Components, Contracts, and Connectors for the
Unified Modelling Language UML

Claus Pahl

Dublin City University, School of Computer Applications
Dublin 9, Ireland
cpahl@compapp.dcu.ie

Abstract. The lack of a component concept for the UML is widely ac-
knowledged. Contracts between components can be the starting point
for introducing components and component interconnections. Contracts
between service providers and service users are formulated based on ab-
stractions of action and operation behaviour using the pre- and postcon-
dition technique. A valid contract allows to establish an interconnection
- a connector - between the provider and the user. The contract concept
supports the re-use of components by providing means to establish and
modify component interconnections. A flexible contract concept shall be
based on a refinement relation for operations and classes, derived from
operation abstractions. Abstract behaviour, expressed by pre- and post-
conditions, and refinement are the key elements in the definition of a
formal and flexible component and component interconnection approach.

1 Introduction

Contracts formulate an agreement between two (or more) components: a user
needs additional functionality in order to fulfill his/her duties, a provider offers
services which might help the user. A contract specifies obligations. The provider
guarantees a certain functionality if the user guarantees a certain environment.
The obligations can be expressed using the pre- and postcondition technique
[1, 2]. A connector realises a contract between a service provider and a service
user, i.e. it establishes an interconnection between both of them. The contract
states which semantical requirements (or expectations) these services should
match. The re-usability of components depends on the support of component
abstraction in order to make components available through libraries and on the
support of adaptation techniques in order to adapt library components to actual
requirements, i.e. to glue service provider and user together [3, 4, 5].

The package concept of the Unified Modelling Language UML is a grouping
mechanism which allows a designer to assemble classes (or other elements) into
components. The need to improve the notion of packages in the UML has been
clearly identified. Two reasons are usually given [6]. Firstly, packages themselves
should be developed into components in order to integrate component-based
development into the UML-notation. Secondly, packages are the main element of



the meta-notation used to describe the semantics of UML. Packages should help
to develop a modular definition and to provide a flexible language architecture.

We propose to improve the interfaces of packages by providing import and
export interfaces based on abstract semantical information. Packages shall be
composed based on these interfaces. An import interface states which services
from other packages shall be used and how they are expected to work. An export
interface describes the services in abstract terms which are provided. The export
states the properties of services that are available to prospective users. Contracts
are formed based on the services required and the services provided.

We will use the UML context to motivate and present a flexible re-use ori-
ented component composition framework. Interaction is the composition mech-
anism. Two components are composed by establishing an interaction infrastruc-
ture between them. The flexibility of the composition mechanism is crucial. Two
issues have to be addressed: firstly, the contracts shall be formulated using a
powerful constraint language, and, secondly, the connectors shall allow a flexible
establishment and re-configuration of connections between components.

We believe that a refinement relation is important for the rigorous develop-
ment of software artifacts, and that a powerful refinement notion can also form
the glue needed to adapt services provided by some package to the requirements
stated in a contract. Refinements of operation and action abstractions based on
pre- and postconditions will forms the basis of a refinement relation between
classes and components. The essential advantage of the pre- and postcondition
technique is that it is suitable for abstracting internal object behaviour, but can
also be used to constrain the interaction between objects via contracts. In [6]
semantics for the UML is suggested as a combination of denotational semantics
and proof rules. We will follow this suggestion. We will in particular focus on a
framework which allows us to establish a proof system. Modal logics [7] — and its
constructive variants such as TLA [8, 9] — have motivated our formal framework
for the specification and reasoning of properties of dynamic systems. The se-
mantics of actions — and other model elements — can be given in terms of modal
logics. Modal logic provides therefore the opportunity to express a more precise
semantics of refinement and other forms of abstractions in terms of abstract
dynamic behaviour. The way to semantical package interfaces and connectors
leads via abstraction of actions.

Formulating contracts between components and formalising the infrastruc-
ture for the interaction between these components based on the contracts needs
particular attention. An extension of the 7-calculus [10, 11, 12] shall be used to
define contracts and establish connectors between components. The 7-calculus is
combined with first-order modal reasoning, which is integrated into the calculus
via a constraint language. A composition calculus for contracts and connectors
is developed. Both contracts and connectors for the dynamic interaction are de-
fined in the calculus. The extended calculus including the modal calculus can be
interpreted in state-based algebraic structures (called objects). The m-calculus
has been designed to deal with mobility, i.e. the capacity to change the connec-
tivity of a network. We apply this idea to the space of connected (or composed)



components. We use the polyadic m-calculus as the underlying framework to
define contracts for component composition and interaction. The calculus is in
particular suitable since it models the establishment of connections and also their
maintenance (changing compositions due to evolving requirements). It provides
the basis for a flexible re-use based concept for component composition and
interaction.

Section 2 introduces behaviour abstraction, abstract interfaces and a notion
of components. Their interconnection based on contracts and connectors is dealt
with in Section 3. In Section 4, we present a semantical framework for behaviour
abstractions, interfaces and components. Reasoning about component composi-
tion is the content of Section 5. This involves a formalisation and generalisation
of the refinement and their properties. We end with related work and conclusions.

2 Abstract Behaviour, Interfaces, and Components

Among the requirements for an improved UML package concept stated by the
precise UML group in their Response to the UML 2.0 Request for Information [6]
are multiple imports (a package can import several services from several packages
at the same time — this means that possibly a number of contracts are formed),
renaming (syntactical adjustment should be possible, names of service in export
and import interface might not be the same, even though they might realise the
same service), and adding elements to imported elements (it should be possible
to add elements to imported elements in the importing package, thus refining
the import). Formality and rigour are two general requirements which shall be
added to the list. In this section, we will outline the concepts to tackle these
requirements.

The case study from which excerpts shall be used to motivate and illustrate

our ideas is a Web-based document authoring and management system consisting
of:

— Interfaces for authors and users UserInterface: the operations followLink
and inputURL are available to the user, whereas sendRequest is an internal
operation which contacts the server.

— Servers for authors AuthoringServer and users ContentServer: The con-
tent server is located at a particular address. It requests a document (identi-
fied by a URL) from the database and returns the document. The authoring
server works on a particular current document, which can be loaded, modi-
fied, and checked syntactically with respect to its internal structure.

— A shared database for documents Document. A document can be updated
with some text at a particular document position.

Some of the class signatures are presented in Figure 1. We narrow our inter-
pretation of a component to classes in this example. We can identify two in-
stantiations of the same pattern in our example — a 3-tiered architecture for
database-supported, Web-interfaced systems with the same database part. The



Class UserInterface Class ContentServer

attributes attributes
XML_enabled:boolean address:URL
operations operations
followLink (url:URL) request (url:URL) :Document

inputURL (url:URL)
sendRequest (url:URL)

Class Document Class AuthoringServer
attributes attributes
content:Text currentDoc:Document
author:String parseDoc () :boolean
operations operations

edit (pos:Position,update:Text) loadDoc (url:URL)
modifyDoc (pos:Position,update:Text)

Fig. 1. Classes for the Document Management System

operations in the system are rather simplistic, an in-depth modelling with sub-
states and subactions is in general not necessary. This simplicity makes it an
ideal candidate for illustration.

2.1 Actions, Operations, and their Abstraction

The internal dynamics of an object, i.e. which states it can have, can be described
by statechart diagrams. Activities of a state can be specified. An activity consists
of an event and the action which is triggered by the event (possibly guarded):

event-signature [ guard-condition | | action-expression (1)

Events cause transitions between states. Each state is described by a name and
internal (state) transitions. The UML definition includes an explicit send-clause,
a special action, which shall be subsumed here as an action for simplicity. We
associate event signatures and action expressions obtaining operation definitions
in order to simplify the notion of actions and operations for this investigation:

e(pr:t1,--- ,pn i tn) ef action-expression (2)

Action expressions can be assignments to state variables z := ¢, operation calls
op(xy,...,x,), send clauses obj.op(xy,...,z,) and action sequences combined
using the sequence combinator ’;’.

Objects interact dynamically via message exchange, realised by operation
calls. Object interaction can be described using sequence, collaboration and ac-
tivity diagrams. We have already introduced object interaction through the send-
action. The sequence diagram allows us to describe sequences of object interac-
tions considering several objects at the same time. It describes the interaction
protocol.



An action expression or an operation definition can be abstracted by pre- and
postconditions in order to express abstract dynamic behaviour. The Object Con-
straint Language OCL [13] supports pre- and postconditions for the specification
of operations. Abstract specifications are essential to built declarative, possibly
under-determined models — an important feature for the formal development of
software systems. Preconditions associate constraints with parameters and the
postcondition constrains the operation result.

operationName(py : t1,... ,Pn : ty) returns vt

pre:py > ... (3)
post : result = . ..

An abstract specification or an abstract interface is a collection of ab-
stract operation specifications using pre- and postconditions. An example shall
illustrate the pre- and postconditions:

request ( url: URL ) returns Document
pre url > checkURL(url) -- URL is well-formed
post result = DocForURL(url) -- Doc corresponds to URL

The request operation is provided by the ContentServer which can act as a
service provider. The service user might be the UserInterface. It might call
request within its sendRequest operation. This functionality request would be
stated in its import interface. A library of re-usable components could include a
content server component. Its export interface has to satisfy the user’s require-
ments, which are formulated in a contract between both parties. A semantical
adaptation might be necessary, if e.g. the library component is too general (a
generic component can be instantiated).

2.2 The Specification of Interfaces and Components

We will apply the component-notion to UML packages. Packages allow us to
group semantically related model elements. Packages do not provide much se-
mantics currently [13], except that packages ’own’ their constituent elements,
i.e. these elements can only be part of one package. There is one important re-
lationship between packages: import (from other packages that own the desired
element). Import expresses a dependency. An import section specifies what ser-
vices are needed, but not where these services might come from. Packages, and
classes in UML can have interfaces. An interface is described by a set of opera-
tion signatures. Other packages might relate to these interfaces. Their purpose
is to support well-structured system architectures, providing contracts between
participating model elements.

Let us define a component (or package — we shall use both terms synony-
mously) as a triple C' = (Imp, Class, Exzp) where!

! Sometimes we use projections I'mp(C), Class(C), or Exp(C) to refer to the respec-
tive elements.



Contract Contr
provider  ContentServer

user UserInterface
attributes

currentURL : URL
operations

myRequest (url:URL) : Document
pre  checkURL(url)
post resultDoc = DocForURL (url)
mySearch(term:Text) : Document
pre
post
syntactic match
myRequest ¢s matched by request

Fig. 2. A Contract — an Abstract Interface

— Imp is called the import interface (importing requested functionality de-
scribed by pre- and postcondition-based constraints),

— Class is the class or package implementation (e.g. in terms of actions),

— Exzp is called the export interface (abstracting the services provided by the
component in terms of pre- and postconditions).

An abstract interface is decribed by a signature, pre- and postconditions for
each operation, and invariants. A notion of correctness shall be introduced: the
export Ezp has to be an abstraction of the implementation Class. Each abstract
operation in an interface is specified by pre- and postconditions in a form that
generalises the OCL here (cf. (3)):

operationName(py : t1, ... ,pp i tp) i Tt
pre: F (4)
post : G

F and G can be arbitrary first-order formulas. Each class, interface or operation
has an associated signature. A signature assembles the sorts of the constituent
elements of the particular element. Figure 1 contains class and operation signa-
tures.

Figure 2 contains an example of a (rather incomplete) abstract interface —
the attribute and operation parts. Attributes are also part of the interface since
they implement observations on the current state, but do not change the state.
Attributes can be accessible to other users. This abstract interface is wrapped
up by a contract between two components. The export interface of a suitable re-
usable library component has to satisfy the requirements stated in the contract.
Contracts are extensions of abstract interfaces that will specify the requirements
of the prospective service user which a service provider is supposed to satisfy.
Additionally, a contract includes syntactic matching information, here that the



myRequest operation — as the operation might be called in the user interface —
is matched by request of the service provider. A component can import from
various other components, i.e. it can make separate contracts with each of these
components. Contracts are formulated in the customer’s (service user’s) termi-
nology. This is sensible because names in the library components might be too
generic and thus not suitable for the application context.

Contracts between components might be designed before the components it-
self are realised. A contract is an abstract interface describing a set of operations
through pre- and postconditions. Both service provider and service user have to
relate to the contract description. The provider must satisfy the contract con-
straints. The service user might be satisfied with less than what is described in
the connector. The contract is instantiated into a connector for object interac-
tions between service provider and service user.

3 Component Composition

The composition mechanism is interaction: functionality is requested by one
component and provided by another via a communication channel. Two compo-
nents are composed by establishing an interconnection — a connector — between
them. Contracts constrain the composition. We propose a two-tiered approach
for the composition of components. The upper, more abstract tier defines con-
tracts between components, i.e. a service provider and a service user. Technically,
a contract establishes a communication infrastructure on which the components
can interact. A private interaction channel between provider and user is created,
if the contract constraints are satisfied. The lower, more implementation-oriented
tier realises a connector, an interaction channel, between provider and user. Mes-
sages can be passed along that channel, i.e. provider services can be invoked and
results can be transferred back.

We assume a collection of re-usable library components (service providers)
and a collection of components part of a system to be developed. The latter
ones (service users) require functionality in order to be executable. These re-
quirements are formulated in form of an import interface. A contract establishes
a relationship between the import requirements and provided services.

All components shall initially be connected via a select channel sC of sort
selectChan which shall help us to formulate the interconnection of two compo-
nents related by a contract. A suitable service provider has to be selected based
on a component’s import requirements. The most suitable should be selected
among the available ones. Technically, a request from the component C'

C ¥ SpLECT 5C(cC).cC(2).C" (5)

should be answered by the most suited service provider P; from the library

P, Croose sC(y)3(e). P (6)

using the contract channel cC':contractChan between C' and P; (supplied by
C and bound to the formal parameter y in P;). sC{cC) denotes the output of



¢C on channel sC and sC(y) denotes input of parameter y via the same channel.
The provider replies to the user by sending an empty data token via the contract
channel ¢C, which is bound to its formal parameter y.

3.1 Contracts

The situation before establishing the contract shall be described as follows: the
component C (the user) requires a service (an operation) m and the provider P
offers a service (an operation) n. Both operations m and n are described by pre-
and postconditions, e.g. pre(m) and post(m).

Several constraints have to be considered. The first syntactical issue to be
considered is the proper use of names in interactions. This shall be captured in
a variant of the standard REACT-rule which describes the state transformation
triggered by an interaction realising a sorting discipline [12].

REACTg : Z(2).Clz(y).P — C|P iff if z:0 then x :0b(o) and y : ob(o) (7)

This expresses that an interaction can only take place using channel z if the pa-
rameters z and y are of the same sort ob(c) which characterises the sort of names
allowed on channel z. The sorting ob applied to a channel name is a mapping
which characterises the sorts of elements that can be passed along a channel.
The sorting is preserved by the interaction rule [12]. The second syntactical issue
relates to the syntactical matching between service user and service provider, see
e.g. Figure 2. The syntactical constraint can be formally expressed by the exis-
tence of a signature morphism p : C' — P. The signature morphism p has to be
applied to show that all elements required are actually provided in the correct
form. The semantical condition is the existence of a refinement relation between
m and p(m), expressed as m & p(m) or m is refined by p(m) (or p(m) satisfies
m). We define the refinement using pre- and postconditions.

m & p(m) if pre(m) — pre(p(m)) A post(p(m)) - post(m)  (8)

Preconditions can be weakened — the refinement is more likely to be applicable
— and postconditions can be strengthened — the result is better. p(m) describes
the provided service, reachable via the provider’s in-port. Here, p(m) shall refer
to n. m describes the required service. It will be accessed via the user’s out-port.

We shall illustrate the refinement now. modifyDoc is an operation which is
provided by the AuthoringServer class and might be requested by an Interface
class. The UserInterface is the service user and the AuthoringServer is the
service provider, see Figure 3. The library may provide an XML-Update method,
which works for well-formed XML documents, i.e. documents with correct tag-
nesting. The operation updates the document and acknowledges success to the
user. The user has specified an operation, which is only required to work on
valid XML-documents, i.e. documents that are well-formed and conform to
a document type definition (DTD). Additionally, an acknowledgement shall
not be required. A contract would state the user’s requirements. Syntactically,
p(myModifyDoc) = modifyDoc matches. The contract requires semantically a



Requirements specification - service user:

myModifyDoc ( myDoc:Document, myUpdate:Text ) returns Document
pre isValid()
post updated ()

Service specification - library component:

modifyDoc ( doc:Document, update:Text ) returns Document
pre  isWellFormed ()
post updated() and acknowledged()

Fig. 3. Service Request and Service Provider
Specifications for the contract:

Interface’ 4 REQUEST ¢C (myModifyDoc).Interface”
AuthoringServer’ 4 proviDE cC(modifyDoc).AuthoringServer

Fig. 4. Contract between Service Requester and Service Provider

refinement myModifyDoc & modifyDoc, which means pre(myModifyDoc) —
pre(modifyDoc) or isValid () — isWellFormed (), and that post(modifyDoc) —
post(myModifyDoc), which is true since updated() and acknowledged() im-
plies updated(). This shows that the library operation matches the require-
ments. The contract is satisfied and an interconnection between the components
can be established.

A contract between a single import m of component C and a provider P
providing p(m) should result in an interconnection between both. We assume
that the contract channel cC' exists with sorting sort(cC) = interactChan (i.e.
sort(sC) equals contractChan). For a user C' defined by REQUEST cC(m).C"
and a provider P’ defined by PROVIDE ¢C(n).P" we define the contract rule
CONTRACT:

REQUEST ¢C{m).C'|PROVIDE cC(n).P' — private m:iC (C'|P'{"/,}) (9)

constrained by the sorting constraints and the refinement, i.e. iff m € n. Chan-
nel m:interactChan is the interaction channel, or the connector, between C'
and P. The restriction private m:iC creates a private channel m of sort iC
between C' and P (by introducing a scope). The sorting of m should correspond
to m’s signature. The CONTRACT-rule is a variation of the m-calculus REACT-
rule, which formulates the basic interaction between two agents. In addition to
the interaction, we have introduced a private channel as well.

We illustrate this again using the modifyDoc-operation, see Figure 4. The
user Interface requests the service myModifyDoc which is provided by the
AuthoringServer. Applying the CONTRACT-rule results in a parallel compo-



f T I
Interface’’ < WriTE myModifyDoc(doc,update).Interface’’’

AuthoringServer’’ < ReaD modifyDoc(x1,x2).AuthoringServer?’’’

Fig. 5. Interaction between Service Requester and Service Provider

sition of Interface and AuthoringServer objects where modifyDoc replaces
myModifyDoc in the provider AuthoringServer.

We shall briefly address a contract between a component and two providers
illustrating multiple imports. Allowing a component to import functionality
from several providers was one of the reasons to choose the m-calculus because
of its ability to express the concurrent existence of service providers. Other-
wise, a variant of the A-calculus might have been another suitable formalism

(see [14]). Let C' ©" REQUEST ¢Cf(m1).cCa(ms).C" be the user, and P! <
PROVIDE ¢Ci(n).P]" and P; L PROVIDE ¢C, (n).Pj' two service providers. The

channel my is local to C' and P;; ms is local to C' and Ps.

3.2 Connectors

We look at single connectors first, i.e. connectors for a single contract. A private
interaction channel m : ¢C, the connector, is established between provider and
user. The provider has an input-port (called n) and the user has an output-port
m (by default the name of the connector). The interaction between the user

C" < WrITE m(a).C" (10)

and the provider

def

P" = READ m(z).P" (11)

can happen if permitted by the sorted REACTg-rule. Here a is a single parameter
(we could have used a parameter list in the polyadic m-calculus).

We use again the interface and the authoring server interaction for illustra-
tion, see Figure 5. The user interface requests a document modification using
the private channel myModifyDoc, which has been established as the intercon-
nection between Interface and AuthoringServer for this particular service.
Parameters are passed along that channel. The authoring server carries out its
modifyDoc-operation (which is linked to myModifyDoc).

If multiple contracts — and, thus, multiple connectors m; — exist, the be-
haviour of C' can be abstracted by:

C" € WRITE m1(a1).C" + WRITE m3(as).C" + 7.C" (12)

The computation is either a call of m; with value a; or a call of mo with value
as or an empty action 7 (representing some internal computation). This is exe-
cuted repeatedly. The interaction channels are scoped as follows in this example:
private m;:iC (C|P;) and private my:iC (C|P).



We could introduce a reply construct using the same interaction channel:

C" € Write mi(a). READREPLY m(z).C""

and
P" ¥ READ ma. WRITEREPLY m(b).P"

for an operation m with a return value. We will not investigate this further, see
e.g. [15] for a suitable concept.

4 Semantics for Components

In this section, we will give semantics to the previous constructs. It shall make
some of the notions introduced only intuitively in the previous sections more
precise. We will interpret entities in state-based structures, called objects. Con-
straints are embedded into a modal state-based logic over these structures.

4.1 Semantics of Actions and Operations

The OMG Request For Proposals on Action Semantics for the UML [16] requests
semantics for actions essentially for two reasons: formality and abstractness. Sys-
tem analysis and proof of correctness are possible within an abstract and formal
framework. Abstractness enables interoperability and platform-independence.
Object behaviour is essentially based on state transitions expressed by actions.
These actions shall be formalised in a denotational style and abstracted by pre-
and postconditions. Using dynamic logic as a framework allows us to establish
a development calculus centered around proof rules.

A labelled transition system consists of a set of states State, a set of transition
labels Tran and a relation on State x Tran x State. One state shall be distin-
guished as an initial state. Behaviour is modelled as a traversal of the transition
system. A state machine executes the actions associated with the transitions.
Objects shall be state machines with structured states and relations on states
which form functions. An object state is a binding between state variables and
their values. Each transition label denotes an operation definition, characterised
by a signature and an implementation consisting of actions. Operations are in-
terpreted by functions on states,possibly producing a result value. The signature
of these functions is State x S; X ... x S, — State x Sy. The S; are value do-
mains. Projections onto the resulting pair select the appropriate component of
an operation instance. An object is an algebraic structure with:

— a carrier set S for each sort s,

— a function of type S; x ... x S, — S for each attribute with signature
81 X ... X 8y = 8,

— a carrier set State for sort state containing total assignments Id — F' where
Id is a set of function identifiers and F' is the set of functions that match
the signatures of attributes,



— a function of type (State X S1 x ... %X Sp,) — (State x S) for each operation
symbol with the corresponding signature.

Objects are hidden algebras for a signature with state [17, 18, 19]. An object
consists of a state that maintains bindings between identifiers and functions,
attributes, i.e. functions of the state which allow observations of the state,
and operations, i.e. state transitions which modify the state by modifying its
attributes. Actions can be interpreted by transitions on objects:

— The assignment modifies the state binding between state variables and val-
ues, i.e. assigns a new value to the state variable.

— The operation call invokes a local operation of the object, which might result
in a new state.

— The sequence is executed by executing the second action in the resulting
state of the first action execution.

Entities that we have used in the definition of contract and connector channels
also have denotations in this semantical structure. The semantics of a component
C is an object. That of a channel z is an operation of an object: an output Z(y) is
an interaction (or send-activity) which invokes an operation at the other object,
an input z(y) is an operation invocation at the current object itself.

4.2 Abstraction of Actions and Operations

The Action Semantics RFP [16] requests a framework to carry out formal analy-
sis and proofs of correctness. Modal logic — a logic with a notion of state or time
— is a suitable framework for reasoning about concurrent and reactive systems.
In order to express abstract constraints on states and transitions (operations),
we propose an extension of the OCL-notion of pre- and postconditions based on
a simplified dynamic logic:

opName(pr i t1,... ,pp i tn) 1 7t
pre: F (13)
post : G

where F' and G are arbitrary first-order formulas. We have simplified the modal
calculus in order to avoid reasoning about nested modal combinators in the con-
text of UML. As usual, the name self can be used, and values of state variables in
the previous state can be accessed by the @Qpre-postfix. Pre- and postconditions
are observations on states, they describe properties of states. Additionally, using
the reserved name result we can specify the return value of the operation in
a postcondition. The precondition F' corresponds to the guard from transition
descriptions in statechart diagrams.

The semantics of constraints shall be given in form of a satisfaction relation.
State properties can be specified using equations based on expressions involving
state variables and attributes. An equation z = y is satisfied in a state if the
interpretations of both sides are the same (x and y are expressions consisting of



values, operators, and operation applications). The implication f — ¢ holds
iff f and not g holds. The formula O(F — [P]G) shall abbreviate the pre- and
postcondition specification in (13) with P = opName(x1, ... ,zy,). The formula
O([P]G) holds iff the execution of P terminates in a state satisfying G. The
UML definition assumes a non-partial (terminating) behaviour?.

An abstract specification or abstract interface S = (X, E) consists of
a signature and well-formed axioms in dynamic logic describing operations on
objects in abstract terms. An axiomatic specification and the interpretation of
elements in semantic structures gives rise to a notion of model classes, here the
class of objects which satisfy some specification. The semantics of a specification
S is a model class Mod(S).

5 Reasoning about Composition and Contracts

We will extend our formal framework in order to allow reasoning about com-
ponent composition and contracts. We generalise the refinement relation into a
general abstraction/implementation relation. The relations play an important
role in the definition of a flexible composition mechanism.

UML offers several ways of relating classes statically. The main relationships
are association, generalisation, dependency and refinement. We will concentrate
on the abstraction relations, in particular refinement and implementation. A re-
finement relates two elements describing the same on different levels of abstrac-
tion. The name indicates that structure, knowledge, or properties are added in
a refinement. It also suggests that properties of the more abstract description
should be preserved. The refinement is particulary important since it can form
the basis of a formally supported stepwise development method. Refinement is
defined for the UML [13] as the description of something on a lower level of
abstraction. Lowering the level of abstraction means to make a description more
concrete by adding details. These can be details about the underlying structure
or can be details about the behaviour of operations. Certainly, we expect that
properties specified on the abstract level are preserved in a refinement.

5.1 Implementing and Refining Abstract Specifications

We can distinguish two dimensions of development: horizontal and vertical devel-
opment. Horizontal development refers to the composition of packages, vertical
development means using refinement, realisation, implementation or any other
construct which lowers the level of abstraction.

Implementation captures the idea of making design decisions, i.e. lowering
the level of abstraction. Formally, this can be expressed by model class inclusion

S48 iff Mod(S") C Mod(S) (14)

2 If we would extend our approach to partial correctness (the above is a total correct-
ness assertion), we would add a liberal variant of the formula involving an undefined-
ness predicate, see [2].



for two specifications S and S’. The inverse of an implementation is an ab-
straction. We now formalise the correctness condition on components C' =
(Imp, Class, Exp) — Exp is an abstraction of Class:

sig(Exp) C sig(Class) N Exp -~ Class (15)

We require that only a subset of attributes and operations is exported (or visible)
and that Ezp abstracts Class, or Class implements Exp.

The refinement is a constructive support for the implementation only based
on pre- and postconditions: preconditions are weakened and/or postconditions
are strengthened. Implication is the formal basis of the refinement [20], relating
behavioural abstractions of operations in terms of pre- and postconditions. We
reformulate the refinement in terms of the box-operator notation:

F - F', O(F - [P]G), G' - G
a(rF' — [P]G")

(16)

Proving an implication between pre- or postconditions is usually less complex
compared to proper modal formulas. In modal logics, the rule above is known as
the consequence rule. In refinement calculi, it is known as a combination of the
weaken precondition- and strengthen postcondition-rule [21, 22, 23]. Ideas from
refinement calculi can be used to provide a constructive calculus of derivations.
The refinement here is only basic definition and needs to be accompanied by an
appropriate calculus to support the modelling process.

We need to distinguish two forms of implementation and refinement: > and
& are relations between operations, and ~» and & are relations between ab-
stract specifications. The derivation rule above defines a notion of refinement
for operations. Refinement between interfaces shall now be addressed. Ideally, we
would find a notion which is compositional; a notion which defines the refinement
of interfaces based on the refinement of its constituent operation specifications.
That requires that invariants and other constraints can be dealt with as part
of operation specifications. Implementation and refinement are compositional:
S~ S"iff P ~» P’ for all constituent procedures P. A corresponding definition
can be found in [14].

We can show that our refinement is a close approximation to an inclusion
of model classes for a concrete and an abstract specification, see [14] for de-
tails. The following theorem formalises this important property. It shows that
the implementation generalises the refinement. For two specifications S and S’
refinement implies implementation, or

S & S implies S 4 S’ (17)

This proposition is based on some assumptions. Invariants inv are added to
pre- and postconditions O(F A inv — [P] G A inv). Attribute definitions do
not change and can, thus, be specified as invariants. These assumptions do not
restrict the approach, however, they simplify proofs. The implication S; ¥ Sy
implies S1 & Sy can not be established — the notions of refinement and model



class inclusion are different — if states are involved which are not reachable from
any initial state or formulas specify states which are not satisfiable.

We see implementation as a fundamental relation since it captures property-
preservation. Property-preservation can also be the foundation of the various
UML abstraction relations. These relations are important for the development of
software components. This can include the implementation, but also the compo-
sition of components where the implementation (or the refinement) can play the
role of a correctness criterion — e.g. the glue between a service provider and a ser-
vice user. The refinement has already been used to define the notion of contracts
between provider and user. A service provided needs to satisfy requirements for-
mulated by a service user, i.e. the provided service refines or implements — we
can generalise the definition — the user’s import requirements, see [14]. These
results can be used in the definition of an extension and improvement of the
UML package concept.

The refinement relation is based on the operation specification in OCL. The
implementation is a generalisation, which captures property-preservation. Both
notions can serve as a basis for a practical development method.

An example shall illustrate a contract between two components matched by
strengthening postconditions. The refinement is the tool to prove the correctness
constraint for semantical matching. The contract might specify a postcondition
updated () for an operation myModifyDoc and a library version modifyDoc might
provide updated () A acknowledged as the postcondition. We get for the corre-
sponding interfaces in the implementation

Imp(myModifyDoc) > Exp(modifyDoc)

since the implication post(myModifyDoc) — post(modifyDoc) holds. We can eas-
ily show the refinement. With the proposition (17) we can deduce the more
general implementation from the refinement. The refinement is used here as a
proof tool to prove the correctness of a component composition with respect to
a contract.

5.2 Composition of Components

A composition between two components can be formulated syntactically by
compose U = (Imp, Class, Exp) with P = (Imp',Class', Exzp') via p  (18)

expressing that a component U uses services provided by P. A contract C' can be
derived from the abstract interface I'mp, which is the requirements specification
of the service user. The correctness constraint for composition based on a
contract C' with provider P and user U is the following:

p(sig(Imp(U))) = sig(Exp'(P)) and Imp(U) ~ Exp'(P)|, (19)

This criterion is based on syntactical and semantical properties of the abstract

interfaces of the components involved. With Exp'(P)|, we denote the restriction



of P to elements in the range of p(sig(Imp)). Technically, the composition results
in the establishment of an interaction infrastructure between components so that
services requested by a user can actually be accessed. A component can import
from several library components. Each import is defined in a separate contract
and results in a separate connector. The composition of service requester and
service provider can be defined semantically by

compose {Imp, Class, Exp) with (Imp',Class', Exp') via p := (20)
(Imp', Class|Class', Exp)

where p shall be a signature morphism p : sig(Imp) — sig(Ezp'). The correct-
ness constraint for composition needs to be applied. The composed component
forms again a component with the parallel composition Class|Class’ of the com-
ponent implementations at its core. The new import is that of the provider and
the export is that of the user.

The composition of the two components user interface and authoring server
compose Interface with AuthoringServer via p is defined as as a compo-
nent with the import imp(Interface), body Interface | AuthoringServer
and export exp(AuthoringServer). The internal communication between both
is captured by the CONTRACT-rule.

In the m-calculus, the interaction between two processes in a parallel compo-
sition is considered as not being observable from the outside. We have followed
this idea, and defined the composition of two components as a new component,
which hides the parallel composition of its interacting objects inside.

6 Related Work

Catalysis is a development approach building up on the UML incorporating
formal aspects such as the pre- and postcondition technique [24]. Catalysis uses
ideas from formal languages such as OBJ, CLEAR or EML. The concept of the
connector that we have used here is motivated by the Catalysis approach. There,
connectors allow the communication between ports of two objects. A connector
defines a protocol between the ports. Several other authors also address contracts
based on pre- and postconditions for the UML, including [25] and [26]. The
combination of the pre- and postcondition technique and refinement calculi is
explored in e.g. [27] or [26].

KobrA [28] is another approach which combines the UML with the compo-
nent paradigm. The basic structuring mechanism is the is-component-of hier-
archy, forming a tree-structured hierarchy of components, i.e. sub-components.
Each component is described by a suite of UML diagrams. A component consists
of a specification (an abstract export interface) and a realisation.

In earlier work [14], we have used a variant of the A-calculus to define a single
import using reduction as the mechanism for import actualisation. The variant
is called Ar-calculus, and has been developed by L. Feijs [29]. The calculus has
been used to define module parameterisation for the state-based specification
language COLD [30]. This Anm-calculus can be interpreted in semantic structures,



as we have done it here for the constrained interaction calculus. We have used a
m-calculus variant here, because it offers multiple (concurrent) connections and
it allows to model two layers: contracts and connectors.

A composition language for components which is also based on the m-calculus
is presented in [15]. A variation of the m-calculus is used to realise a composi-
tion language which supports various forms of components, and, thus, various
composition mechanisms.

Walker [31] introduces object intercommunication into the m-calculus. The
difference between our approach and Walker’s approach is that in our approach
the user is the active entity which initiates the establishment of the connections.
In Walker’s formalisation, the service provider also provides the communication
channels. The service user acquires the contract channel, then acquires the in-
teraction channels via the appropriate contract channels and finally uses the
interaction channels to invoke methods of the service providers.

7 Conclusions

A composition mechanism for component-based software development has been
developed and illustrated in the UML-context. Components are specifications
with abstract import and export interfaces which encapsulate and abstract (pos-
sibly complex) objects. We have addressed the abstraction of behaviour and for-
malised notions of refinement and implementation. The internal behaviour of
operations is specified by actions. Pre- and postconditions specify the abstract
behaviour of operations. Their specifications can be related through pre- and
postcondition-based implementation and refinement relations, whereby the re-
finement can be used to prove implementations. These relations capture the idea
of property preservation.

The basis of component composition is interaction. One component interacts
with another component if it requires services of the latter. The user’s require-
ments — or expectations how the required services will work — are the basis on
which a contract between both parties is formulated. These constraints formu-
lated by the contract are based on the refinement relation.

The essential result here is that the pre- and postcondition technique ex-
tended to a refinement approach solves two problems. Firstly, the internal be-
haviour of operations on objects can be abstracted by pre- and postconditions,
and the refinement relation based on this can form the foundation of a stepwise
development calculus. Secondly, pre- and postconditions formalise conditions
necessary to constrain interactions between objects. The refinement is the tool
to prove these constraints. We have addressed both the interaction infrastructure
and the constraint language necessary to control the composition. The result is a
composition approach which allows re-use of existing components and reasoning
about composition contracts.

One future research focus concerns the maintainability of systems and the
evolution of contracts in these systems. Changing requirements make it necessary
to re-negotiate contracts, i.e. to either adapt the existing partners to the new re-



quirements or to involve other components. Assessing the suitablity of contracts
in an evolving environment might be supported by the bisimilarity concept of the
m-calculus. Another direction in which the adaptability of re-usable components
could be investigated is the deployment of matching approaches, as presented in
[32] for the Larch language family.

A further direction concerns the extension of the constraint language. In
reactive systems, liveness is the second important property besides safety (which
has been addressed only so far). Liveness can be expressed using the eventually-
operator: &([P]F) expresses that by executing P a state described by F will
eventually be reached. Formally, the eventually-operator can be defined via the
always operator: O([P]F) := —0O([P]-F). A modal logic framework was chosen
in order to be able to extend the approach to reactive systems modelling.

References

[1] Bertrand Meyer. Applying Design by Contract. Computer, pages 40-51, October
1992.

[2] G.T. Leavens and A.L. Baker. Enhancing the Pre- and Postcondition Technique
for More Expressive Specifications. In R. France and B. Rumpe, editors, Pro-
ceedings 2nd Int. Conference UML’99 - The Unified Modeling Language. Springer
Verlag, LNCS 1723, 1999.

[3] W. Weck. Inheritance Using Contracts & Object Composition. In Proceedings 2nd
International Workshop on Component-Oriented Programming WCOP ’97. Turku
Center for Computer Science, General Publication No.5-97, Turku University,
Finland, 1997.

[4] E.K. Nordhagen. A Computational Framework for Verifying Object Component
Substitutability. PhD thesis, University of Oslo, November 1998.

[65] G.T. Leavens and M. Sitamaran. Foundations of Component-Based Systems.
Cambridge University Press, 2000.

[6] precise UML Group. Response to UML 2.0 Request for Information, 1999.
http://www.cs.york.ac.uk/puml.

[7] C. Stirling. Modal and Temporal Logics. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. II, pages
477-563. Oxford University Press, 1992.

[8] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, May 1994.

[9] L. Lamport. Specifying Concurrent Systems with TLA®. In M. Broy and
R. Steinbriiggen, editors, Calculational System Design. I0S Press, Amsterdam,
1999.

[10] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes, part L.
Information and Computation, 100(1):1-40, 1992.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes, part II.
Information and Computation, 100(1):41-77, 1992.

[12] R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, 1999.

[13] Object  Management  Group. UML 1.3  Specification,  1999.
http://www.omg.org/technology/uml.



[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]
[30]
[31]

(32]

C. Pahl. Modal Logics for Reasoning about Object-based Component Compo-
sition. In Proc. 4rd Irish Workshop on Formal Methods, July 2000, Maynooth,
Ireland. BCS, eWiC series, 2000. (to appear).

M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language for Compo-
sition. In G.T. Leavens and M. Sitamaran, editors, Foundations of Component-
Based Systems. Cambridge University Press, 2000.

Object Management Group. Action Semantics for the UML — RFP, 1998.
http://www.omg.org/technology /uml.

C. Pahl. A Model for Dynamic State-based Systems. In A.S. Evans and D.J.
Duke, editors, Proc. Northern Formal Methods Workshop, Sept.’96, Bradford, UK.
Springer-Verlag, 1997.

J. Goguen. Hidden Algebra for Software Engineering. In Proceedings Confer-
ence on Discrete Mathematics and Theoretical Computer Science, Auckland, New
Zealand, pages 35—59. Australian Computer Science Communications, Volume 21,
Number 3, 1999.

J. Goguen and G. Malcolm. A Hidden Agenda. Theoretical Computer Science,
2000. Special Issue on Algebraic Engineering — to appear.

L. Lamport. Refinement in State-based Formalisms. SRC Technical Note 1996-
001, Digital Equipment Corporation, Systems Research Center, 1996.

R.J.R. Back. A Calculus of Refinements for Program Derivations. Acta Informat-
ica, 25:593-624, 1988.

J.M. Morris. Programs from Specifications. In E.D. Dijkstra, editor, Formal
Development of Programs and Proofs. Addison-Wesley, 1990.

C. Morgan. Programming from Specification 2e. Addison-Wesley, 1994.

D. D’Souza and A.C. Wills. Objects, Components and Frameworks in UML: the
Catalysis approach. Addison-Wesley, 1998.

L.F. Andrade and J.L. Fiadero. Interconnecting Objects via Contracts. In
R. France and B. Rumpe, editors, Proceedings 2nd Int. Conference UML’99 -
The Unified Modeling Language. Springer Verlag, LNCS 1723, 1999.

R.-J. Back, L. Petre, and I.P. Paltor. Analysing UML Use Cases as Contracts.
In R. France and B. Rumpe, editors, Proceedings 2nd Int. Conference UML’99 -
The Unified Modeling Language. Springer Verlag, LNCS 1723, 1999.

M. Biichi and E. Sekerinski. Formal Methods for Component Software: The Re-
finement Calculus Perspective. In Proceedings 2nd International Workshop on
Component-Oriented Programming WCOP ’97. Turku Center for Computer Sci-
ence, General Publication No0.5-97, Turku University, Finland, 1997.

C. Atkinson, J. Bayer, O. Laitenberger, and J. Zettel. Component-Based Software
Engineering: The KobrA Approach. In Proc. Internal Workshop on Component-
Based Software Engineering, Limerick, Ireland. 2000. ICSE (International Con-
ference on Software Engineering) Workshop.

L.M.G. Feijs. The calculus Aw. In Algebraic Methods: Theory, Tools and Appli-
cations, pages 307-328. Springer-Verlag, 1989.

L.M.G Feijs and H.B.M Jonkers. Formal Specification and Design. Cambridge
University Press, 1992.

D. Walker. Objects in the w-Calculus. Information and Computation, 115:253—
271, 1995.

A. Moormann Zaremski and J.M. Wing. Specification Matching of Software Com-
ponents. In Gail E. Kaiser, editor, Proc. ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, pages 6-17. ACM Software Engineering Notes
20(4), October 1995.



