Skip to main content

Fixed-Parameter Complexity in AI and Nonmonotonic Reasoning

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1730))

Abstract

We study the fixed-parameter complexity of various problems in AI and nonmonotonic reasoning. We show that a number of relevant parameterized problems in these areas are fixed-parameter tractable. Among these problems are constraint satisfaction problems with bounded treewidth and fixed domain, restricted satisfiability problems, prepositional logic programming under the stable model semantics where the parameter is the dimension of a feedback vertex set of the program’s dependency graph, and circumscriptive inference from a positive k-CNF restricted to models of bounded size. We also show that circumscriptive inference from a general propositional theory, when the attention is restricted to models of bounded size, is fixed-parameter intractable and is actually complete for a novel fixed-parameter complexity class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufman, Washington DC, 1988.

    Google Scholar 

  2. W. Bibel. Constraint Satisfaction from a DeductiveViewpoint. Artificial Intelligence, 35,401–413, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. L. Bodlaender.A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.K. Chandra and P.M. Merlin. Optimal Implementation of Conjunctive Queries in relational Databases. In ACM Symp. on Theory of Computing (STOC’77), pp.77–90, 1977.

    Google Scholar 

  5. R.G. Downey and M.R. Fellows. Fixed ParameterTractability and Completeness. Congressus Numerantium, 87:161–187, 1992.

    MathSciNet  Google Scholar 

  6. R.G. Downey and M.R. Fellows. Fixed Parameter Intractability (Extended Abstract). In Proc. of Structure in Complexity Theory, IEEE, pp.36–50, 1992.

    Google Scholar 

  7. R.G. Downey and M.R. Fellows. Fixed Parameter Tractability and Completeness I: Basic Results. SIAM J. Comput., 24:873–921, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.G. Downey and M.R. Fellows. On the Parametric Complexity of Relational Database Queries and a Sharper Characterization of W[1]. In Combinatorics Complexity and Logics, Proceedings of DMTCS’96, pp.164–213, Springer, 1996.

    Google Scholar 

  9. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, NewYork, 1999.

    Google Scholar 

  10. T. Eiter and G. Gottlob. Propositional Circumscription and Extended ClosedWorld Reasoning are IIstackP stack2-complete. Theoretical Computer Science, 114(2):231–245, 1993. Addendum 118:315.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Trans. on Database Syst., 22(3):364–418, September 1997.

    Article  Google Scholar 

  12. S. Fortune, J.E. Hopcroft, and J. Wyllie. The Directed Subgraph Homeomorphism Problem. Theoretical Computer Science, 10(2): 111–121, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory of NPcompleteness. Freeman and Comp., NY, USA, 1979.

    Google Scholar 

  14. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic Programming: Proc. Fifth Intl Conference and Symposium, pp. 1070–1080, Cambridge, Mass., 1988. MIT Press.

    Google Scholar 

  15. G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries. Technical Report DBAI-TR-98/17, available on the web as: http://www.dbai.tuwien.ac.at/staff/gottlob/acyclic.ps, or by email from the authors. An extended abstract concerning part of this work has been published in Proc. of the IEEE Symposium on Foundations of Computer Science (FOCS’98), pp.706–715, Palo Alto, CA, 1998.

  16. G. Gottlob, N. Leone, and F. Scarcello.AComparison of Structural CSP Decomposition Methods. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 394–399, Stockholm, 1999.

    Google Scholar 

  17. P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. JACM, 44(4), 1997.

    Google Scholar 

  18. Ph. G. Kolaitis and M.Y. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Proc. of Symp. on Principles of Database Systems (PODS’98), 1998.

    Google Scholar 

  19. C.H. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. In Proc. of Symp. on Principles of Database Systems (PODS’97), pp.12–19, Tucson, Arizona, 1997.

    Google Scholar 

  20. N. Robertson and P.D. Seymour. Graph Minors II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7:309–322, 1986.

    MATH  MathSciNet  Google Scholar 

  21. N. Robertson and P.D. Seymour. Graph Minors XX.Wagner’s Conjecture. To appear.

    Google Scholar 

  22. M. Truszczyński. Computing Large and Small Stable Models. In Proc. of the 16th International Conference on Logic Programming (ICLP’99), Las Cruces, New Mexico. To appear.

    Google Scholar 

  23. M. Vardi. Complexity of Relational Query Languages. In Proceedings 14th STOC, pages 137–146, San Francisco, 1982.

    Google Scholar 

  24. M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proc. of Int. Conf. on Very Large Data Bases (VLDB’81), pp. 82–94, C. Zaniolo and C. Delobel Eds., Cannes, France, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlob, G., Scarcello, F., Sideri, M. (1999). Fixed-Parameter Complexity in AI and Nonmonotonic Reasoning. In: Gelfond, M., Leone, N., Pfeifer, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 1999. Lecture Notes in Computer Science(), vol 1730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46767-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46767-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66749-0

  • Online ISBN: 978-3-540-46767-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics