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Abstract. Software agents can prove useful in representing the inter-
ests of human users of agent systems. When users have diverse interests,
the question arises as to how agents representing their interests can be
grouped so as to facilitate interaction between users with compatible in-
terests. This paper describes experiments in the DIET (Decentralised In-
formation Ecosystem Technologies) agent platform that use evolutionary
computation to evolve preferences of agents in choosing environments so
as to interact with other agents representing users with similar interests.
These experiments suggest a useful way for agents to acquire preferences
for formation of groups for information interaction between users, and
may also indicate means for supporting load balancing in distributed
systems.

1 Introduction

Software agents have proved useful for representing the interests of individual
human users (e.g. [10]). With multi-agent systems there arises the possibility of
managing processes on behalf of large populations of human users. Associated
with this is the problem of ensuring that users with common interests get to
interact appropriately. This is the issue of group formation, part of the more
general problems of cooperation and collaboration in multi-agent systems.

Group formation and the associated issues of cooperation and collaboration
have proved relevant to much research in multi-agent systems (e.g. [9,11,21]).
Similar problems exist in robotics (e.g. [15]). One particular focus of research has
considered how evolutionary algorithms can be used to adapt agent behaviour,
and achieve collaborative or cooperative solutions ([7,6,16]). The use of evo-
lutionary algorithms seems particularly appropriate in this context since they
depend upon the interaction of many individuals for their success [1].

In this paper we describe how an evolutionary algorithm can be used to adapt
agent behaviour in the DIET (Decentralised Information Ecosystem Technolo-
gies) system ([8,14]), resulting in the emergence of groups of agents that share
common interests. The DIET system implements large numbers of lightweight
agents that can interact in a decentralised and extensible manner. The DIET
system has been inspired by the interaction of organisms in natural ecosystems,
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and, inspired by the role of evolution in such interactions, the mechanism we use
for group formation is the evolution of preferences for different environments. In
the software agent context, an environment refers to the software environment
an agent inhabits. In this context we assume that each environment exists on
a single machine. For mobile agents, multiple environments may be on different
machines. In a DIET network different environments maintain connections with
each other in a “peer to peer” fashion.

It is well known that a degree of centralisation in peer to peer networks can
improve the efficiency of functions such as indexing and retrieval [18]. However,
existing strategies for centralisation often depend upon the existence of reliable,
well known, central servers. Here we demonstrate the emergence of centralisation
within a network of peers with no central servers. The dynamic approach de-
scribed offers a compromise between the robustness and self-sufficiency of fully
decentralised networks of transient peers with the efficiency of a centralised sys-
tem.

The dynamic formation of communities of agents could be very important for
the proper exploitation of computational and informational resources in future
networks. The most rapid and effective interactions between agents typically are
those that take place locally, between agents occupying a single environment.
Accordingly we use an evolutionary algorithm to evolve preferences that lead to
agents with common interests sharing the same environment.

Use of an evolutionary algorithm allows local interactions between agents to
be taken advantage of in shaping the strategies used for despatch of agents to
different environments over a sequence of iterative steps (evolutionary genera-
tions). Working with two populations of agents, User agents, representing user
interests, and Scout agents, searching out preferred environments, we use the
evolutionary algorithm to evolve the preferences of Scout agents for environ-
ments in a network of multiple environments in which agents can exist. We show
that the evolutionary algorithm can increase the effectiveness of Scout agents
in locating environments that are suitable for information transfer with other
agents representing common interests. This can provide a basis for the automatic
formation of groups of users sharing interests.

We also consider how the results from the process of group formation indicate
the robustness and flexibility of the DIET system. As well as explicit selection
of agents through an evolutionary algorithm, we consider how characteristics of
the DIET agent environment can stimulate a process of implicit evolution, that
is evolution with respect to computational resource constraints, where compu-
tational efficiency is associated with survival. This could also be used to evolve
agents that adopt computationally efficient behaviour.

2 The DIET Platform

The experiments presented here use the DIET system ([8, 14]), a software plat-
form that has been developed to enable the implementation of multi-agent sys-
tems consisting of very large numbers of lightweight agents, under decentralised
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control, interacting in a manner inspired by natural ecosystems. The develop-
ment effort within the DIET project [3] is focused on providing an extensible
framework for the exploration of ecologically inspired software solutions in an
open agent platform.

2.1 Aims and Inspiration

Inspiration for the DIET system has come from natural ecosystems, where many
living organisms and abiotic elements interact to produce a variety of emergent
phenomena [22]. These biological systems have inspired the Universal Informa-
tion Ecosystems initiative of the European Union [4], which addresses the issue of
managing and understanding the complexity of the emerging global information
infrastructure by looking at local and bottom-up interactions between elements
of this infrastructure, in the manner of interactions between living organisms.
Such local and bottom-up approaches may be expected to provide more flexibil-
ity, adaptability and scalability in response to changing circumstances than more
top-down or centralised approaches. The DIET project forms part of the Uni-
versal Information Ecosystems initiative and hence the system design attempts
to take these ideas into account.

2.2 Architecture

The DIET system is designed around a three-layer architecture [14]:

— Core layer: The functionality supported by the lowest layer is deliberately
minimal, but designed to provide a robust and reliable service [8,14]. It is
here that the services and functions common to all agents are provided.

— ARC layer: Additional utilities are distributed along with the core layer,
known as “Application Reusable Components” (ARC). These provide prim-
itives that exploit the minimal functions of the core to support higher level
activities common to many, but not all, applications. These include remote
communication, agent reusable behaviours, multicasting and directory ser-
vices.

— Application layer: This layer comprises additional data structures and agent
behaviours for application-specific objectives.

The three-layer structure provides flexibility for implementing a variety of appli-
cations using the same core features of the agents and the software environment
that they inhabit. It has been implemented in Java.

2.3 Core Layer

The core layer provides for Environments that are the basic units which DIET
agents can inhabit. One or more Environment may be located within a DIET
World, there being a single Java Virtual Machine for each World. The possibility
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exists for multiple Worlds in conjunction with multiple Java Virtual Machines,
allowing for indefinite scaling up of the DIET system.

Each Environment provides minimal functionality to all agents, allowing for
agent creation, agent destruction, local communication between agents, and ini-
tiation of migration between Environments. These basic functions have been
designed so as to minimise the computational overhead required for their ex-
ecution. The CPU time required for each function is not dependent upon the
number of agents occupying the Environment, allowing efficient and rapid op-
eration even in Environments inhabited by large numbers of agents. Operation
of the DIET system is based upon these basic functions and the resulting local
interactions between agents.

Local communication is central to local interaction between DIET agents. Lo-
cal communication in this context involves the passing of messages and objects
between two agents in the same Environment. The agent that initiates the com-
munication must identify the agent that it wishes to contact - this can be done
using a binary “name tag” associated with the target agent that is randomly
generated in its original Environment. In addition an agent has a “family tag”
that indicates the group of agents to which it belongs. These are in consequence
not typically unique, but may also be used for identification. Identification of
agents by either of these methods is decentralised, being associated only with
particular Environments, and thus scales well with larger systems.

Once a target agent has been identified, a Connection is formed between
the two agents, allowing messages and/or objects to be passed between the
two agents. Each agent has a message buffer that provides a space into which
messages can be received. More information about local communication is given
by Hoile et al. [8]. Remote communication, that is, communication between
Environments, is also possible. The core layer provides only agent migration at
the Environment level. Key functions associated with remote communication are
provided in the ARC layer.

2.4 ARC Layer

The ARC layer provides for various extensions that can support remote commu-
nication between Environments, as well as other functions. These include “Car-
rier Pigeon” agents that can migrate to another Environment and then deliver
a message by local communication to the intended target agent. Alternatively,
Mirror agents can be created in an Environment to support a communication
channel to an agent in another Environment, via Carrier Pigeons that only the
Mirror agent, and not the agent initiating the remote communication, interacts
with. Remote communication via a Mirror agent looks like local communication
to other agents in the Environment. Such means of remote communication allow
for increased flexibility in interaction between agents distributed across multiple
environments [8].
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2.5 Applications

Based on the functionality provided by the core layer and the ARC layer, appli-
cations can be developed based on the DIET platform, with application-specific
code situated in the third, application, layer. Examples of work in this area
include [5,12]. Applications can also take advantage of visualisation and inter-
active control software that is being developed [13]. The basing of application
development on this architecture centred on local interactions between agents
makes the DIET system particularly appropriate for the study of phenomena
emerging from local interactions. We now go on to do this in the context of
emerging preferences for environments supporting co-location for information
sharing.

3 Experiments

We seek to generate emergent phenomena among agents in getting them to evolve
preferences for particular environments (that are DIET Environments). As such
agents can represent the interests of human users, this may be a useful mecha-
nism for automatically ensuring that users’ interests in terms of environmental
preferences are best served.

We consider a situation where human users of an information management
system connect transiently to a peer-to-peer network in order to identify in-
formation resources that satisfy their requirements for information. We assume
that each user has a “category of interest” that represents some topic that they
are particularly interested in. Users that are interested in the same category of
interest are assumed to be interested in the same set of information, but to only
have access to a subset of that initially. We also assume that users are interested
in finding other users with the same category of interest and sharing information
with them. Each user creates a DIET Environment from which agents can be
created to facilitate the user’s requirements.

3.1 World, Environments and Links

The experiments take place in the context of a DIET World composed of multiple
Environments as described above (Section 2.3). Each Environment is distinct
from others in terms of its distinctive signature provided by a hashcode. The
Environment’s hashcode is generated based on the Environment’s address in
the DIET World. A 32 bit hashcode is used, because a hashcode of this form
can easily be acquired from all Java objects. But this form of hashcode can be
replaced by one of many other hashing schemes if required (see e.g. [17]).

In our experiments Environments are connected in a peer network. This net-
work is formed by choosing pairs of Environments at random, and then creating
neighbourhood links between them. Such links are uni-directional, but link for-
mation can be repeated to give the effect of a bi-directional link. This process
is repeated until each Environment has on average four links. This level of con-
nectivity is intended to approximate the connectivity of a fully decentralised
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peer network. The existence of such links between Environments allows agents
to explore the network. Although agents can migrate to any Environment, they
need to know the address of the destination Environment. At each Environment,
agents can get the address of one of the neighbouring Environments and subse-
quently migrate to it and thus explore the collection of Environments. Figure 1
illustrates what such an environment network might look like.

<«——— Environment

Fig. 1. An example DIET peer network

3.2 Agents

The experiments depend upon two populations of agents: User agents and Scout
agents. These agents are lightweight and use the minimal functions supplied
by the DIET platform. User agents represent human users and deploy and
evolve Scout agents, as well as collecting information from Scout agents. Scout
agents explore multiple Environments and carry out the activities needed to
form groups.

Only one User agent is associated with a particular Environment. The User
agent remains in that Environment throughout each experiment. Each experi-
ment starts with a number of User agents distributed, one at each of the Envi-
ronments.

Each User agent creates a population of Scout agents, and evolves them
independently of other populations of Scout agents. Having created these Scout
agents, the User agent dispatches them into the peer network of Environments,
where they may interact with other Scout agents and other User agents, before
returning to interact with the User agent that created them.

3.3 Evolutionary Algorithm

Scout agents are bred by User agents. User agents seek to maximise Scout agents’
success in locating other Scout agents with common interests. A Scout agent’s
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preference for Environments is determined by a bitstring genome provided at
birth. A Steady State genetic algorithm is used [19], implemented using the
Eos evolutionary and ecosystem platform [2]. Tournament selection, two-point
crossover, uniform mutation and random replacement operators are used in the
algorithm. Random replacement allows Scout agents to adapt their expectation
of success under changing conditions of informational and environmental avail-
ability.

When dispatching new Scout agents, the User agent uses tournament selec-
tion to choose parent genomes from its population, favouring genomes according
to the success of the respective Scout agent in locating other satisfactory Scout
agents.

The behaviour of each Scout agent depends upon a satisfaction or preference
function that indicates the degree of satisfaction that the Scout agent has with
an Environment. This satisfaction function employs two bitstrings of length 32,
drawn from a binary genome containing 64 bits. These two bitstrings are known
as the XOR_mask and the AND_mask. To determine the degree of satisfaction for a
given Environment, the Environment’s hashcode is XORed with the X0R_mask,
and then ANDed with the AND_mask. The number of set bits (i.e. bits with the
value “1”) then indicates the degree of satisfaction with the Environment. This
preference function can then be evolved, in order to generate different orderings
of preferences for Environments.

Scout agents are initialised with a success of zero. New generations of Scout
agents are generated by the recombination of the genomes of two “parent” Scout
agents, resulting in two new Scout agent genomes. Two new Scout agents result,
that are released into the User agent’s local Environment. From this point they
carry out a three-phase life cycle (described below). If they complete this life
cycle, and return successfully to the originating Environment, an existing mem-
ber of the population of Scout agents based in that Environment is replaced at
random by the genome of the returning Scout agent. In this way Scout agent
preferences evolve over many generations in response to the conditions they en-
counter in different Environments.

3.4 Scout Agent Life Cycle

Having been created by User agents in their home Environment, Scout agents
go through a life cycle that is divided into three phases: the Exploratory phase,
the Sharing phase and the Reporting phase.

In the Ezploratory phase, a Scout agent visits eight Environments in a ran-
dom walk starting from the Environment in which it originated. At each Envi-
ronment it requests four addresses of neighbouring Environments, selecting one
of these at random for the next hop. These numbers are fixed across all experi-
ments in order to allow comparison across peer networks of different sizes. After
collecting the thirty-two Environment addresses in this way, the Scout agent ap-
plies its evolved preference function in order to calculate a satisfaction value for
each of the thirty-two potential host Environments encountered. It then selects
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as a host the Environment with the address that gives it the highest satisfac-
tion. Where several Environment addresses give the same satisfaction, the most
recently visited is preferred. The Scout agent then enters the Sharing phase.

During the Sharing phase the Scout agent migrates to its preferred host
Environment, and spends a pre-determined period interacting with other Scout
agents in that Environment - notifying them of its User agent’s ID and category
of interest, as well as noting the IDs and categories of interest represented by
other Scout agents in that Environment. Then it moves to the Reporting phase.

In the Reporting phase the Scout agent migrates back to its originating En-
vironment, notifies the originating User agent of its genome, and the number of
successful encounters achieved. Scout agent success is measured according to the
number of Scout agents encountered that were derived from different User agents
(hence different Environments), but represented the same information category.
So, a successful encounter in this context means an encounter with a Scout agent
originating from other User agents that represent the same information category.

The Scout agent then destroys itself, but its genome may live on in that it
may be selected to contribute to the next generation of Scout agents, according
to its success in locating Environments that contain other Scout agents repre-
senting User agents with common interests. The use of tournament selection
means that some Scout agents with success lower than the current Scout agent
population average may contribute to the next generation, but they are less likely
to, and Scout agents with higher success are more likely to be represented in the
next generation. Tournament selection also ensures responsiveness to changing
conditions.

3.5 Consequences of Agent Behaviour

The repetition of this three-phase life cycle over multiple generations will lead to
changes in the numbers of Scout agents found in each Environment at each iter-
ation (corresponding to a generation of the evolutionary algorithm.) The long-
term solution should be a network of Scout agents clustered to different densities
in different Environments, with average Scout agent preference for Environments
evolved to a level that most effectively supports choice of Environments in which
agents representing the same category of interest can interact. Accordingly, Scout
agent success in achieving such interactions should be maximised. Such a network
of information sharing agents may support several distinct groups of agents, as
represented by the shaded and unshaded agents shown in Figure 2.

3.6 Experimental Conditions

The algorithm described above provided the basis for a series of experiments. In
each experimental run we were interested in the effectiveness of the evolutionary
learning among agents in stimulating co-location of Scout agents in appropriate
Environments. For the sake of logging results, all Environments were hosted in
parallel on a single machine. (However, there is no reason why they should not
be hosted on multiple machines in parallel in the future.) To compensate for this
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Fig. 2. An example configuration of information-sharing agents

lack of true parallelism, User agent search intervals, Scout agent waiting time,
and overall run length were made proportionate to the number of User agents. A
minute of CPU time was provided for the activity of each User agent. Each User
agent began the simulation with a fixed category of interest, and a population of
100 Scout agents with random genomes (defining random preference functions).
Initial experiments used the same category of interest for all User agents, but
more than one category of interest can be used if required.

4 Results

Figure 3 shows the progress of a single experiment, involving thirty-two User
agents. The number of Scout agents in each Environment changes over time due
to the migration of Scout agents between Environments, as well as being due to
the evolution of Scout agent genomes. The evolutionary algorithms are executed
in real time by the parallel operations of all the User agents. For this reason
results are shown against CPU time.

It is clear that one Environment in particular becomes the most popular,
attracting the vast majority of Scout agents in the system. This distribution of
Scout agents, with few agents in many Environments, and many in few, is the
result of selection of Scout preferences for Environments based on interactions
between Scout agents during the Sharing phase of their life cycle. This group-
ing of Scout agents could then be used to support more effective information
exchange among the User agents in the system than was possible at the start
of the experiment. It indicates how this evolutionary approach could be use-
ful in facilitating information interactions between the human users who have
established such User agents.

Figure 4 shows how the phenomenon shown in Figure 3 occurs. Over time
average Scout agent success increases, because the independent evolutionary
algorithms converge to common Environmental preferences. This increases the
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Fig. 3. Environment population over time - 32 User agents

Scout agent population density in certain Environments and hence increases
Scout success.

If more User agents (and hence more Environments and more Scout agents)
are involved, the system takes longer to evaluate where the appropriate Scout
agents are, but still identifies them in the end. In Figure 5 we show the results of
multiple runs of the algorithm designed to calculate the average (mean) value of
Scout agent success. This is calculated after each 1 minute of CPU time has been
used per User agent. We are interested to see whether use of the evolutionary
algorithm has an effect on the average success of Scout agents.

Figure 5 shows that this occurs, in that average Scout agent success after one
minute of CPU time is greater than the initial value (of zero). If the evolutionary
algorithm is not used, so Scout agents have uniform preferences, average Scout
agent success after one minute of CPU time, although non-zero, is constant
irrespective of the number of User agents involved. If the evolutionary algorithm
is used (represented by evolved preferences in the Figure), it is interesting that
the average Scout agent success actually increases with the number of User
agents, before declining at higher numbers of User agents. This suggests the
benefit that the use of evolutionary techniques can offer among populations
of agents in multi-agent systems, but also implies that very high numbers of
User agents may make it more difficult for successful interactions between Scout
agents to arise.

The results in Figure 3 shows that the evolution of Scout agent preferences
for Environments can support convergence of many Scout agents to a single
preferred Environment. When larger numbers of User agents are spread across
more Environments, evolution of Scout agent preferences may result in several
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Environments supporting significant numbers of Scout agents in the long term
(Figure 6). This does not indicate a failure to evolve to a sufficiently preferred
solution, as comparison of the changes in average Scout success over time with
this higher number of User agents with Figure 4 shows a similar change in
success results although the final average is different (see Figure 7). In fact one
Environment in Figure 6 ends up with significantly more Scout agents than all
the others after the algorithm is run for some time. But this does not eliminate
the several Environments that maintain persistent populations of Scout agents
at somewhat lower levels. This is an inevitable source of the use of a random
walk by Scout agents in locating Environments.

5 Discussion

The experiments in evolving group formation that we have implemented us-
ing the DIET platform suggest that evolving agent preferences may be a useful
means to tackle information management problems. Starting from a random
initial assembly of users, agents quickly co-locate according to the interests of
their respective User agents. This facilitates more rapid and effective communi-
cations between User agents representing human users with common interests,
and so shows the potential for application to more general peer-to-peer collab-
orative networks [18]. The experiments presented here are designed such that
many User agents represent similar interests, but it would be possible to develop
alternative scenarios where very many different interests were represented, and
Scout agents spread out over many Environments.

While the results given above show convergence of the majority of Scout
agents in the system to a single preferred Environment, it is likely that Scout
agents will encounter a variety of Environments during exploration. The coex-
istence of agents in multiple Environments may provide additional robustness,
since the loss of specific machines hosting some Environments is unlikely to elim-
inate all members of a specific agent community in a sufficiently large network.
In addition agents persisting in such a diminished system will have the capabil-
ity to evolve their preferences so as to adapt to the remaining Environments. In
fact, because users for the Scouts that converged on a specific Environment that
has just disappeared, all have similar evolved preferences, their Scouts are likely
to quickly converge on an Environment with a similar hashcode.

The experiments described above implement agents in multiple Environments
in parallel on a single machine. It would be worthwhile to investigate larger
networks of Environments and User agents with diverse categories of interest.
Accordingly, further experimentation is planned, using multiple computers con-
nected in a Beowulf cluster [20]. This should help reduce artefacts arising from
thread sharing, and also permit the construction of larger peer networks.

The implementation of preference evolution on multiple machines may pro-
vide a means of using this algorithm for load balancing. This is because the
use of multiple machines and hence system resources in parallel will provide
the agents involved with the potential to evolve preferences and vary success at
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different rates in different machines. As a consequence, Scout agents will have
the opportunity to switch between machines in order to improve their success
rate in interacting with other Scout agents. While initial convergence of most
Scout agents to a single Environment may result in a similar way to that in
the experiments shown here, a consequence of this will be increased demands
on one of the machines in the peer network. This will place constraints on the
Environments hosted on that machine, restricting agent interactions. This may
stimulate migration of Scout agents to other machines where system resources
are less heavily in demand. The consequence of this will be a contrasting pressure
on Scout agents to disperse over multiple machines, a kind of implicit evolution
driven by available system resources.

This implicit evolution could be further used to develop groups of informa-
tion sharing agents. The DIET platform provides the means to monitor the use
of system resources by agents. Accordingly computational resource cost could
be used to constrain the evolutionary algorithm so as to develop preferences
appropriate to the machines (and/or resources) available at the time. In this
way agents adopting computationally efficient behaviour can be evolved without
explicit population management.
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