain a global search theory for a given problem by specializing an existing

Automating the Design of Algorithms 333

global search theory. This theorem suggests that we set up a library of global search
theories for the various data types of our language and simply select and specialize these
library theories.

Theorem 1. Let ~ be a global search theory, l f ~ is a necessary filter then the following
program specification is consistent

function F(x: D): set(R)
where I(x)
returns {z [O(x, z)}
= if ~(z, §

then F_gs(z, ~o(z))
else { }

function F_gs(z: D, § R): set(R)
where I(x) ^ i(x, S) ^ ~(x, ~)
returns {z I Satisfies(z, § ^ O(z, z)}
= {z I Extractable(~, § ^ O(x, z)}

V reduce(U, { F_gs(x, ~) I Splits-into(z, § i) ^ ~(z , ~)}).

In this abstract program and Inter programs we mainly use conventional notations
from first-order logic and set theory. Our notation for reduction is reduce(U, SS) which
could be written U s e s s S or U/SS.

In words, the abstract global search program works as follows. On input x the program
F calls F_gs with the initial space S0(x) if the filter holds, otherwise there are no feasible
solutions. The program F_gs unions together two sets: (1) all solutions that can be
directly extracted from the space S, and (2) the union of all solutions found recursively
in spaces g that are obtained by splitting S and that survive the filter. In terms of the
search tree model, F_gs unions together the solutions found at the current node with the
solutions found at descendants. Note that �9 is an input invariant in F_gs.

If we were to apply Theorem 1 to gs_sequences_over_finite_set then we would get a
generator of all sequences over the input set S.

The following definition gives conditions under which an algorithm for solving problem
B can be used to enumerate all solutions to A. Specification 13A = (DA, RA, IA, OA)
completely reduces to specification BB = (DB, RB, IB, OB) if

(RA = RB) A V(x : Do) : l (y: OB) V(Z : RA) ([A(~) ^ OA(X, z) ~ OB(y, Z)). (3)

BA completely reduces to BB with substitution 0 if O(y) : t(x) and RA = RBO

v(x: Do) V(z: no) (to(x) ^ Oa(x, z) ~ 0B(t(x), ~)). (4)

Theorem 2. Let ~B = (BB, [~,], So, Satisfies, Splits-into, Extractable) be a global search
theory, and let B^ be a specification that completely reduces to I3B with substitution O,
then the structure G^ = (BA, hO,]0, Satisfies0, § Splits-intoO, ExtractableO) is a global
search theory.

In this theorem PO denotes the application of substitution 0 to expression P.
A simplified tactic for designing global search algorithms has four steps.

334 Douglas R. Smith

1. Select a global search theory GB from a library which solves the problem of enumer-
ating the output type for the given problem A.

2. Find a substitution 0 whereby BA completely reduces to BB by verifying Formula
(3). Apply Theorem 2 to create a specialized global search theory GA.

3. Derive a necessary filter �9 via Formula (2). That is, use directed inference to derive
a necessary condition of Formula (1) expressed over the variables {z, ~}.

4. Apply Theorem 1 to create a global search program.

The tactic is sound and thus only generates correct programs. The interested reader
should consult [12] for the full generality of the global search model and design tactic.

The KIDS library currently contains global search theories for a number of problem
domains, such as enumerating sets, sequences, maps, and integers. For the Scheduling
problem we select from a library a standard global search theory for enumerating se-
quences over a finite domain - #s_sequences_over_finite_set. In accord with step 2, the
following inference :specification is created.

set(JOB) = set(a) A
V(Jobs : set(JOB), Precedes: binrel(JOB, JOB))
3(S : set(integer))
V(assign : seq(integer))

(Bijeetive(assign, Jobs) A Consistent(assign, Precedes)
range(assign) C_ S).

The proof process is simple and proceeds as follows: The types are unified yielding
substitution {a ~-~ JOB}. By forward inference from Bijective(assign, Jobs) the infer-
ence system derives Injective(assign, Jobs) and range(assign) = Jobs, then

range(assign) C_ S

applying range(assign) = Jobs

Jobs C_ S

r162 unifying with the reflexivity law V(R)(R C R)

true with substitution {S ~ Jobs}.

Thus, altogether the Scheduling problem completely reduces to
gs_sequences_over_finite_set with substitution {a ~-* integer, S ~-* Jobs}. The construc-
tion in Theorem 2 yields the following global search theory for scheduling.

Automating the Design of Algorithms 335

D v--, set(JOB) • binrel(JOB, JOB)
I ~-* •(Jobs, Precedes) Irreflexive(Precedes, Jobs)
R ~ seq(integer)
0 ~-* A(Jobs, Precedes, p) Bijective(p, Jobs) A Consistent(p, Precedes)
[l ~-~ seq(integer)
] ~-~)~(Jobs, Precedes, ps) range(ps) C Jobs

Satisfies ~-*)~(p, ps) 3(r)(p = coneat(ps, r))
§ []

Spllts-into ~ 2(Jobs, erecedes, ps, ps') 3(i)(i E Jobs A ps' = append(ps, i))
Eztractable ~-*)~(p, ps) p = ps
This theory defines a generator of partial schedules. Some of these partial schedules

cannot possibly be extended to complete schedules. For example, if a E Jobs then partial
schedules [a, a], [a, a, a], and so on, would be generated. The next design step is to derive
mechanisms for pruning away such useless nodes of the search tree. The effect of this
step is to incorporate problem-specific information into the generator in order to improve
efficiency.

To derive a necessary filter for the Scheduling problem, the inference system is directed
to produce necessary conditions on the existence of an extension of a partial solution ps
that satisfies all the Scheduling constraints; formally

find some (~)
(3(p) (3(r)(p -= concat(ps, r))

A Bijective(p, Jobs)
A Consistent(p, Precedes))

�9 (Jobs, Precedes, ps)).

Any such �9 serves as a filter since if ~ does not hold for some partial solution, then by
the contrapositive of the implication there does not exist an extension that satisfies the
Scheduling constraints. The derivations proceed as follows.

Biject ive (p, Jobs)

r162 by definition of Bijective

Injective(p, Jobs) A range(p) = Jobs

: : ~ applying p = concat(ps, r) to the first conjunct

Injective(concat(ps, r), Jobs)

distributing Injective over concat

Injective(ps, Jobs) A Injective(r, Jobs)
A range(ps) N range(r)= {}

==~ dropping conjuncts

Injective (ps, Jobs).

336 Douglas R. Smith

Also
Consistent(p,Precedes)

4---4- applying p = concat(ps, r)

Consistent(concat(ps, r), Precedes)

r distributing Consistent@rover@eoneat

Consistent(ps, Precedes)
^ Cross--Consistent(range(ps), range(r), Precedes)
A Consistent(r, Precedes)

@fusing@range(r) = Jobs \ range(ps)

Consistent(ps, Precedes)
A Cross--Consistent(range(ps), Jobs \ range(ps), Precedes)

s among the many derived consequents RAINBOW discards useless ones and
presents a menu of possibilities for the user to choose from. The conjunction of any subset
will result in a correct algorithm. It is possible to automate the selection of filters using
dependency tracking but we have not done so at this writing.

Inject ire (ps, Jobs)
A Consistent(ps, Precedes)
A Cross--Consistent(ps, Jobs \ range(ps), Precedes)

In words, the partial solution must itself be Consistent with Precedes, contain no
duplicate elements, and satisfy the cross-consistency condition - no element in the partial
solution can be preceded by an uncommitted JOB.

Finally the recursive REFINE program in Figure 2 is produced by applying Theorem
1. That is, the correspondence between the symbols of abstract gs-theory and concrete
expressions is used to instantiate the program scheme in Theorem 1. Note that the filter
derived above is tested prior to each call to the backtracking function SCHEDULES-GS
and thus the filter is displayed as an input invariant. Being produced as an instance of a
program abstraction, this algorithm obviously has some inefficiencies, even though it is
correct. The goal of a design tactic is to produce a correct, very-high-level, well-structured
algorithm. Subsequent refinement and optimization is necessary in order to realize the
potential of the algorithm.

2.4 Simplification

KIDS provides two expression simplifiers. The simplest and fastest, called the Contezt-
Independent Simplier (CI-SIMPLIFY), applies rewrite rules that are fired exhaustively.
Only those laws from the domain theory that are treated as rewrite rules are fired by
CI-SIMPLIFY. Some typical equations used as rewrite rules are

tength@ = o

Automating the Design of Algorithms 337

function SCHEDULES-GS
(JOBS : set(JOB),
Precedes : binrel(JOB, JOB),
ps : seq(integer))

where Irreflexive(Precedes, Jobs) A range(ps) C Jobs
A Consistent(ps, Precedes)
A Injective(ps, Jobs)
^ @iCross - Consistent@(range(ps), Jobs \ range(ps), Precedes)

returns {SCHED I
Extends(SCHED, ps) A Consistent(SCHED, Precedes)

^ Bijective(SCHED, Jobs)}
= {SCHED [Consistent(SCHED, Precedes)

A Bijective(SCnED, Jobs) A SCHED = ps}
U reduce(U,

{SCHEDULES-GS(Jobs, Precedes, @iNew -ps@)]
Consistent(@iNew - ps@, Precedes)
^ Injective(~iNew - ps i , Jobs)
A ~iCross - Consistent@(range(~iNew - ps i) ,

Jobs \ range(~iNew - ps@), Precedes)
A 3(I) (~iNew - ps~ = append(ps, I) A I E Jobs)

})

function @iSCHEDULES@(Jobs : set(JOB), Precedes : binrel(@iJOB@, @i JOB@))
where lrreflezive (Precedes, Jobs))
returns {SCHED] Bijective(SCHED, Jobs)

A Consistent(SCHED, Precedes)})
= if @iCross - Consistent@(range([]), Jobs \ range([]), Precedes)

^ lnjective([], Jobs) ^ Consistent([], Precedes)
then SCHEDULES-GS(Jobs, Precedes, [])
else {}

Fig. 2. Global search algorithm for the scheduling problem

(from sequence theory) and

if true then P else Q = P

(from boolean theory). We also treat the distributive laws in Scheduling theory as rewrite
rules: e.g.

Inject ive(D,S) r true

and

Inject ive(append(W, a), S) r (ln ject ive(W, S) h a E S ^ a f~ range(W)) .

We apply CI-Simplify to the body of all newly derived programs. As a result, the
conditional

338 Douglas R. Smith

if @iCross- Consistenl@(range([]), Jobs \ range([]), Precedes)
A lnjective([], Jobs) A Consistent([], Precedes)

then SCHEDULES-GS(Jobs, Precedes, [])
etse {}

simplifies to S C H E D U L E S - GS(Jobs, Precedes, []).
Another rule modifies a set former by replacing all occurrences of a local variable that

is defined by an equality:

{C(x) l x = e A g (x) } = {C(e) l P (e) } .

For example, this rule will replace New-ps by append(ps, i) everywhere in SCHEDULES-
GS. This replacement in turn triggers the application of the laws for distributing
Consistent, Injective and so on, over append.

The result of applying CI-Simplify to the bodies of SCHEDULES and SCHEDULES-
GS is shown in Figure 3. (For brevity we will sometimes omit or use ellipsis in place of
expressions that remain unchanged after a transformation).

f u n c t i o n SCHEDULES-GS
(Jobs: set(JOB), Precedes: binrei(JOB, JOB), ps : seq(integer))

w h e r e Irreflexive(Precedes, Jobs) A range(ps) C_ Jobs
A Consistent(ps, Precedes)
A Injective(ps, Jobs)
A @iCross - Consistent@(range(ps), Jobs \ range(ps), Precedes)

r e t u r n s . . .
= {ps[Consistent(ps, Precedes) A Bijective(ps, Jobs)}

U
reduce(U, { SCHEDULES-GS(Jobs, Precedes, append(ps, 1))1

1 e Jobs ^ I q~ range(ps) A (I, I) ~ Precedes
A ~iCross- Consistent~(range(ps), {1}, Precedes)
A Consistent(ps, Precedes)
A lnjective(ps, Jobs)
^ @iCross - Consistent@({l}, (Jobs \ range(ps)) \ {I}, Precedes)
^ @iCross - Consistbnt~(range(ps), (Jobs \ range(ps)) \ {I}, Precedes)})

f u n c t i o n SCHEDULES(Jobs : set(JOB), Precedes : binrel(JOB, JOB))
w h e r e Irreflexive (Precedes, Jobs)
r e t u r n s ...
= SCHEDULES-GS(Jobs, Precedes, [])

Fig. 3. Scheduling code after context-independent simplification

There are other simplification opportunities in this code. For example, notice that the
predicate Injective(ps, Jobs) is being tested in SCHEDULES-GS, but it is already true
because it is an input invariant. The second expression simplifier, Contezt-Dependent
Simplify (CD-Simplify), is designed to simplify a given expression with respect to its
context. CD-Simplify gathers all predicates that hold in the context of the expression

Automating the Design of Algorithms 339

by walking up the abstract syntax tree gathering the test of encompassing conditionals,
sibling conjuncts in the condition of a set-former, etc. and ultimately the input conditions
of the encompassing function. The expression is then simplified with respect to this rich
assumption set and the laws in the underlying domain theory. Technically, the inference
system infers a variety of equivalent forms of the given expression, selecting one of these
that minimizes a built-in heuristic measure of complexity.

In applying CD-Simplify to the predicate of the first set-former in SCHEDULES-GS,
we analyze the context to find all properties that hold when the expression is evaluated:

Irreflcxive(Precedes, Jobs)
A range(ps) C_ Jobs
A Consistent(ps, Precedes)
A Injective(ps, Jobs)
A @iCross - Consistent@(range(ps), Jobs \ range(ps), Precedes)

When we attempt to simplify the expression

Consistent(ps, Precedes) A Bijective(ps, Jobs)

the first conjunct immediately unifies with an assumption and thus simplifies to true.
For the second conjunct:

Bijective(ps, Jobs)

by definition of Bijective

Injective(ps, Jobs) A range(ps) = Jobs

unifying the first conjunct with an assumption

range(ps) = Jobs

r by definition of set equality : (S = T) = (S C_ T A T C S)

ra.ge(ps) C Jobs ^ Jobs C_ ra.ge(ps)

r unifying the first conjunct with an assumption

Jobs C range(ps).
The resulting simplified expression is Jobs C_ range(ps). After applying CD-Simplify

to the predicates of both set-formers in SCHEDULES-GS we obtain the code in Figure
4.

2.5 Part ia l Evaluat ion

Next we notice that the call to Cross-Consistent has an argument of a restricted form - - a
singleton set. This suggests the application of partial evaluation [1]. KIDS has the classic

340 Douglas R. Smith

function SCHEDULES-GS
(Jobs: set(JOB), Precedes: binrel (J O B, JOB), ps : seq(integer))

where lrreflexive(Precedes, Jobs)
A range(ps) C_ Jobs
A Consistent(ps, Precedes)
A Injective(ps, Jobs)
A GiCross - Consistent@(range(ps), Jobs \ range(ps), Precedes)

= { V I Jobs C range(ps)}
U reduce(U,

{ SCHEDULES-GS(Jobs, Precedes, append(ps, I))1
I E Jobs A I ~ range(ps)

A @iCross - Consistent@({I}, (Jobs \ range(ps))\ {I}, Precedes)
})

Fig. 4. Scheduling Algorithm after CD-Simplify

UNFOLD transformation that replaces a function call by its definition (with arguments
replacing parameters). Partial evaluation proceeds by first UNFOLDing then simplifying.

UNFOLDing @iCross - Consistent@({I}, (Jobs \ range(ps)) \ {I}, Precedes), we
obtain

V(H : @i JOB@, J : @i JOB@)
(/ / �9 {I} A J �9 (Jobs \ range(ps)) \ {I} ~ --,(J, II) E Precedes)

The rules

V(X, y l , . . . ,yn) (Q(X) A X = e ~ P(z)) ~ V(yl , . . . ,~n)(Q(e) ~ P(e)).

(imported with finite set theory and boolean theory) and others are used by CI-Simplify
resulting in

V(J)(J E Jobs \ ran#e(ps) A J ~s I ~ {J, I) ~ Precedes).

2.6 Fini te Differencing

Notice that the expression range(ps) in Figure 4 is computed each time SCHEDULES-
GS is invoked and that the parameter ps changes in a regular way. This suggests that
we create a new variable whose value is maintained equal to range(ps) and which allows
for incremental computation - a significant speedup. This transformation is known as
strength reduction or finite differencing [9] (see also [6]). We have developed and imple-
mented a version of finite differencing for functional programs.

Finite differencing can be decomposed into two more basic operations: abstraction
followed by simplification. The abstraction operation is presented informally in Figure
5. Abstraction of function f with respect to expression E(x) adds a new parameter c to
f ' s parameter list (now f(x, c)) and acids c = E(x) as a new input invariant to f . Any

Automating the Design of Algorithms 341

function @rg@(y)

function @rf@(x)
where l(x)

E(x)

~rf~(u(~))

function @rg@(y)

~rI@(V, E(V))

function ~r/@(z, c)
where I (x) A c = E (x)

. ~

fW(~), E(V(~)))

Fig. 5. Abstraction operation underlying the finite differencing optimization

call to f , whether a recursive call within f or an external call, must now be changed to
supply the appropriate new argument that satisfies the invariant - .f(U) is changed to
f(U, E(U)).

It now becomes possible to simplify various expressions within f and calls to f . In
the KIDS implementation, CI-Simplify is applied to the new argument in all external
calls. In terms of Figure 5, within f we temporarily add the invariant E(x) = c as a
rule and apply CI-Simplify to the body of f . This replaces all occurrences of E(x) by c.
Often, distributive laws apply to E(V(x)) yielding an expression of the form V'(E(x))
and then U'(c). The real benefit of this optimization comes from the last step, because
this is where the new value of the expression E(U(x)) is computed in terms of the old
value E(x).

Our approach to finite differencing differs from that in Paige's RAPTS system [9] in
several respects. KIDS can incrementally maintain expressions containing user-defined
terms as long as appropriate distributive laws are available. Also the initialization and
update codes are performed in parallel with the modification to the dependent variable.
Also there is considerable flexibility gained by relying on a common knowledge-base of
laws rather than a specialized format as in RAPTS. On the other hand our functional
approach relies on inference to perform simplifications whereas the RAPTS approach is
specialized. Also, Paige has analyzed various set-theoretic expressions in order to ascer-
tain sufficient conditions under which finite differencing results in a net improvement
with respect to a simple performance model.

The evolving algorithm is prepared for finite differencing by subjecting it to a col-
lection og built-in conditioning transformations. In this case they transform the two
conjuncts

I ~ range(ps) A I E Jobs

to
I ~ Jobs \ ra.ge(ps).

342 Douglas R. Smith

The rationale is to group together information concerning a local variable.
We select the set difference as an expression to maintain incrementally. The changes

include (1) the addition of a new input parameter, named Unscheduled-Jobs , and
its invariant to SCHEDULES-GS, (2) all occurrences of the term Jobs \ range(ps) in
SCHEDULES-GS are replaced by Unscheduled-Jobs, (3) appropriate arguments are
created and simplified for all calls to the function SCHEDULES-GS. The initial call to
SCHEDULES- GS becomes

S C H E D U L E S - G S(Jobs, Precedes, [1, Jobs \ range(D))

which simplifies to

S C H E D U L E S - GS(Jobs, Precedes, [], Jobs).

The recursive call to SCHEDULES-GS becomes

S C H E D U L E S - G S (Jobs, Precedes, append(ps, I), Jobs \ rangc(append(ps, I)))

which simplifies to

S C H E D U L E S - GS (Jobs, Precedes, append(ps, I), Unscheduled-Jobs \ {I}).

The resulting code is shown in Figure 6.

funct ion SCHEDULES-GS
(Jobs: set(JOB), Precedes: binrei(JOB, JOB), ps : seq(integer),

Unscheduled-Jobs : set(JOB))
where Unscheduled-Jobs = Jobs \ range(ps) ^ ...

= {ps l e,npty(Unscheduled-Jobs)}
U reduce(u,
{SCHEDULES-GS(Jobs, Precedes, append(ps, I), Unscheduled-Jobs \ {l})l

I E Unscheduled-Jobs
^ size({J t (J, I) 6 Precedes A J e Unscheduled-Jobs A J • I}) = @toO@})

Fig. 6. Scheduling algorithm after one finite differencing step

Notice how finite differencing introduces a meaningful data structure at this point.
The concept of which elements of Jobs have not yet been added to the partial solution ps
would naturally occur to many programmers who are developing a scheduling algorithm.
Here it is introduced by a problem-independent transformation technique. Not only is
the concept natural in the context of the problem, but its incremental computation
dramatically improves the efficiency of the algorithm. Note also the need for a software
database - this transformation needs global access to all invocations of a function in
order to consistently modify its interface.

Notice also that a minor simplification can be applied at this point; the expression
J r I is redundant in

{gl (J , I) G Precedes A J G Unscheduled-Jobs A J r I} .

Automating the Design of Algorithms 343

CD-Simplify reduces J ~: I to true since irreflezive(Precedes, Jobs) and (J, I) E Precedes
imply J ~ L

After this simplification we select

s i z e ({ J I (J , I) E Precedes A J E Unschedu led-Jobs})

for incremental maintenance. This finite differencing operation is somewhat more complex
since the target expression involves a local variable I . The FD operat ion must analyze the
context of the expression to determine a finite set of values that I ranges over. This finite
bound becomes the domain of a map da ta structure. Here the analysis is relatively easy,
since the expression 1 E Unscheduled-Jobs occurs in the immediate context. Thus KIDS
produces a map da ta structure which we name N U M - P R E D S (number of predecessors):

{I / ~ s i ze ({J l (J , I) E Precedes A J E Unscheduled-Jobs}) I I E Unscheduled-Jobsl}).

KIDS produces the code in Figure 7.

funct ion SCHEDULES-GS
(Jobs: set(JOB), Precedes: binrei(JOB, JOB), ps : seq(integer),

Unscheduled-Jobs : set(JOB),
Numpreds : map(JOB, integer))

where Numpreds = {I I ---* size({J [(J, I) E Precedes ^ J e Unscheduled-Jobs})
[1 E Unscheduled-Jobs I}

A Unscheduled-Jobs = Jobs \ range(ps) A ...
= {ps I empty(UnscheduZed-Jobs)}

U reduce(U, {SCHEDULES - GS
(Jobs, Precedes,
append(ps, 1), Unscheduled-Jobs \ {I},
{I z l -~ q (~, i1) e P~cedes

then Numpreds (l l) - 1
else Numpreds(H)

I l l # 1 ^ 11 ~ Unscheduted-Jobs I})
I 1 E Unscheduled-Jobs ^ Numpreds(1) = @toO@})

Fig. 7. Scheduling algorithm after finite differencing

2.7 C a s e A n a l y s i s

The SCHEDULES-GS algorithm is a union of two set-valued expressions. Notice tha t
these two sets t reat disjoint cases - when one is nonempty the other is empty. This
suggests the use of case-analysis to clarify and simplify the code. The idea of the case
analysis transformation in KIDS is simple: an expression e is replaced with the expression
i f P then e else e, where P is a predicate whose variables are all bound in e 's context .
The payoff from this transformation rule comes from applying CD-simplification to the
branches of the conditional. For S C H E D U L E S - G S we select the whole body as e and use
empty (Unschedu led-Jobs) as the case analysis predicate. After simplification we get the
code in Figure 8.

344 Douglas R. Smith

function SCHEDULES-GS (...)
= i] empty(Unscheduled-Jobs)

then {ps}
else reduce(U,

{@iSCHEDULES- GS@
(Jobs, Precedes,
append(ps, I),
Unscheduled-Jobs \ {I},
{I 11 --* if (I, I1) �9 Precedes

then Numpreds(I1) - 1
else Numpreds(11)

[11 • I A 11 E Unscheduled-Jobs I})
I I E Unscheduled-Jobs A Numpreds(1) = ~mO~})

Fig. 8. Scheduling algorithm after case analysis

2.8 Data Type Refinement

Our next step is to choose implementations for the abstract data types in the algorithm.
Compilers typically provide a standard implementation for each type in their program-
ming language. However as the level of the language rises, and higher-level data types,
such as sets, sequences, and mappings, are included in the language, or as users spec-
ify their own abstract data types, standard implementations cease to be satisfactory.
The difficulty is that the higher-level datatypes can be implemented in many different
ways; e.g. sets may be implemented as lists, arrays, trees, etc. Depending on the mix of
operations, their relative frequency of invocation, size information, and dataflow consid-
erations, one implementation may be much better than another. Thus no single default
implementation will give good performance for all instances of an abstract type.

We are currently integrating a data type refinement system, called DTRE [2], with
KIDS. DTRE allows interactive specification of implementation annotations for data
types in programs. It also provides machinery for specifying data type refinements as the-
ory morphisms and a modified compiler that automatically translates high-level types to
low-level implementations. The following refinements have been performed using DTRE,
but required some manual transformation in order to deal with special assumptions in
the current version. We continue the derivation as if DTRE and KIDS were smoothly
integrated. We see no fundamental impediment to this integration.

Consider the sequence-valued parameter ps which denotes a partial schedule: it is
initialized to the empty sequence once, the operation append is applied many times,
and occasionally it is copied to the output. A standard representation for sequences is
linked lists; however, this representation is expensive for ps because it entails copying
ps every time the @iappend@ operation is performed. A better representation is shown
in Figure 9 where alternative versions of ps coexist and share common structure. The
data structure ps is simply a pointer to the last element of the sequence. In this reversed
list representation, initialization and ~iappend~ take constant time, and the assignment
operation takes time linear in the length of ps (by tracing upwards from the element
pointed to by ps).

Automating the Design of Algorithms 345

[J

f ' r 1 "t
a s �9 . , . t asJ .,,J

s

a 1

~176

t~ j ~
, ~

. [a s , a . a . .] . . j
%'~176176 2 ,~ ,eJ " " q " ' , .

a2 ~ '

I.ii~ss ..I,i
a l'i,. [5 ' a2],,,I

a a a s

Fig. 9. A Structure-Sharing Representation of Sequences

The parameter Numpreds is map from J O B to integers. The further refinement and
implementat ion of this da ta structure as a stack is detailed in [3].

2.9 Explo i t ing the Cost Function

We have derived a generator of schedules. The next task is to exploit the cost function
SWD-cost (see Section 2.2) so that we can efficiently find minimal cost schedules. In
Section 2.3 we showed how to use necessary conditions to prune away search paths tha t
cannot lead to feasible solutions. Similarly we now use necessary conditions to prune
away search paths that cannot lead to minimal cost solutions - we derive a necessary
condition on the existence of optimal solutions. In [12] we show that several common
pruning techniques such as lower bound pruning and dominance relations can be derived
in this way.

Lower bound pruning works in the following way. Suppose that lb(x, ~) computes a
lower bound on the cost of any solution in the space § i.e.

V(x: D, § R, z : R) (/ (x) A J(z, ~) A Satisfies(z, f) A O(x, z) ==r lb(z, § < f (x , z))
(s)

where f (x , z) denotes the cost of solution z. Suppose that during search we have a
schedule of cost c. Any space ~ whose lower bound exceeds c cannot contain a bet ter
schedule than the one we have, so f can be eliminated from further consideration. Pruning
via dominance relations generalizes lower hounds and is discussed in detail in [12].

346 Douglas R. Smith

Here we focus on the derivation of a lower bound function for S W D and how it can
be used to improve the search proces. Interpreting (5), we assume

Irre flexive(Precedes, Jobs)
A S = concat(ps, qs)
A Bijective(S, Jobs)
A Consistent(S, Precedes)

and then derive a lower bound on the scheduling cost function

size({J I J E range(S) A Deadline(J) < Index(S, J)}).

The derivation in Figure 10 results in a bound that is the number of Jobs in the partial
schedule ps that have already missed their deadlines. Other terms which we have derived
manually (but not presented in the figure) would measure (1) the number of Jobs not in ps
that have already missed their deadlines (i.e. their deadline lies between 1 and size(ps))
and (2) the number of jobs J not yet in ps that could not possibly meet their deadline
(because too many predecessors must be executed before J ' s earliest possible execution
time). This additional term would improve the bound and thus improve performance of
the search procedure. The lower bound function can be computed incrementally via finite
differencing.

Exploiting the lower bound function gives us a classic branch-and-bound algorithm.
It records the best schedule found so far in the search process and its cost ub, and deletes
from consideration any subspace whose lower bound is not less than ub. Program schemes
that incorporate lower bound functions and dominance relations are given in [12].

2.10 Summary

The final scheduling algorithm is apparently not very complicated, however we see that
it is an intricate combination of knowledge of the scheduling problem, the global search
algorithm paradigm, various program optimization techniques and data structure refine-
ment. The derivation has left us not only with an efficient, correct program but also
assertions that characterize the meaning of all data structures and subprograms. These
invariants together with the derivation itself serve to explain and justify the structure
of the program. The explicit nature of the derivation process allows us to formally cap-
ture all design decisions and reuse them for purposes of documenting the derivation and
helping to evolve the specifications and code as the user's needs change.

KIDS is unique among systems of its kind for having been used to design, optimize,
and refine programs for over 50 problems. Applications areas have included scheduling,
combinatorial design, sorting and searching, computational geometry, pattern matching,
and linear programming. We have had good success in using KIDS to account for the
structure of many well-known algorithms and have often derived algorithms that were as
good or better than previously known algorithms (see for example [11]). As an example,
recently we have been working with the U.S. Transportation Command on transporta-
tion scheduling [18]. The transportation scheduling problem under study is much richer
than the problem solved in this paper. We derived a global search algorithm that ex-
ploits constraint propagation. We compared our algorithm with a well-known scheduler

Automating the Design of Algorithms 347

s ize({J I J E range(S) A Deadline(J) < index(S, J)})

= ~rbyassumption~S = eoneat(ps, qs)

s ize({J I J E range(eoneat(ps, qs))
A Deadline(J) < indez(eoneat(ps, qs), J)})

= ~rdistributing~range~rover~eoneat

s ize({J I (J e range(ps) V J E range(qs))
A Deadline(J) < indez(eoncat(ps, qs), J)})

= ~rdistributin#~

s ize({J I J C range(ps)
A Deadline(J) < index(eoneat(ps, qs), J)}

U {JI J e range(qs)
A Deadline(J) < inde~(eoneat(ps, qs), J)})

>_ ~rbymontonieitypropertieso f sets~

s ize({J I J ~ range(ps)
A Deadline(J) < index(eoncat(ps, qs), J)}

= ~rsirnplifying@

size({J I J ~ range(ps) A Deadline(J) < index(ps, J)}).

Fig. 10. Deriving a lower bound function

(O P I S) . On one data set with about 500 transportation requirements, O P I S takes over
30 minutes and finds a near-feasible schedule. Our derived scheduler finds a complete
feasible schedule in less than .5 seconds, a factor of over 3600 times faster.

3 Theory of Algorithm Design

The discussion of algorithm design in Section 2.3 was limited to the class of global search
algorithms. In this section we discuss a general theory of algorithm design. Our approach
is based on representing the essential structure of various classes of algorithms as al-
gorithm theories. An algorithm design tactic based on such algorithm theories provides
a formal method for constructing instances of the class from a problem specification.
Algorithm theories are abstract in several senses, the most important being problem-
independence. They also abstract away implementation concerns about control strategy,
target programming language, and, to some extent, the target architecture. By factoring
out what is common to a class we hope to make it easier to apply the abstraction to
particular problems.

348 Douglas R. Smith

3.1 P r o b l e m Theor ies

A first-order theory presentation (or more simply a theory) is a triple (S, 27, A) consisting
of sorts S, operations over those sorts 27, and axioms A to constrain the meaning of
the operations. A theory morphism (interpretation between theories) maps from the sorts
and operations of one theory to the sorts and expressions over the operations of another
theory such that the image of each source theory axiom is valid in the target theory. A
parameterized theory has formal parameters that are themselves theories [5]. The binding
of actual values to formal parameters is accomplished by a theory morphism. Theory

= (Sz, $2, A2) eaends (or is an eaension of) theory T1 = (Sx, 271, A1) if 81 C_ $2,
271 C 272, and A1 C_ A2.

Problem theories define a problem by specifying a domain of problem instances or
inputs and the notion of what constitutes a solution to a given problem instance. Formally,
a problem theory B has the following structure.

Sorts D, R
Opera t ions I : D -+ Boolean

0 : D • R ~ Boolean

The input condition I (z) constrains the input domain D. The output condition O(z, z)
describes the conditions under which output domain value z : R is a feasible solution with
respect to input z : D. Theories of booleans and sets are implicitly imported. Problems
of finding optimal feasible solutions can be treated as extensions of problem theory by
adding a cost domain, cost function, and ordering on the cost domain.

For example, the problem of finding feasible schedules can be presented as a problem
theory via a theory morphism:

D ~-~ set (JOB)• binrei(JOB, JOB)
I ~-, ~(Jobs, Precedes) Irreflezive(Preeedes, Jobs)
R ~-~ seq(JOB)
0 ~-* ~(gobs, Precedes, S) (S, Jobs) A Consistent(S, Precedes)

3.2 A l g o r i t h m Theor ies

An algorithm theory represents the essential structure of a certain class of algorithms A.
Algorithm theory .4 extends problem theory B with any additional sorts, operators, and
axioms needed to support the correct construction of an ,4 algorithm for B. A theory
morphism from the algorithm theory into some problem domain theory provides the
problem-specific concepts needed to construct an instance of an A algorithm.

For example, gs-theory presented in Section 2.3 extends problem theory with the basic
concepts of backtracking: subspace descriptors, initial space, the splitting and extraction
operations, filters, and so on. A divide-and-conquer theory would extend problem theory
with concepts such as decomposition operators and composition operators [10, 15].

3.3 P r o g r a m Theor ies

A program theory represents an executable program and its properties such as invariants,
termination, and correctness with respect to a problem theory. Formally, a program theory

Automating the Design of Algorithms 349

is parameterized with an algorithm theory. The sort and operator symbols of the
theory parameter can be used in defining programs in P. Parameter instantiation, which
is expressed as a theory morphism from the parameter theory, results in the replacement
of each sort and operator symbol in P by its image under the theory morphism. The
program theory introduces operator symbols for various functions and defines them and
their correctness conditions via axioms. The main function would be defined as follows
in the case where all feasible solutions are desired.

Operations

Axioms

F : D --~ set(R)

V(z: D) (l (z) ~ F(z) = {z I O(z, z)})
V(z : D)(l(z) :~ F(z) = Body(z))
. . ,

where Body is code that can be executed to compute F. In order to express Body it
is generally necessary to import the theory of a prograImning language. Consistency of
the program theory entails that the function computed by the code (Body) must return
all feasible solutions. The axioms for other functions would be similar.

For example, Theorem 1 asserts the consistency of one particular program theory
for global search algorithms. This program uses recursion and is defined in the Refine
language.

3.4 Ref inement Hierarchy of Algor i thm Theories

The algorithm theories that we have studied can be arranged in a refinement hierarchy as
in Figure 11. Below each algorithm theory in this hierarchy are listed various well-known
classes of algorithms or computational paradigms that are based on it. The refinement
relation between theories is expressed as a theory morphism.

Starting at the root of the hierarchy, we briefly describe the various algorithm theories.
Given a problem theory, it is possible to create a generate-and-test algorithm which
simply enumerates the output domain checking for feasible solutions. Because generate-
and-test requires no additional structure than problem theory it can be viewed as a most
general algorithm paradigm.

Local structure results from the imposition of a discrete neighborhood structure
(graph) on the output domain. Local search algorithms start with a candidate solution
and then iteratively traverse from candidate to neighboring candidate until a feasible (or
optimal) solution is found. Examples of local search algorithms include steepest ascent
algorithms, simulated annealing, closure algorithms, and many network flow algorithms.
A theory of local search and a design tactic based on it are presented in [7]. The imple-
mented tactic has been used to derive a variant of the classic simplex algorithm for linear
programming.

Problem reduction involves the reduction of a problem to a structure of subproblems.
Solutions to the subproblems are composed to form a solution to the initial problem. A
simple example is the reduction of a given problem to the problem solved by a library
subroutine.

350 Douglas R. Smith

Problem Theory
generate-and-test

Problem Redu ction Local Structure
local search
steepest ascent
simulated annealing
closure algorithms

Complementation
sieves

And/Or-reduction
dynamic programming
branch-and-bound (AO*)
game tree search

And-reduction
divide-and-conquer
simple loops

Or-reduction
global search
binary search
backtrack
branch-and-bound (,4")
conditionals

Fig. 11. Refinement Hierarchy of Algorithm Theories

Automating the Design of Algorithms 351

Complementation structure is useful when it is easier to enumerate infeasible solutions
than feasible solutions. The initial problem is reduced to two subproblems: (1) enumer-
ate a superset of feasible solutions and (2) enumerate infeasible solutions. The feasible
solutions can then be found by set subtraction. Sieve algorithms are based on comple-
mentation structure. Typically the superset of feasible solutions is explicitly represented
and set subtraction is interleaved with the enumeration of infeasible solutions.

And-reduction (divide-and:conquer) involves the reduction of a problem to a structure
of subproblems all of whose solutions are required in order to compose a solution to the
initial problem. The subproblems typically include an instance of the initial problem so
that the reduction is recursive [10].

Or-reduction (global search) involves the reduction of a problem to a structure of
subproblems at least one of whose solutions are required in order to obtain a solution to
the initial problem. Solutions to the initial problem are obtained by selecting solutions
to subproblems [12].

And/or-reduction involves a combination of And- and Or-reductions resulting in al-
ternative ways to decompose an initial problem [15]. This theory supports the design of
dynamic programming, general branch-and-bound, and game tree search.

3.5 Design Tactics

Once we have characterized a class of algorithms A via an algorithm theory, and developed
at least one program theory, the problem of constructing an A algorithm for a problem
P is reduced to the construction of a theory morphism from the algorithm theory into
the domain theory for P.

We have developed specialized design tactics for several algorithm theories. An .A-
design tactic constructs an A-algorithm for a given problem theory. Each tactic uses
various techniques for constructing a theory morphism from .4 into the problem domain
theory, and then instantiates the parameter of a program theory to produce a concrete
program.

The first three steps of the global search design tactic construct the theory morphism
(~ is regarded as a defined function in gs-theory) and the last applies a program theory.

The global search tactic relies on a preexisting library of global search theories (for
enumerating sets, sequences, maps, and so) and constructs a "connection" between the
library theory and the problem domain theory [16]. In the scheduling problem we con-
structed a global search theory of scheduling via a connection from the gs-theory for
sequences and scheduling theory.

The various steps of a tactic typicMly involve inference tasks. The highly structured
context of these inference tasks tends to keep them relatively simple and thus tractable.

3.6 Class l f i ca t ion-Based Design

A key problem in algorithm design is the choice of an appropriate algorithm theory. The
refinement hierarchy provides a framework for solving this problem. The stronger a theory
is, the more problem structure can be exploited in a program theory. Consequently, we
want to construct a morphism from the deepest possible theories in the hierarchy to the
given problem domain theory. This suggests the following procedure for accessing into the

352 Douglas R. Smith

library. First, construct a morphism from the root theory of the hierarchy - this is simply
a matter of viewing a specification as a problem (as we did above for scheduling). Next,
once we have a morphism from some algorithm theory, then we attempt to incrementally
construct an morphism from the children theories. If several succeed, then we can select
one or keep several and repeat the process. If none succeed, then we know that (with
respect to this classification hierarchy of algorithms) the current algorithm theory exploits
as much of the problem structure as possible and the corresponding program theories
should yield a fairly efficient program.

The process of incrementally constructing a morphism is illustrated in the "ladder
construction" diagram on the left:

Problem m0
Theory) Speco

P~ >S~

I 1 Satisfaction > Specl Ii

t 1 '
Pi+l mi+~

i+1

Si+~

Linear m3
Programming > Spec3

,

I

I

I

I

Transshipment V
Problem ~ ?

The left-hand side of the ladder is a path in a refinement hierarchy of algorithm
theories starting at the root (Problem Theory). Speco is a given specification theory of
a problem. The ladder is constructed a rung at a time from the top down. The initial
arrow (theory morphism) from problem theory to Speco is trivial. Subsequent rungs
are constructed abstractly as in the diagram on the right above, where Pi+l @ Si is
the pushout theory (in the category of theories and theory morphisms) and Si+l is an
extension of Si determined by constructing the theory morphism m~. 1. The morphism
mi+l is determined by composition.

The creative step is the construction of mi+ 1 . ' ' Recently, we analyzed the algorithm
design tactics in KIDS and abstracted out four general mechanisms for completing the
construction of theory morphisms: verification, composition, unskolemization, and con-
nections between specifications (see [16] for details). These are being implemented in
KIDS and used to support algorithm design directly from algorithm theories.

3.7 Concluding Remarks

The preceeding approach to algorithm design raises several issues for further research.
First, it builds on logical concepts of theories and interpretations between theories. Most

Automating the Design of Algorithms 353

of our work has been in first-order logic. However many problems have features of time,
state, exceptions, uncertainty, and so on that suggest the need for a variety of richer
logics and inference mechanisms. How do the concepts of algorithm theory generalize to
these new logics? A second issue concerns the very notion of a classification hierarchy of
algorithms. How much coverage could such a hierarchy provide? This depends of course
on the extent of the hierarchy and how fine the refinement relationships are. Some re-
searchers believe that only a domain-specific hierarchy can provide the kind of coverage
necessary to be economically useful. A related issue is how hard is would be to populate a
useful hierarchy. The theories discussed above have required significant effort to develop.
Are there effective techniques for identifying and formalizing new classes of algorithms?

Acknowledgements
I would like to thank Jim McDonald and the referees for their valuable comments on

a draft of this paper. This research was supported in part by the Office of Naval Research
under Contracts N00014-87-K-0550 and N00014-90-J-1733, the Rome Air Development
Center under contract F30602-88-C-0127, and the Air Force Office of Scientific Research
under Contracts F49620-88-C-0033 and F30602-91-C-0043.

References

1. BJq}RNER, D., ERSHOV, A. P., AND JONES, N. D., Eds. Partial Evaluation and Mixed
Computation. North-Holland, Amsterdam, 1988.

2. BLAINE, L., AND GOLDBERG, A. DTRE - a semi-automatic transformation system. In
Constructing Programs from Specifications, B. MSller, Ed. North-Holland, Amsterdam,
1991, pp. 165-204.

3. BLAINE, L., GOLDBERG, A., PRESSBURGER, T., QIAN, X., ROBERTS, T., AND WESTFOLD,
S. Progress on the KBSA Performance Estimation Assistant. Tech. Rep. KES.U.88.11,
Kestrel Institute, May 1988. Appeared in 3rd Annum RADC KBSA Conference, August
2-4, 1988, Utica, New York.

4. DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N J, 1976.
5. GOGUEN, J. A., AND WlNKLER, T. Introducing OBJ3. Teeh. Rep. SRI-CSL-88-09, SRI

International, Menlo Park, California, 1988.
6. GRIES, D. The Science of Programming. Springer-Verlag, New York, 1981.
7. LOWRY, M.R. Algorithm synthesis through problem reformulation. In Proceedings of

the 1987 National Conference on Artificial Intelligence (Seattle, WA, July 13-17, 1987).
Technical Report KES.U.87.10, Kestrel Institute, August 1987.

8. MANNA, Z., AND WALDINGER, R. A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems 2, 1 (January 1980), 90-121.

9. PAIGE, R., AND KOENIG, S. Finite differencing of computable expressions. ACM Transac-
tions on Programming Languages and Systems 4, 3 (July 1982), 402-454.

10. SMITH, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelligence
27, 1 (September 1985), 43-96. (Reprinted in Readings in Artificial Intelligence and Soft-
ware Engineering, C. Rich and R. Waters, Eds., Los Altos, CA, Morgan Kaufmann, 1986.).

11. SMITH, D. R. Applications of a strategy for designing divide-and-conquer algorithms. Sci-
ence of Computer Programming 8, 3 (June 1987), 213-229.

12. SMITH, D. R. Structure and design of global search algorithms. Tech. Rep. KES.U.87.12,
Kestrel Institute, November 1987.

354 Douglas R. Smith

13. SMITH, D. R. KIDS - a semi-automatic program development system. IEEE Transactions
on Software Engineering Special Issue on Formal Methods in Software Engineering 16, 9
(September 1990), 1024-1043.

14. SMITH, D. R., AND LOWRY, M.R. Algorithm theories and design tactics. Science of
Computer Programming 14, 2-3 (October 1990), 305-321.

15. SMITH, D.R. Structure and design of problem reduction generators. In Constructing
Programs from Specifications, B. Mfller, Ed. North-Holland, Amsterdam, 1991, pp. 91-124.

16. SMITH, D.R. Constructing specification morphisms. Tech. Rep. KES.U.92.1, Kestrel
Institute, January 1992. to appear in Journal of Symbolic Computation, Special Issue on
Automatic Programming, 1993.

17. SMITH, D. R. Track assignment in an air traffic control system: A rational reconstruction
of system design. In Proceedings of the Seventh Knowledge-Based Software Engineering
Conference (McLean, VA, September 1992), pp. 60-68.

18. SMITH, D. R. Transformational approach to scheduling. Tech. Rep. KES.U.92.2r Kestrel
Institute, November 1992.

