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Abstract 

We discuss the decidability problem associated with verifying properties of processes expressed 
in the real time process calculus TCCS of [wg0]. A regular subcalculns TC of TCCS is considered. 
Two operational semantics, and associated timed notions of bisimulation, are given: a standard 
infinite semantics, and a symbolic finite semantics. The consistency between the two semantics 
is proved. We show that both the equivalences are decidable for regular processes relative to 
comparisons between real numbers. 

As an alternative specification formalism, we present a timed modal logic. It turns out that 
this logic characterises timed bisimulation equivalence in the sense that equivalent processes enjoy 
exactly the same properties expressed within the logic. Moreover, we prove that the problem 
of deciding whether a given regular real timed process satisfies a given property of the logic is 
decidable, relative to first order assertions about real numbers. Two interpretations of the modal 
logic are offered, based on the standard and symbolic operational semantics of TC respectively and 
the consistency between these interpretations is proved. 

1 Motivation 

Recently, numerous models within the frameworks for timed processes based on process calculi and 
temporal logic have been developed [ACD90, AD90, HR90, MT90, RR86, $90, wg0]. In this paper, 
we discuss the decidability problem associated with verifying properties of processes expressed in the 
real time process calculus TCCS of Wang [wg0]. 

As the specification language for expressing such properties one may choose to use the timed calcu- 
lus itself, with the notion of correctness given in terms of some time-sensitive abstracting equivalence 
(a timed version of bisimulation equivalence, say). In a discrete timed model such as [$90, HRg0], 
only one unique time event is introduced into the untimed model of CCS [M89] to deal with timing 
information, which represents a clock tick. In these models the addition of time does not contribute 
to the infiniteness of the labelled transition system in terms of which the the operational semantics of 
processes is given. As a consequence one may readily apply the existing standard decision algorithm 
for bisimulation equivalences [CPS89, PT87] to decide the correctness of an implementation P with 
respect to a specification S (i.e. whether they are equivalent). However, in a dense timed model such 
as [W90], it is not obvious that bisimuiation equivalence is decidable: for each time instant, a process 
will have a corresponding state; consequently the state--spa~e of any process will certainly be infinite 
(in fact there will be a continuum of states). Let us specify a coffee machine in timed CCS [W90]. 

So = coin.Sl 
Sz = coffee.So + c(30).1".S0 

Note that we have used the delay construct e(d).P of timed CCS [wg0], which means "waits .for d 
seconds and then behaves llke P". The r models a time-out event. 

Informally, the machine waits for the user to insert a coin after which it is willing to offer a cup of 
coffee. If the user takes the drink within 30 seconds, it returns to the initial state. After 30 seconds, the 
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machine will time-out and return autonomously to its initial state to collect another coin. According 
to the operational semantics of [W90], we have a continuum of time-transitions for $1, 

$1 ~ coffee.So + e(30 - d).r.S0 

for all d E]0, 30]. For instance, 

$1 ~(--~) coffee.So + c(29.5).~'.S0 

That is, the machine has a dense and infinite state spa~e. Hence, given a process M we cannot directly 
use the existing algorithmic techniques such as [CPS89, PT87] to decide whether M ,,~ So. 

In this paper, we shall consider the regular tea/ t imed processes of [W90] which are the regular part 
of CCS plus a delay construct e(d).P where d G R+. We formally define a notion of timed bisimulation 
equivalence, and show that this equivalence is decidable for regular processes relative to comparisons 
between real numbers. 

As an alternative (logical) specification formalism, we present a timed modal logic. This logic 
allows one to specify properties such as: "After a coin has been inserted, coffee will be continuously 
available for 30 seconds". It turns out that this logic characterises (timed) bisimulatlon equivalence 
in the sense that equivalent processes enjoy exactly the same properties expressed within the logic. 
Moreover, we prove that the problem of deciding whether a given regular real time process satisfies a 
given property of the logic is decidable (relative to first order assertions about real numbers). 

The outline of the paper is as follows: In section 2 we introduce the calculus TC of regular 
real time processes. Two operational semantics (and associated timed notions of bisimulation) are 
given: the standard (infinite) semantics of [W90] and a (finite) symbolic semantics. The consistency 
between the two semantics provides the key to our decidability results. In section 3 we introduce the 
timed modal logic TML. Again two interpretations are offered, based on the standard and symbolic 
operational semantics of TC respectively. The consistency between these interpretations again leads 
to our decidability results. In section 4 we state our conclusions and directions for future work. 

2 A T i m e d  Calculus  

In this section we present a subcalculus TC of [W90]. Assume a set of action names A ranged 
over by a, b , . . .  and a special action r ~ A. Let ,4et = A U {~'} and p, v , . . .  range over .Act. Let 
`4 = .Act U {~(e) I c G 7~ +} where 7~ + are the positive real numbers, and let a range over `4. Assume 
a set of process variables M ranged over by z, y , . . . .  The regular process expressions are given by the 
following abstract syntax: 

E ::= NIL I z  I c .E  [ E +  E I r ec z  : E  

Closed process expressions will be denoted by the letters P, Q , . . .  We will restrict all processes to be 
action guarded in the following sense: 

Def in i t ion  2.1 z is action guarded in E iff  every free occurrence o fz  in E is within a subexpression 
(a guard) of  the form p .F  in E.  E is action guarded i f f  every free variable in E is action guarded in 
E ,  and for every subexpression of  the form rec z : F in E ,  z is action guarded in F.  [3 

We denote by Pr  the set of all closed and action guarded process expressions. 

E x a m p l e  2.2 a.NIL and r.(rec y : z + b.y) are action guarded whereas rec z : z + b.z and rec z : 
e(c).z § a.z are not. The latter is not action guarded because e(c).z is not a guard, rl 

2.1 S t a n d a r d  O p e r a t i o n a l  S e m a n t i c s  

The standard semantics is given by the transition system (Pr,  ,4, ~ ) where ----, is the least relation 
generated by the rules in table 1. 
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I n a c t i o n  

Prefix 

S u m m a t i o n  

Recurs ion  

m L  m L  

P.P ~ P a.P ~ a.P 

P ~ p '  

~.(c).P ~ P e(d).P ' ( ~ )  P' ~( e + d).P ~ ~( d).P 

Pu--- 'P' Q"-~-*Q' P'(-'~=)P' Q ' ( -~Q'  

P t Q "~-' P' P + Q "-s Q' P + Q "(--~ P' -I- Q' 

E(rcc z : E/z} --~ P 
rec x : E --L. p 

Table 1: Standard operationaJ semantics for TC. 

For most processes P, the state space and/or the set of transitions which can be generated from P, 

via ----,, is (wildly) infinite. The most immediate example is NIL for which we can derive NIL=(-~ NIL 
for a~y positive real number c. Thus the transition relation is infinite although the state spa~e is not 
in this case. 

Another example is r which has the C-derivatives c(c - d).NIL for any d < c. Here both the 
state space and the transition relation are infinite. 

The most discouraging consequence of this is that we cannot apply existing techniques for deciding 
bisimulation equivMence based on the standard semantics. Another serious defect is that we cannot 
draw transition diagrams for simple behaviours such as the coffee m~hine.  

The following lemma gives some crucial properties of the semantics: 

L e m m a  2.3 

i) P-= o P T  
ii) p . L ,  V p '(.~ 

i i i )  P '(-~ P' ^ P '(-~ P"=~ P ' =  P" 
iv) Vc, d > O.P ' ( ~ )  P" r : lp'.p ~ p, ^ p'  '(--2 d) p"  

v) P 'r P' ^ P --% Q =~ P' - ~  Q 

(maximal progress) 
(transition liveness) 
(time determinacy) 
(time continuity) 
(persistency) 

where =_ in iii is syntactical identity and P ~ means 3P' .P --~ P~. 

From the standard operationaJ semantics we define timed bisimulation equiva/ence as usual. 

Defini t ion 2.4 Let ~C(R) be the set ofa/l (P,Q) satisfying 

i) Whenever P _.L, p, then Q --~ q '  with (P~, q ')  E R for some q '  
r I i i) Whenever Q ----* Q then P --~ P with (p l ,q , )  E R for some pi  

Then R is a timed bisimulation i f  R C J:( R) and timed bisimulation equivalence, written N, is defined 
to be the greatest fixpoint of~'. El 
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2.2  S y m b o l i c  O p e r a t i o n a l  S e m a n t i c s  

In this section we give an alternative operational semantics which turns out to be equivalent to the 
standard operational semantics--up to bisimulation equivalence. It is called "symbolic" because now 
every process will only give rise to a finite state space and a finite transition relation and we may draw 
a graph to represent it. The intuit ion behind the symbolic interpretation is based on the persistency 
property. Due to this property the behaviour of a process may be completely inferred from the first 
t ime-instant at which a transition is enabled. 

First we define the ma~xima/life-time of a process to be the (unique) t ime-instant at which a 
r-action is enabled. If no T-action is ever possible, the maximal life-time is co. 

Example 2.5 The process a .P + ~(3).r.Q remains stable for at most 3 time units. I f  the environment 
has not offered a up to time 3 then the process will autonomously become Q at t ime 3. The process 
a .P +; ~(3).b.Q on the other hand, remains stable forever i f  the environment never offers a or b. [] 

D e f i n i t i o n  2.6 For a process expression E we define the maximal-life-time function 
M ( E )  : (Y ~ [0, co D --* [0, co] inductively as follows: 

M(NIL)p  = co M ( E  + F)p  = m i n ( M ( E ) p ,  M ( F ) p )  
M(a .E )p  = oo M ( x ) p  = p(x) 
M ( r . E ) p  = 0 M ( r e c x  : E)p  = p t .M(E)p[x  ~-* t] 
M(~(c) .E)p = c+  M ( E ) p  

where # t . f ( t )  denotes the least fixpoint of f .  For closed process expressions we define M ( P )  = M(P)po  
where po is the time environment mapping any process variable to O. O 

The following lemma relates M with the standard semantics. 

Lemma 2.7 

i) VcE]0, M ( P ) ] - { C O } . P ~  iv) P ~ ~ M ( P )  > c 

ii) P - - ~  r M ( P ) = O  v) P ~ P'-S--, =r M ( P ) = c  

iii) P ~ P'  ~ M ( P ' )  = M ( P )  - c vi) P,, ,Q :~ M ( P )  = M ( Q )  

I"1 

The new semantics is defined by the transition system 

( P r , ~ e t  • [0, col , -~ ' )  

where --** is generated by the rules in table 2. We use the notation P ~-~-** P '  for (P, (p, c), P ' )  E--**, 
which may be interpreted as "the transition P ~ P '  is enabled at time c ' .  

The most important  property of the symbolic semantics is that the state space as well as the set 
of transitions of a process will now be finite. We can draw circles to represent states and let numbers 
inside the circles denote the maximal life-times of the corresponding states. The transitions axe drawn 
in the obvious way. 

Example 2.8 The coffee machine example from the motivation may be expressed in T C  as rec x : 
coin.(eoffee.x + c(30).r.z). The symbolic transition system for the coffee machine can then be drawn 
as follows: 

T &~Sl 
0 

where So = rec z : coin.(coffee.z + e(30).r.x) and $1 = coffee.So + e(30).r.So. = 
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Pre f ix  

S u m m a t i o n  

Recur s ion  

lJ  * p s  
P - " %  e 

IJ , P'P -'-~o P 6( d).P ---%+d ~ * P' 

p ~__~* p, 
; . p,  [M(O) > c] Q ~-~ Q' 

- -  IJ * I P + Q - - %  P + Q - - * , Q  

: E / ~ }  ---,~ P E{recz  P * 

rec x : E ~-~* P r - -  

[M(P) _> c] 

Defini t ion 2.9 

and let 

Table 2: Symbolic operational semantics for TC. 

Let derivatives(P) be the least set of processes satisfying the following: 

P E derivatives(P) 
IJ . Q 6 derivatives(P) A Q ~ R =~ R E derivatives(P) 

labels(P) = f lu ,  c) l ~Q, a ~ derivatives(P).O ~ R} 
-," (P) = (derivatives(P) x labels(P) x derivatives(P))N ..-,* 

El 

0 P r o p o s i t i o n  2.10 For every action guarded process P, derivatives(P) and labels(P) are finite. 

Thus every P E P r  generates a finite local transition system given by 

(derivatives(P), labels(P), --** ( P)) 

This property of the symbolic semantics is crucial for the decidability results which follow later. 
Starting from the symbolic semantics instead of the standard one we define symbolic timed bisimu- 

lation. A symbolic timed bisimulation is a much coarser relation than an ordinary timed bisimulation 
in that it only contains the "important" states. As before, when matching two processes against 
each other, every transition of one of them must be matched by a corresponding transition of the 
other--a~d vice versa--and leading to equivalent states. However, the requirement on the matching 
transition is now relaxed: its enabling time may precede the enabling time of the other transition. 

E x a m p l e  2.11 Consider the following processes: 

P = e(1).a.Px + e(2).a.P2 and Q = e(1).a.Ql + e(3).a.Q2 

A symbolic bisimulation containing (P, Q) must also contain (Pl, Ql), (P2, Q1) and either (Px, Q2) or 
(P2,Q2). 13 

We define symbolic timed equivalence as follows: 

Def in i t ion  2.12 Let Jr*(R) be the set of all (P,Q) satisfying 

i) Whenever P ~--ff-,~ P' then Q ~-~ Q' with (P ' ,  Q') E R for some Q' and d <_ c 
ii) Whenever Q ~--~* Q' then P ~--~ P' with (P',Q') 6 R for some P' and d <_ c 

Then R is a symbolic timed bisimulafion if R C_ JZ*( R) and symbolic timed equivalence, written N*, 
is defined to be the greatest fixpoint of.~*. El 

We are now ready for our first main theorem: 

T h e o r e m  2.13 Symbolic timed equivalence between action guarded TC processes is decidable rela- 
tive to inequations between positive real numbers. [3 
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2.3 R e l a t i n g  t h e  two  S e m a n t i c s  

The following relationships between the two transition relations will turn out to be useful: 

L e m m a  2.14 

i) P ~-~ Q c~ P ~--~ Q iii) P '(--~ Q ~-~ R =~ 3d <_ c.P ~-~--~ R 

ii) c > O A P  ~--~*Q=~3P'.P~(-~P' ~-L*Q iv) P ~--~*QAP'(-~) Q ' ~ Q '  ~-~-~*odQ 

Where z @ y equals x - y if z > y and 0 otherwise, n 

As one would expect, symbolic bisimilax processes have equal life-times. 

L e m m a  2.15 Using lemmas 2. 7 and 2.14(i-iii) we can prove that P,~*Q :~ M(P)  = M(Q). [] 

Our second main theorem reveals the fact that timed bislmulation equivalence and symbolic timed 
equivalence coincide on action guarded TC processes: 

T h e o r e m  2.16 ~ = ~* n 

C o r o l l a r y  2.17 Timed bisimulation equivalence (,,~) between TC processes is decidable relative to 
inequations between positive reM numbers. [] 

3 A T i m e d  M o d a l  Logic 

We introduce a logic which allows constraints on the timed behaviour of processes to be expressed 
explicitly. The logic TML is an extension of the well known Hennessy-Milner Logic [HM85], and the 
formulae of the logic axe given by the following abstract syntax: 

F ::= tt I -,F I F ^ G I (~)v§ I (~)3§ 

where # is an action and ~b is a time-set, i.e. ~b C_ T~0+. * 
Intuitively, for a process to satisfy (p)v ,F any state reached after time--delays within the set ~b 

must have a p-derivative satisfying F.  Thus, (#)v§ specifies a property which holds invaziantly for 
all time-delays in ~b. Similarly, to satisfy (#)3§ the process must after some time--dday within the 
set ~b reach a state with a p-derivative satisfying F.  Thus, (p)3~F specifies a property which holds 
eventually for some time--delay in ~b. 

3.1 S t a n d a r d  I n t e r p r e t a t i o n  

Below we give aa interpretation of TML with respect to ' the standard semantics of the calculus TC: 

D~flni t ion 3.1 ~ is the (satisfaction) relation between TC and TML defined inductively asS: 

i) P ~ tt r true 
ii) P ~ -,F r not (P ~ F) 

iii) P ~ F A G  r e ~ F a n d P ~ G  

iv) P ~ (#)v ,F  r Vd e q~.3P'3P". P ,(_~d). p ,  ~ p ,  A P"  ~ F 

v) P ~  (p)s§ r 3 d e r  ~ P' ~ P" A P " ~  F 

awe use R+ as abbreviation for ~+ U (0} 
2Here we apply ~he convention that P ~ pS if and only if P = pi. 

[] 
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Note that  (p)v§ requires that the process can delay for any t ime- ins tant  of r We shall often use 
the following derived operators: 

i) i f=  -~tt, ii) F V G = -~('.F A -~G), iii) [p]~§ = -~(#)v§ iv) [p]v~F = -~(p)~§ 

Intuitively [#]3,F specifies a process which after some time-delay within ~ may reach a state where all 
p-derivatives satisfy F.  Similarly, [#]v,F specifies the processes for which all p-derivatives of states 
reachable by time-delays within r satisfy F.  

Obviously we have the following two equivalencesS: 

(p}v0F -- tt (p)3oF = f f  

Also, whenever r _C ~b then it is easy to see that the following implications hold4: 

(p)v§ ~= (U)v~F (p)3§ =~ (p),,F 

Now, for r _C ~ +  define the closure set 4~ as follows: 

4,~ = {tE~+o l3cEi, . t  <c}  

Then as r C r it follows that: 

(#) ,§  O (p )3~F (1) 

Note, that (1) is not an equivalence in general for the simple reason that  (p)3§ requires the life t ime 
of a process to exceed some t ime-instant  of r and hence imposes a lower bound on the life time. In 
contrast the formula ( p ) ~ F  makes no such requirements. 

Recall that the lifetime of a T C  process P is the infimum over t ime-ins tants  t E ~ +  such that: 

p '(_~0 p ,  _L. p -  

for some P '  and P".  To express that d is a lower bound for the life time of a process one may thus 
use the following formula: 

-~((~')3{/I t _< d} tt) 

For ~b a dense set 5 we axe now able to turn the implication (1) into an equivalence by adding the 
required lower bound on life time: 

(p)a,F = (p) ,~F A "~((r),sc§ 

where S(~) = {d E R + [Vc 6 ~. d < c}. Note that for any set ~b, both r and S(~b) axe simple intervals 
either of the form [0, t[ for t E T~ + O {oo} or of the form [0, t] for t E ~ + .  

Furthermore, it  is also possible to show that the universal modality (p)vr is indeed a derived 
operator. In fact the following equivalence holds: 

(p)v§ - (p)3~(§ A "~((z)3B(§ 

where B(r  = {t E P ~  I u E r t _< c} and E(r  = {t E R0 + 13c E r t < c}. Here the first conjunct 
expresses that a process satisfying (p)v§ must have an F-sat isfying p-derivative being enabled 
before the time--instants of r Due to the persistency property this p-derivative will exist for all 
future t ime-instants of the process (including those of r The second conjunct ensures that  the life 
time is greater than or equal to any t ime-instant  of r (in accordance with the semantic definition of 
(p)v,F) .  

Now consider the sublogic TML of T M L  which only permits existentia/quantification. Then from 
the above discussion we may state the following expressiveness result: 

aHere F - G means that F and G axe satisfied by the same TC processes. 
4Here F ~ G means that any TC process satisfying the formula F also satisfies the formula G. 
bA set r C ~o + is dense if whenever c, d E ~ then also [c, d], [d, c] C r 
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T h e o r e m  3.2 For any TML formula F there exists an equivalent TML formula G. 

From the results of the next subsection it will furthermore follow that TML (and hence TML) 
provides an alternative characterisation of timed bisimulation equivalence between TC processes. 

T h e o r e m  3.3 Let P and Q be TC processes. Then P ~ Q holds if and only P and Q satisfy the 
same TML formulae. Q 

3.2 S y m b o l i c  I n t e r p r e t a t i o n  

In order to provide an effective means for determining whether or not a TC process satisfies a given 
TML formula we offer in this section what turns out to be an equivalent interpretation of TML based 
on the symbolic operational semantics of TC (see section 2.2). First, for ~ a binary relation on [0, oo], 
we make the obvious extension to sets. That is, for ~b, ~b C [0, oo]: 

~ ~b r Vc E ~bVd E ~b.c~a d 

Also, we shall make no distinction between an element d E [0, oo] and the singleton set {d}. 

Defini t ion 3.4 ~ is the (satisfaction) relation between TC and TML defined inductively as: 

i) P ~ tt r true 
ii) P ~ -~F r not (P ~ F) 

iii) P ~ F A G  Ce~ P ~ F a n d P ~ G  
iv) P ~ (~)v,F r (~ <_ M(P)) ^ 3d3P'. d <_ ~ A P "-~ P' A • ~ F 
v) P ~ ( p ) ~ , F  r 3 d 3 c E ~ . 3 P ' . d < c < M ( P ) ^  P ~--L,* d P ' A P ' ~ F  

0 

First we verify that ~ is indeed equivalent to ~. 

Theo rem 3.5 Let P be a TC process and let F be a TML formula. Then P ~ F if and only i f  
P~F. Q 

Example 3.6 Consider the coffee machine from example 2.8. We want to show that after a coin has 
been inserted, coffee is continuously available for 30 seconds. This property may be expressed in TML 
as" 

[ coin]vto.oo[( coffee) v[o,ao]tt 

coin 
As So -"*~ $1 is the only symbolic coin-transition of So and M(So) = 0% So will satisfy the above 
property just in case: 

Sl ~ ( coffee)v[o,aoltt 

colr : 
which is true as $1 ----% So with 0 <_ [0,30] and [0,30] _< M(SI) = 30. 

The property that after any coin-insertion, there will be no coffee awilable after 30 seconds can 
be expressed in TML as: 

[coin]v[o,oo['~( coffee) 9130.oo[tt 

To demonstrate that So satisfies this property reduces to demonstrating $1 ~ ~coffee)3lso,oo[tt. How- 
ever, this is obvious as the life time of S1 is exactly 30. Q 

We are now able to show that TML does indeed cha~acterise~timed bisimulation between TC 
processes. We first consider the symbolic interpretation case. 
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T h e o r e m  3.7 Let P and Q be TC processes. Then the following equivalence holds: 

P , , ,*Q i f a n d o n l y i f  V F . P ~ F  r Q ~ F  

Coro l l a ry  3.8 Let P and Q be TC processes. Then the following equiva/ence holds: 

P ~ Q  i f a n d o n l y i f  V F . P ~  F r Q ~  F 

D 

E x a m p l e  3.9 Consider the following processes: 

P = a.e(1).b.NIL + a.E(2).b.NIL and Q = a.(~(1).b.NIL + E(2).b.NIL) 

Then clearly P ~" Q: the only possible match for the transition P -~-,~ ~( 2 ).b.NIL is Q ..2_,~ 4(1 ).b.NIL+ 
+ e(2).b.NIL --% NIL, e(2).b.NIL. However, this is clearly not an acceptable match as ~(1).b.NIL ~ * 

b * whereas ~(2).b.NIL ----~ for no d <_ 1. A property satisfied by Q but not by P is: 

[a]vio,oo[(b )3[,,2[tt 

[] 

An important consequence of the equivalence between the standard and symbolic interpretation of 
TML is that the associated satisfactionproblem becomes (relative) decidable. 

T h e o r e m  3.10 The problem of satisfaction P ~ F for a given TC process P and a given TML 
formula F is decidable re/ative to first--order assertions about sets and elements ofT~ +. ID 

Moreover, it can easily be seen that the above satisfaction problem becomes decidable for TML 
when the intervals ]0, t[, ]0, t], [0, t[ and [0, t] are restricted to rational time-instants t. 

3.3 E x t e n d e d  T i m e d  M o d a l  Log ic  

In this section we introduce an extension of TML where the quantification over action-transitions 
and time--transitions has been separated. The formulae of the logic is given by the following abstract 
syntax: 

F ::= tt I -,F I FAG I (l*)F I 34.F 

where ~b C 7~ +. Below we give an interpretation of ETML with respect to the standard semantics of 
the calculus TC: 

Def in i t ion  3.11 ~ is the (satisfaction) relation between TC and ETML defined inductively as: 

i) P ~ tt r true 
ii) P ~ -~F r not (P ~ F) 

iii) P ~ F A G  r P ~ F a n d P ~ G  
iv) P ~ (I~)F r qP'.P ~ P~ A P'~ F 

v) P ~ 3r r162 3d e r '(-~) P' A P' ~ F 

[] 

It is easy to see that ETML is an extension of TML in the sense that for any formula of TML there 
exists an equivalent formula of ETML. In particular we note the following equivalence: 

(/~)~§ = 3~b.(/~)F 
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E x a m p l e  3.12 Consider the coffee machine from example 2.8 extended with a choice for tea. The new 
machine behaves a l i t t le strange--for some reason--tea will not be available until after tire minutes 
after a coin insertion, e It can be expressed in TO as rec x : coin.(coffee.x + ~(5).tea.x + ~(6).r.x) and 
its symbolic transition system can then be drawn as follows 

T 

So ~ $ 1  

5 

where So = tee z : coin.(eoffee.z + ~(5).tea.z + ~(6).r.z) and $1 = coffee.So + E(5).tea.So + ~(6).r.S0. 
The state St obviously satislies the properties: "sometimes coffee is available but no tea" a~d "when- 
ever tea is available, then so is coffee" which can be expressed in ETML as: 

3[0, oo[.( ( eoffee) tt ^ -~( tea) tt) V[0, eo[.( ( tea} tt D ( eoffee} tt) 

where V~.F = -~3~b.-~F and F D G = -~F V G. These properties cannot be expressed in TML since 
q does not iai general distribute over A. tlowever, there are restricted forms of 3-distributivity (see 
the lemma below). C] 

L e m m a  3.13 The basic properties of TC processes given in lemma 2.3 correspond to the following 
laws of ETML:  

i) (r)tt =~ -~3]0, oo[.tt (maximal progress) 

ii) -~(r) tt ~ 3]0, oo[.tt (transition liveness) 

ilia) 3{c}.(F A G) = 3{c}.F A 3{c}.G (time determinacy) 

iiib) 3r  A (u)G) - 3~b.(/~)F A 3~b.(u)G (time convergence) 

iv) 3~b.3~b.F = 3(~b + ~b).F (time continuity) 

v) (3~k.tt^ (a)G) ~ 3~.(a)G (persistency) 

where~+ ~b = { c + d l c E  ~ ^ d e  ~b}: n 

Unfortunately, we do not know whether it is possible to provide ETML with an equivalent semantic 
interpretation based on the symbolic semantics of TC. Thus whether the satisfaction problem for 
ETML is (relative) decidable is left as an interesting open problem that we hope to settle in near 
future. 

4 Conclusion and Future  Work 

In this paper, we have shown that the timed bisimulation equivalence for the regular real time processes 
of [wg0] is decidable relative to comparisons between positive real numbers. Moreover, a timed modal 
logic has been presented, which charagterises the equivalence. Model checking with respect to this 
logic has been shown to be decidable relative to the first-order assertions about the positive reals. 

The key behind our decidability results is the introduction of a symbolic transition system, which 
provides a finite representation for each regular real time process. The symbolic semantics turns out 
to be consistent with the standard operational semantics of [wg0] for the regular processes - -  for all 
P and Q, we have P ~ Q iff P N* Q. An open problem is how to extend the present method to deal 

6The machine maybe uses instant coffee powder and tea bags which must draw for live m/nutes. 
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with parallel composition. It is not obvious whether we can give a symbolic semantics for the parallel 
operator, while at the same time preserving the consistency with the standard one of [wg0]. 

In [W91] a timed action prefix p@t.P has been introduced to achieve an expansion theorem for 
parallel composition, where t is a time variable and P may depend on t. Intuitively, p@t.P denotes 
a process which may perform p and become P{d/t} where d is the time delay before p is actually 
performed. The regular processes of [Wgl] are generated by the grammar: 

E ::= NIL I x I #Qt.E I ~(e).E I E +  F I recz : E 

where e ranges over the time expressions built out of the positive reals, time variables and the binary 
operators + and (9. An exciting challenge is to develop a symbolic semantics for this set of regular 
processes, which is equivalent to the standard semantics. Then, by the expansion theorem, a composite 
process can be transformed to a regular one and we may achieve a finite graphical representation even 
for a composite process. This would permit the decidability results presented in this paper to be 
extended to composite processes. Certainly, this will be one line of research that we intend to pursue 
in the future. 

The decidability question for model checking with respect to the extended timed modal logic also 
provides an interesting subject for future work. 
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