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Abstract. We present an object-oriented finite element software pack-
age which employs XML and design patterns in order to solve a problem
which is fundamental to the simulation of viscoelastic flows. The XML
format increases flexibility in data handling, while design patterns pro-
vide a high-level organizational structure. The application problem and
the finite element methodology are described, along with the opportuni-
ties presented for incorporation of the software tools. Numerical experi-
ments comparing results with and without XML and design patterns are
also presented.

1 Introduction

The goal of the Center for Advanced Engineering Fibers and Films is to develop
computational models which predict final fiber and film properties based on pro-
cessing conditions. A primary goal of the CAEFF modeling group is to develop
a widely-applicable finite element software package for modeling of viscoelastic
flows that is easily maintainable and fully modular, so that the code can be read-
ily customized to the user’s choice of material parameters, governing equations,
solution domain and computer platform. Most efforts to improve finite element
codes have concentrated on the linear or nonlinear system solvers, because nor-
mally this stage dominates the overall CPU time. For applications such as ours,
it is also worthwhile to make the assembly phase as flexible as possible with ef-
ficiency also a major consideration. This flexibility will be especially important
when the code is ported to a parallel environment, where both assembly and
solution phases are distributed over many processors. Ease of handling data in
a variety of formats is a necessary aspect of the software package, because the
target code will link the simulation routines with an experimental database and
advanced visualization software.
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In this paper, we present the design and implementation of a prototype sys-
tem which will undergird a viscoelastic flow simulation package. Our model in-
cludes several design patterns that assure ease in maintenance and modification
of the code. Design patterns help developers resolve software architecture bot-
tlenecks and provide a common vocabulary for building a simulation package.
Those familiar with the patterns used to develop a system, will find the code
easier to read and maintain. The end-user, likely one who is not familiar with
object-oriented programming, will see modules identified according to applica-
tion.

In the next section we provide background about XML and the design pat-
terns that we use in our system. In Section 3, we describe our finite element
solution to a prototype viscous flow problem that we consider, and in Section 4,
we provide an overview of the design of our system and the flow of data through
the system. In Section 6 we describe our use of XML to present our output to any
viewer for which an accompanying XSLT style sheet is provided. In Section 7 we
describe the results of comparing our patterned approach with a non-patterned
approach also written in C++4. Finally, in Section 8, we draw conclusions and
describe our ongoing work.

2 Background

In this section, we provide background about XML and design patterns, includ-
ing an overview of the Factory Method and Singleton patterns that facilitate our
modeling of a finite element solution of partial differential equations[13,4].

2.1 XML

The extensible markup language, XML, has become one of the hottest concepts
in computer science, web authoring and web programming. Like its HTML coun-
terpart, XML is derived from the standard generalized markup language, SGML.
However, HTML is a markup language used for displaying information content;
XML, on the other hand, is a markup language for creating markup languages.
HTML is a markup language for marking documents using tags for headings
and paragraphs, whereas XML enables the creation of new tags for marking
anything, such as mathematical formulas, molecular structure of chemicals, mu-
sic scores and any other document. HTML limits the user to a fixed collection
of tags, used primarily to describe the content that is displayed in a browser.
An XML document consists of a list of element types (tags), together with
their attributes. The relationships of these elements, to each other, can be spec-
ified by an optional XML Schema. XML Schemas express shared vocabularies
and allow machines to carry out rules made by people. They provide a means
for defining the structure, content and semantics of XML documents. A schema
is not required for a document but is recommended for document conformity.
By combining an XML document with its corresponding XML Schema, an XML
parser can determine the content and structure of an XML document. We have
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created our own fiber and film XML Schema - which we hope will become the
industry standard.

For web authoring, HTML has emerged as the technology of choice for de-
scribing the content of an HTML document; cascading style sheets, CSS, has
emerged as the technology of choice for describing the form of an HTML doc-
ument. Similarly, the extensible style language, XSL, was developed as a tech-
nology for describing the form of an XML document. An XSL style sheet pro-
vides the rules for displaying or organizing an XML document’s data. XSL also
provides elements that define rules for describing how to transform one XML
document into another XML document. For example, an XML document can be
transformed into an HTML document. The facet of XSL that addresses the prob-
lem of transforming XML documents is called XSL transformations, or XSLT.

2.2 Design Patterns

A fundamental aspect to any science or engineering discipline is a common vocab-
ulary that practitioners can use to express concepts, and a language for relating
the concepts. The development of a catalog of design patterns provides such a
vocabulary, together with a body of literature to help software developers resolve
recurring problems encountered in software development. Patterns describe de-
sign practices that capture experience in a way that enables others to reuse this
experience. The primary focus is not so much on technology as it is on creating
documentation of sound software engineering design practices.

The Factory Method is a creational pattern that describes an extensible ap-
proach to the construction of objects. This pattern is typically used to create
instances of objects described by a class hierarchy. The Factory Method elim-
inates the need for binding application-specific code about the construction of
the objects into the system[4]; instead, the construction is incorporated into a
function, or method, that abstracts the details of construction. This method
typically accepts a parameter that encodes information about the type of ob-
ject to create and then the Factory Method, after interpreting the information,
constructs the object. If the Factory Method is a class constructor, than this
pattern is sometimes referred to as the Virtual Constructor Pattern[4].

The Singleton Pattern is another creational pattern that permits the devel-
oper to restrict creation to a single instance, while providing global access to
this instance. To do this, the Singleton class constructor is placed either in the
private or protected section, and a construction function is placed in the pub-
lic section of the Singleton class. Instantiation of the Singleton class must be
made through a call to the construction function, which maintains a count of
the number of instantances previously created, as well as a pointer to the single
instance. If the Singleton class has already been instantiated, than the pointer
to this instantiation is returned; otherwise, an instance of the Singleton class is
constructed and the resulting pointer returned.
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3 A Finite Element Solution of a Viscous Flow Problem

A mathematical model for the flow of a viscoelastic fluid consists of the standard
momentum, mass, and energy balance equations, plus a constitutive equation
representing the manner in which the stress depends on the velocity gradient. A
common form of these equations for isothermal flow, with inertial terms dropped,
is [2]

ov

A v =f 1
pop ~V T HVP (1)
V-v=0 (2)
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Tp + /\17'p(1) - 0477—{7'13 : Tp} = —Mp7; (3)
g

In (1), p is the fluid density, v is the velocity vector, p is pressure, T is the extra
stress tensor, and f is the forcing term vector.

The extra stress has been split according to 7 = 7, + 7, where 7, the
Newtonian part, is a constant multiple of ¥ = Vv + (Vv)T. The polymeric
part, T,, satisfies a nonlinear differential or integral equation. For example, (3) is
known as the Giesekus model. In this equation Ai, a and n, are fitted parameters
and T,y = q—t” — (V)T 71, — 7, - Vv.

Several finite element formulations for approximating the solution of (1)-
(3) appear in the literature. Realistic simulations,in three dimensions, require
the solution of systems containing hundreds of thousands or even several million
unknowns. Therefore iterative methods are normally chosen over direct methods.
One such iterative approach is the 8-method [10], which will be briefly described.
For the general problem of finding the solution U for the system

M ) +A(U)=0 (4)
dt
with initial condition U(0) = Uy, the #-method is based on splitting the non-
linear operator A into a sum of simpler (linear) operators A; and Ay. For equa-
tions (1)-(3), U = [v p 7,]7, or more precisely the coefficients in the finite
element approximation for each function. The operator A is the nonlinear inte-
gral/differential operator which arises in the variational formulation of (1)-(3).
One complete §-method update for (4) on time interval [t, t+ At] consists of
three steps. For the operator A associated with the finite element approximation
of (1)-(3), a splitting can be chosen so that the second step is effectively a trans-
port equation for 7,, while the first and third steps dominate the computational
work and have the form
Ov —vAv+Vp=f
(5)
V-v=0

which is the Stokes Problem varied by the addition of the Sv term.
Because the solution of the Stokes Problem is fundamental to the 8-method
for solving (1)-(3), and because the theme of this paper is software design for
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finite element approximation, we will concentrate on the Stokes Problem, i.e.
(5) with 8 = 0), with simple Dirichlet boundary condition v = 0 and computa-
tional domain the unit square in the first quadrant, with interior denoted {2 and
boundary I'.

The finite element solution is based on the variational formulation, i.e. find
(v, p) in an appropriate product space of functions (in this case Hj (£2) x L2(£2))
so that

v [ (Vv:Vw—pV.-w)= [, f-w
(6)
—JoaV-v=0

for all (w, ¢) in a similar product space [5]. In (6), o : T = o0y;7;, with
summation on repeated indices.

A suitable choice of finite dimensional subspace-pair for the approximate
solution of (6) is the Taylor-Hood element on a triangular mesh [12], comprised of
continuous piecewise quadratic functions for v and w, and continuous piecewise
linears for p and ¢. For uniqueness, an additional condition must be imposed on
the pressure space. We impose the condition | op=0.

The finite element solution is computed in three steps: mesh generation,
assembly, and solution of the matrix system. For mesh generation we use the
object-oriented package QMG [9]. An efficient, modular formulation of the as-
sembly stage is especially important for this code because it must eventually be
applicable to a range of fluid characterizations (i.e. (3) will change significantly)
in various physical settings (e.g. a variety of boundary conditions). Assembly on
each triangular element is carried out with the standard technique of mapping
to a canonical element, using isoparametric elements to allow for curved bound-
aries [5]. The use of this mapping has a significant impact on data structures,
allowing the use of singletons for basis functions and quadrature rules. For this
test problem the linear system was solved using banded Gaussian elimination
with partial pivoting. A benchmark analytical solution was used to check con-
vergence with respect to mesh refinement, in order to assure that the code was
working properly.

4 System Overview

Figure 1 summarizes our system to provide a finite element solution to a vis-
coelastic flow problem. The two circles on the left of the diagram illustrate input
to the system: the top circle on the left represents the mesh, and the bottom cir-
cle on the left represents a polymer read from an existing database. Both inputs
to our system are in XML format, using a schema that we have developed for
viscoelastic flow. Our input is accepted by the Finite Element Factory, rep-
resented by the square on the left of Figure 1. The Finite Element Factory
builds the necessary objects, used in the assembly of the linear system.

The Assembly Routine is represented by a circle in Figure 1, and uses meth-
ods in two other factories to facilitate assembly. These methods are part of
our Basis Function Factory and Quadrature Factory, represented by the
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Fig. 1. System Overview.

squares at the top of the figure. Once assembled, the mesh is input to the solver.
The output of the solver is an XML representation of the solution, which together
with an XSLT Style Sheet, is input to our Translator. Using an appropriate
XSLT style sheet, the output can be formatted for any viewing tool, such as
Tecplot, Matlab, [1,6], or any of the other viewing tools illustrated on the right
side of Figure 1.

In the next section, we provide details about the Finite Element Factory
and Singleton, that is a pivotal class hierarchy in our design.

5 Finite Element Factory and Singleton Patterns

The creation of objects (in our case 1D, 2D, and 3D elements, basis functions,
and quadratures) occur through common factories (finite element factory, basis
element factory, quadrature factory) rather than allowing the creation of these
objects to be distributed throughout the system. The advantage of this approach
is that if adding a new object to our design is necessary, we need only modify
the factory - not the entire system. For example, if we need to add another type
of basis function (which we will do when we include 3D models) or constitutive
equation to our system, the factory pattern allows this flexibility without having
to modify the whole code. Not only does this design allow for easy maintenance,
but enables us to make our code modular.

The singleton pattern allows the creation of one and only one instance of an
object. This design works particularly well with our system since we are pushing
all of our finite element analysis onto a canonical element. There is no need to
have multiple copies of a particular basis function object stored in memory if
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< ?xml version="1.0"7 >

< FINITE_-ELEMENT
xzmlns : xsi = "http : //www.w3.0rg/2001/ X MLSchema — instance”
xsi: noNamespaceSchemaLocation =" finite_element.xsd” >

< NODES NUMBER.OF_.NODES = "1681” >

< NODE GLOBAL.NODE_.NUMBER = "0" >

< VECTOR DIM ="2" >

< COORD >0 < /COORD >

< COORD >0 < /COORD >

< /VECTOR >

< VELOCITY >

< VECTOR DIM = 72" >

< CRD >0< /CRD >

< CRD >0< /CRD >

< /VECTOR >

< /VELOCITY >

< PRESSURE >-104.249< /PRESSURE >

< /NODE >

< /NODES >

< ELEMENTS NUMBER-OF.ELEMENTS = "800" >

< ELEMENT GEOMETRY = "TRIANGLE_SIX_POINT”
(22) GLOBAL.ELEMENT-NUMBER = "0" >

(23) VECTOR DIM = 76" >

(24) COORD >0 < /COORD >

(25) COORD > 2 < /COORD >

(26) COORD > 84 < /COORD >

(27) COORD > 1< /COORD >
>4
>4

© 00N U AWN -

Ialateyelaleieyetale
CEEREEEEITCE

)
=

(28) COORD 3 < /COORD >
(29) COORD 2 < /COORD >
(30) /VECTOR >

(31) /ELEMENT >

(32) /ELEMENTS >

(33) < /FINITE_.ELEMENT >

ANANNANNNNANA

Fig.2: XML Example. This figure illustrates our use of XML to describe the data
structures that we use in our modeling of a viscous flow problem. Our approach can
be applied to most mathematical models where data needs some form of visualization.

all instances are exactly the same. Thus, the singleton pattern allows us to save
on the memory used and also increase the overall performance of the assembly
routine. Moreover, we allow global access to the singleton object exclusively
through a static member function.

6 XML Representation of the Data

Figure 2 illustrates our use of XML to describe the finite element solution of
a viscous flow problem. The finite element XML Schema includes XML tags to
describe nodes and elements used in finite element analysis. These tags are rep-
resented by NODES and ELEMENTS on lines 5 and 20 in the figure. The children of
NODES are one or more NODE elements, which are composed of coordinate vectors,
velocity vectors and pressure, illustrated on lines 6 through 18 in the figure. We
have abbreviated the XML representation but in the actual system these XML
elements completely describe our finite element solution. Unfortunately, the so-
lution is almost meaningless if one can not use other tools to view the results.
Here lies the problem - different tools require different file formats. It is precisely
this reason that flexibility in translation is absolutely essential.

Depending on the solution of the linear system and the visualization tool that
we use, we sometimes need to create more than one formatted file. By exploiting
the XML tools made available by the Apache XML project (Xerces and Xalan),
the Mozilla Organization (Rhino - JavaScript for Java), and the Simple APT for
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XML (SAX) we have designed our system so that most decisions of this type are
transparent to the user[7,3, 8, 11]. For example, we accomplish the transparency
of creating multiple formatted files by first parsing the XML file to check tags and
then set certain values dependent upon the parsed outcome. Once completed, our
system then reads in a given XSLT style sheet and substitutes our set values into
parameterized conditional statements. The translation only takes place where
the conditional statements are true (see Figure 3).

< xsl:when test=“$param="‘velocity_pressure” >
variables= “x” , uyn , “y” ) “y” , szn

< /xsl:when >

< xsl:when test="“$param="‘no_pressure” >
VariableS: “X” , “y” , “u” , “V”

< /xsl:when >

< xsl:when test=“$param="‘no_velocity’” >
VariableS: “X” , “y” , “p”

< /xsl:when >

NN N N N N S N~
© 00 1 O U i W N~
N2 2N AN AN AN

Fig. 3: Parameterized Conditional Statements. This figure summarizes how one uses pa-
rameterized conditional statements within an XSLT style sheet. If the variable “param”
is set to “velocity_pressure,” then only the text on line (2) will be used in the transla-
tion. Likewise for the other conditional statements.

As shown in Figure 1, once the system of equations has been solved, the
results are output into an XML file. The oval to the right of the solver represents
these results. The XML representation of the solution, together with an XSLT
style sheet, becomes input to a translator, represented by the rectangle toward
the right of Figure 1. An XSLT style sheet is tailored to a particular viewing tool
and is used to translate the XML representation into a file for that particular
tool. Finally, the translated file is used as input to the tool and can be viewed
by the user in a variety of file formats.

Using XML has several advantages: (1) ease of maintenance and less code
bloat (we do not have to hard code different formats into our system), (2) the
user does not need to wait for a software upgrade just so that he or she can use
their favorite visualization/computer algebra system tool, (3) writing an XSLT
style sheet is not very difficult, (4) the user can save output in multiple formats,
and (5) if the user decides later that he or she would rather use a different file
format after the fact, then (as long as the user has the proper style sheet) getting
a new translation can easily be managed without having to run the finite element
code from the start.

7 Results

In this section, we present the results of our object-oriented design and imple-
mentation, written in C++, that uses the Factory Method and Singleton pat-
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terns. To show the effects of our use of the patterns, we compare our patterned
approach to an object-oriented approach without patterns (Fortran legacy code
rewritten to be object oriented), also coded in C++.

All of the experiments in this section were executed on a Dell Optiplex GX1
workstation, equipped with a 500 MHz PIII processor and 768 Megabytes of
memory. Our operating system is Red Hat Linux 7.1. The C++ compiler is gcc
version 3.0.2.

Experiments with Assembly Routine (sec)]
Number of C++ No Patterns Patterned C++
Unknowns mean | std dev mean | std dev |
5,477 27.76 0.077 8.63 0.01
22,202 113.82 0.210 34.82 0.12
89,402 697.50 6.670 382.43 27.93

Table 1: Results of Experiments.

This table illustrates the results of our experiments with two versions of the assembly
routine that builds the linear system. Each column reports the results of 50 executions.

Table 1 illustrates the results of our experiments with two versions of the
assembly routine that builds the linear system. There are three rows of data in
the table, representing the number of unknowns to be solved within the linear
system. There are three columns of data in the table, including headings for the
experiments with the C++ code that did not use patterns, C++ No Patterns,
and a heading for the C++ code that used patterns, Patterned C++. For each
approach, we report the mean and standard deviation for fifty executions of
the assembly routine, making note of the number of unknowns for each exper-
iment. For example, for the experiment with 5,477 unknowns, the C++ code
without patterns required an average of 27.76 seconds, and the C++ with pat-
terns required an average of 8.63 seconds.

The difference between the C++ code without patterns and the C++ code
with patterns is that the unpatterned code distributes object creation throughout
the application; in the patterned code, object creation is localized in the factory
method for the respective class framework. For example, the factory method for
the finite element framework accepts a dimension parameter and then builds the
elements and sets up the bookkeeping necessary for solving a particular problem,
simplifying code maintenance.

In comparing the results of the C++ code without patterns to the C++ code
with patterns, we see a clear performance advantage to the organization and
modularity provided by the patterns. For example, for the test case with 89,402
unknowns, the C++ code with no patterns required on average 697.50 seconds,
while the patterned C++ code required on average only 382.43 seconds. This
performance benefit is due, in part, to our use of the singleton pattern, which
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obviates the need to repeatedly create and destroy objects during execution.
Instead, we create a singleton of each of the objects and then use this singleton
when it is needed.

8 Conclusions and Future Work

In this paper, we have described an object-oriented finite element software pack-
age that incorporates XML formatting and design patterns to provide ease of
maintenance and extensibility. Numerical experiments indicate no additional
cost in CPU time with the new design. Rather, the CPU time for the assembly
stage of the finite element process decreased when the code was modified to in-
clude XML and design patterns. In the immediate future, we will benchmark the
code against a conventional C-language code and Fortran. We are also extending
the code to simulate non-Newtonian and viscoelastic flows through complex ge-
ometries. An effort is underway to develop a software database of experimental
results that will provide input parameters for the code. The technique presented
in this paper will be especially useful for each of these next phases.
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