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Abstract. Extracting appropriate custom instructions is an important phase for 
implementing an application on an extensible processor with a reconfigurable 

functional unit (RFU). Custom instructions (CIs) are usually extracted from 

critical portions of applications. It may not be possible to meet all of the RFU 

constraints when CIs are generated. This paper addresses the generation of 

mappable CIs on an RFU. In this paper, our proposed RFU architecture for an 

adaptive dynamic extensible processor is described. Then, an integrated 

framework for temporal partitioning and mapping is presented to partition and 

map the CIs on RFU. In this framework, two mapping aware temporal 

partitioning algorithms are used to generate CIs. Temporal partitioning iterates 

and modifies partitions incrementally to generate CIs. Using this framework 

brings about more speedup for the extensible processor.  

1. Introduction 

 An extensible processor with a reconfigurable functional unit (RFU) can be an 

alternative to General Purpose Processors (GPPs), Application-Specific Integrated 

Circuits (ASICs) and Application-Specific Instruction set Processors (ASIPs) to achieve 

enhanced performance in embedded systems. ASICs are not flexible and have an 

expensive and time consuming design process. On the other hand, GPPs are very flexible 

but may not offer the necessary performance. ASIPs are more flexible than ASICs and 

have more potential to meet the high-performance demands of embedded applications, 

compared to GPPs but the synthesis of ASIPs traditionally involved the generation of a 

complete instruction set architecture for the targeted application. This full-custom solution 

is too expensive and has long design turnaround times. 

Another method for providing enhanced performance is application-specific instruction 

set extension. By creating application-specific extensions to an instruction set, the critical 



 

portions of an application’s dataflow graph (DFG) can be accelerated by using custom 

functional units. The nodes of these DFGs are the instructions of critical potion of 

applications and the edges of DFGs represent the dependency between instructions. In our 

method, custom instruction is a sequence of instructions that are extracted from hot basic 

blocks (HBBs). HBBs are basic blocks which are executed more than a predefined 

number of times. A basic block is a sequence of instructions that is terminated by a 

control instruction. Instruction set extension improves performance and reduces energy 

consumption of processors but not as effective as ASICs. Instruction set extension also 

maintains a degree of system programmability, which enables them to be utilized with 

more flexibility. Using an extensible processor with a reconfigurable functional unit 

proposes favorable tradeoff between efficiency and flexibility, while keeping design 

turnaround time much shorter. The reconfigurable part of an extensible processor executes 

critical portions of an application to gain higher performance. It can be coarse grain or 

fine grain. The latter is more flexible but it is slower comparing with the coarse grain one. 

Extracting CIs from applications is an important stage in accelerating application 

execution. Some generated CIs cannot be mapped on reconfigurable hardware because 

some RFU constraints, like physical constraints, cannot be considered at the CI generation 

phase. We call this kind of CIs rejected CIs.  

Identifying optimal set of custom instruction to improve the computational efficiency 

of applications has received significant attention recently. Research in reconfigurable 

computing is often more in line with our goal. Some papers in reconfigurable computing 

investigate the identification of application sections that are mapped to a reconfigurable 

fabric. In [7], the authors combine template matching and generation based on the 

occurrence of patterns which usually led to small templates. Methods presented in [5] and 

[8] impose further constraints by allowing multiple input-single output patterns. Arnold et 

al. [1] avoid the exponentially increase of these patterns by using an iterative technique 

that detects 2-operator patterns, replace their occurrences in the DFG and repeats the 

process. Atasu et al. [2] search a full binary tree and decide at each step whether or not to 

include a particular instruction in a pattern, but they do not take into account the 

underlying hardware architecture. Clark et al. [4] search possibly good patterns by starting 

with small patterns and expanding them considering the input, output and convexity 

constraints [16].  

In this paper, we propose a novel framework for generating CIs. Our main goal is 

proposing a framework for generating CIs for AMBER, an adaptive dynamic extensible 

processor presented in [11]. However, this framework can be used for CI generation as a 

general methodology. AMBER uses a coarse grain reconfigurable functional unit with 

fixed resources. Initial CIs are generated by a CI generation tool and some of them might 

be rejected because of violating RFU constraints. Rejection of CIs decreases the speedup. 

We do not use any pruning algorithm for making smaller CIs from rejected CIs because 

obviously, by using bigger CIs, more speedup can be obtained. We use a mapping-aware 

temporal partitioning algorithm to generate CIs.  

Temporal partitioning can be stated as partitioning a data flow graph into a number of 

partitions such that each partition can fit into the target hardware and also, dependencies 



 

among the graph nodes are not violated [3, 6]. Different algorithms have been presented 

for temporal partitioning. Karthikeya et al. [6] proposed algorithms for temporal 

partitioning and scheduling of large designs on area constrained reconfigurable hardware. 

SPARCS [12] is an integrated partitioning and synthesis framework, which has a temporal 

partitioning tool to temporally divide and schedule the DFGs on a reconfigurable system. 

Tanougust et al. [15] attempted to find the minimum area while meeting timing 

constraints during temporal partitioning. In [14], Spillane and Owen focused on finding a 

sequence of conditions for an optimized scheduling of configurations to achieve the 

desired trade-offs among reconfiguration time, operation speed and area. In [9], a design 

flow was proposed for the compilation of data flow graphs for a reconfigurable system. In 

this paper, we propose a modified version of this framework for generating appropriate 

CIs for  the RFU of AMBER. In this framework, temporal partitioning is done iteratively 

and gets feedbacks from mapping to modify partitions and map them onto the RFU. Also, 

it takes advantages of the basic design flow of [9] to generate CIs and improve target 

extensible processor speedup. 

In Section 2, the architecture of RFU proposed for AMBER is described. Section 3 

discusses the design flow proposed for generating CIs and details of temporal partitioning 

algorithms and their incremental versions. In Section 4, experimental results are presented 

and finally, Section 5 concludes the paper. 

2. AMBER RFU Architecture 

In [11] an adaptive extensible processor (AMBER) was presented which has the 

capability of tuning its extended instructions to the running application. AMBER uses a 

RISC processor as the base processor. In the first stage of this work, a coarse grain 

reconfigurable functional unit (RFU) was designed for AMBER using a quantitative 

approach [4]. The presented RFU architecture is an array of functional units (FUs) (Fig. 1). 

FUs support all fixed point instructions of the base processor except multiplication, 

division and load. Twenty-two applications from Mibench [17] were used to provide 

quantitative analysis. In addition, a mapping tool was developed to map CIs on the RFU. 

The details of RFU design is out of scope of this paper, and therefore we describe the 

specification of the final architecture. According to the obtained results, eight inputs, six 

outputs and 16 FUs brought about a reasonable CI rejection rate.  Rejection rate represents 

the percentage of CIs that cannot be mapped on the RFU according to its defined 

constraints. In the proposed architecture, there are left to right connections in the 4th row 

and right to left connections in the 3rd row. The outputs of FUs in each row are fully 

connected to the inputs of FUs in the subsequent row. Moreover, there are extra vertical 

connections, as in Fig. 1, between non-subsequent rows to keep the CI rejection rate low.  



 

 
Fig. 1. Architecture of the RFU designed for AMBER 

3. Integrated Temporal Partitioning and Mapping 

As mentioned in Section 1, in this paper, our main focus is on a method for CI generation. 

In the following sections, we explain the details of the approaches used for generating CIs. 

3.1. Overview 

Initial CIs were extracted from hot basic blocks of applications according to the algorithm 

presented in [11]. Two different approaches for generating appropriate CIs are presented. 

Appropriate CI set means the set of CIs which satisfy the RFU primary constraints and 

may have the capability of being mapped successfully on the RFU. RFU primary 

constraints are the architectural constraints including the number of inputs, outputs and 

nodes.  In the first approach (CIGen) (Fig. 2(a)), appropriate CIs are generated for each 

application considering the RFU primary constraints by using the CI generation tool. For 

rejected CIs, CIGen follows a conservative method to generate appropriate CIs. One 

important drawback of this CI extraction procedure is that it cannot consider all of the 

constraints such as routing resources constraints. Therefore, some of these CIs may not be 

mapped to the RFU and should be executed on the base processor.  

 Integrated Framework is the second CI generation approach that performs  an 

integrated temporal partitioning and mapping process to generate mappable CIs. The 

proposed design flow for Integrated Framework is shown in Fig. 2(b). This design flow 

takes rejected CIs and attempts to partition them to appropriate CIs with the capability of 

being mapped on the RFU. In our methodology, a DFG corresponds to a CI and partitions 

obtained from the integrated temporal partitioning process are the same appropriate CIs 

which are mappable on the RFU. In the first stage, RFU primary constraints are 

considered to generate initial CIs. Then for each CI generated in the first step, the 

mapping process is done and the generated CIs are accepted and finalized if they can be 

mapped on the RFU. Otherwise, an incremental temporal partitioning algorithm modifies 

the CI (partition) by moving some of the nodes to the subsequent CI (partition). Mapping 

algorithm attempts to reduce total connection length between the nodes and satisfy the 

RFU architectural constraints simultaneously. In the next step, the mapping process is 



 

repeated. This process is done iteratively until all partitions are mapped successfully on 

RFU. This framework gains the following advantages: 

1. Reducing the number of rejected CIs that can affect the overall performance by 
partitioning the rejected CIs to appropriate CIs which can be mapped on the RFU. 

2. Using a mapping-aware temporal partitioning process to prohibit the rejection of CIs 
by modifying CIs according to the feedbacks obtained from the mapping process.  

In the Integrated Framework, two algorithms were developed for temporal partitioning 

which are described in the following section. 

    
(a)    (b) 

Fig. 2. Design flows for CIGen (a) and the Integrated Framework (b) 

3.2. Horizontal and Vertical Traversing Temporal Partitioning (HTTP and VTTP)  

HTTP [9] is used as the first temporal partitioning algorithm in the Integrated Framework. 

This algorithm traverses DFG nodes horizontally according to the ASAP (As Soon As 

Possible) level of the nodes and adds them to the current partition while architectural 

constraints are satisfied. The ASAP level of nodes represents their order to execute 

according to their dependencies [2, 9]. For example, a parent node should be executed 

before its descents because of data dependencies between them. HTTP algorithm 

partitions the input DFG by horizontally traversing of DFG nodes. This algorithm usually 

brings about more parallelism for instruction execution that may result in increasing 

required intermediate data size. On the other hand, intermediate data size can affect data 

transferring rate and configuration memory size. We present another temporal partitioning 

algorithm to vertically traversing of DFG nodes. Although using this algorithm creates 

partitions with longer critical paths it reduces the intermediate data size.  

3.3. Partitions Modification  

In Integrated Framework, each partition which does not satisfy RFU constraints, is 

modified by selecting and moving proper nodes to the subsequent partition and then a new 



 

iteration starts. For HTTP and VTTP algorithms, two different strategies are used as 

incremental algorithms for partition modification.  

Incremental HTTP. This complementary algorithm selects a node and moves it to the next 

partition. A new partition is created and the number of partitions is increased by 1 if there 

is no more partition. The best choice for moving nodes are the nodes with highest ASAP 

level. All nodes in a partition are sorted according to their ASAP level and the node with 

the highest ASAP level is selected to move to the subsequent partition. In Fig. 3(a), the 

nodes 15, 13, 11, 9, 14, 12, 10, 8, 3, 7 are selected in order and moved to the next partition.  

Incremental VTPP. This algorithm chooses another strategy for selecting and moving the 

nodes. The most important characteristic of VTTP is extracting long paths by in-depth 

traversing of DFG nodes. Therefore, selecting nodes from a partition should be done 

according to this property; otherwise the results of the modification process will converge 

to those of the HTTP algorithm. Our experiments justify this statement. In the first attempt, 

a node with the highest ASAP level is selected and moved to the next partition. In other 

attempts for modifying the same partition, the nodes are selected from the path where the 

previous moved node had been located. A node with the highest ASAP level from another 

path is selected if there is still any node belonging to the current partition on the 

processing path. In Fig. 3(b), the nodes 15, 14, 6, 13, 12, 5, 11, 10, 4, 7 are selected in-

order and moved to the next partition during the incremental VTTP. 

3.4. Mapping Procedure 

In our Integrated Framework, the mapping process is the same as the well-known 

placement problem [13]. Mapping process can be defined as the placement of the DFG 

nodes on a fixed architecture RFU, to determine the appropriate positions for DFG nodes 

on the RFU. Minimizing the connection length, area and the longest wire are usually the 

main goals in this process [13]. Assigning CI instructions or DFG nodes to FUs is done 

based on the priority of the nodes. We calculated slack of nodes [10] to determine their 

priority for partitioning. Slack of each node represents its criticality. For example, slack 

equal to 0 means that it is on the critical path of DFG and should be scheduled with the 

highest priority. ASAP level of nodes determines the order of partitioning for the nodes 

with equal slack value. 

The nodes with lower value of ASAP level should be scheduled according to their 

execution order in the DFG. Therefore, in the first step, ASAP, ALAP (As Late As 

Possible) and slack values of each node in the DFG are determined [9, 10]. Assigning a 

position for each selected node starts by determining an appropriate row for that node. 

Row number is set to the last row if the selected node is on a critical path with the length 

more than or equal to the RFU depth. Otherwise, row number is selected according to 

slack and ALAP of the selected node and the number of unoccupied cells available in the 

RFU rows. For the nodes which do not belong to any critical path longer than the RFU 

depth, their starting row is set to ALAP- slack -1. This means that we reserve FUs of the 



 

lower rows for the nodes belonging to the critical path. Therefore, spiral shaped mapping 

of nodes are possible for long critical paths. After determining the row number, an 

appropriate column is determined for the selected node. Column number is determined 

according to the minimum connection length criterion. All unoccupied cells of the RFU in 

the determined row are checked to find an FU which gives the minimum connection 

length. For each row, a maximum capacity is considered to prohibit gathering many nodes 

in a row. Capacity of rows is determined with respect to the longest critical path and the 

number of critical paths in the DFG. Referring to the RFU architecture in Fig. 1 and its 

routing resources, though the RFU depth is equal to 5, our mapping algorithm can map 

CIs whose critical path length are at most equal to 8. Fig. 3 show examples of  mapping of 

CIs on the RFU. Corresponding CI of the first partition in Fig. 3(b) has been mapped on 

RFU in a spiral shaped path because of its long length. 

 
(a)      (b) 

Fig. 3. Examples of HTTP (a) and VTTP (b) and their related incremental versions 

 4. Experimental Results 

SimpleScalar tool set (PISA configuration)[18] and 22 applications of Mibench [17] were 

used for doing experiments. Initial CIs were generated according to the method proposed 

in [11]. CI rejection rate with respect to RFU architectural constraints was about 10%. 

Table 1 shows the minimum and maximum length of initial CIs. Also it shows the 

minimum length of rejected CIs which are applied to Integrated Framework. Application 

names include rejected CIs are shown in bold face. Last column of Table 1 depicts in 9 of 

the 22 applications, there was not any rejected CI, which means that all CIs in these 

applications were mapped on the RFU successfully. Also, for 13 of the 22 applications 

that include rejected CIs, CI rejection percentage is at least 1.9% for sha and at most 

43.2% for blowfish and blowfish(dec).  

The base line processor was a 4-way in-order RISC processor with a 32KB L1 data 

cache (1 clock cycle latency); a 32KB L1 instruction cache (1 clock cycle latency) and a 

1MB unified L2 cache (6 clock cycles latency). On the other hand, it was assumed that the 

RFU has a variable latency based on the length of the longest critical path [11]. It was 



 

presumed that the first row of the RFU takes one clock cycle and the other rows take 0.5 

clock cycles for execution. For generating appropriate CIs, as mentioned in Section 3, we 

used two different approaches. First, we used CIGen to generate CIs with respect to RFU 

constraints. For these CIs, the mapping process was done and some of them were rejected 

again at the mapping stage because of the RFU routing resource constraints. Experiments 

show that 10 of 13 applications already have some rejected CIs using the CIGen.  

Table 1. CIs length for Mibench applications 

Application Name Min. CI length Max. CI length Min. Rejected CI length CI Rejection % 

adpcm(enc) 5 7 - 0 

adpcm(dec) 5 7 - 0 

bitcounts 4 20 20 14.3 

blowfish 5 16 15 66.7 

blowfish (dec) 5 16 15 66.7 

basicmath 3 11 - 0 

cjpeg 5 59 11 20.7 

crc 5 5 - 0 

dijkstra 4 9 - 0 

djpeg 4 48 8 23.8 

fft 3 16 16 8.3 

fft (inv) 3 16 16 8.3 

gsm (dec) 5 14 14 6.3 

gsm (enc) 4 26 13 9.5 

lame 3 13 7 8.3 

patricia 3 6 - 0 

qsort 5 7 - 0 

rijndael (enc) 5 16 10 46.3 

rijndael (dec) 5 18 10 57.1 

sha 5 18 7 18.5 

stringsearch 5 9 - 0 

susan 6 10 - 0 

 

In the second approach, we used the Integrated Framework to partition the rejected CIs 

and generate appropriate CIs, which are successfully mapped on the RFU. We compared 

two HTTP and VTTP algorithms with respect to critical path length of generated CIs, 

intermediate data size and speedup. Fig. 4(a) compares two algorithms with respect to 

intermediate data size. For 6 of 13 applications, intermediate data size is smaller using 

VTTP. For 7 remaining applications intermediate data size is the same. Another 

comparison was done with respect to critical path length. Fig. 4(b) shows that VTTP 

generated CIs with critical length equal to or more than HTTP because it traverses DFG 

nodes in depth, whereas HTTP traverses them horizontally. Finally, we compared both 

algorithms regarding the speedup obtained from the extensible processor.  Fig. 5 depicts 

the comparison of speedup achieved using HTTP and VTTP. Using both of these 

algorithms, all CIs were mapped successfully on the RFU but HTTP resulted in better 

speedup, since it benefits from parallelism more in the instruction execution. In other 

words, critical path length is less using HTTP, and  therefore, RFU execution latency was 

smaller. In addition, according to Fig. 5, both HTTP and VTTP offer better speedup 

compared to CIGen. 
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Fig. 4. Intermediate data size (a) maximum critical path length for CIs (b) 
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Fig. 5. Speedup comparison between HTTP, VTTP and CIGen 

5. Conclusion 

In this paper, an integrated framework was presented to address generating appropriate 

custom instructions and mapping them on the RFU of an adaptive extensible processor.  

First, an RFU was presented for AMBER, a dynamic adaptive extensible processor. 

Generating appropriate CIs by applying the RFU constraints to the CI generation tool may 

still cause some generated CIs to be rejected. This approach does not have the capability 

of considering constraints such as routing resource constraints before mapping. Integrated 

Framework is the second approach we used to generate CIs. This framework can be used 

as a general approach for generating CIs. Integrated Framework uses mapping-aware 

temporal partitioning algorithms for generating appropriate CIs. In this framework, each 

rejected CI is partitioned to multiple partitions and is iteratively modified to meet the RFU 

constraints. CI modification is done using incremental versions of HTTP and VTTP 

algorithms. Our proposed mapping algorithm uses spiral shaped paths to cover CIs 

including critical path lengths more than the RFU depth. The experimental results showed 

that for the attempted benchmarks, this framework successfully mapped all CIs on the 

RFU. Also, the Integrated Framework using both HTTP and VTTP brought about more 

speedup enhancement compared to CIGen. In addition, HTTP gained higher performance 

in comparison with VTTP because of more instruction parallelism. 
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