
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Custom Instruction Generation Using Temporal
Partitioning Techniques for a Reconfigurable
Functional Unit

Mehdipour, Farhad
Computer and IT Engineering Department, Amirkabir University of Technology

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Saheb Zamani, Morteza
Computer and IT Engineering Department, Amirkabir University of Technology

Murakami, Kazuaki
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://hdl.handle.net/2324/6794493

出版情報：The 2006 IFIP International Conference on Embedded And Ubiquitous Computing
(EUC'2006), pp.722-731, 2006-08. IFIP International Conference on Embedded And Ubiquitous
Computing
バージョン：
権利関係：

Custom Instruction Generation Using Temporal Partitioning

Techniques for a Reconfigurable Functional Unit

Farhad Mehdipour†, Hamid Noori††, Morteza Saheb Zamani†, Kazuaki Murakami††,

Koji Inoue††, Mehdi Sedighi†

†Computer and IT Engineering Department, Amirkabir University of Technology, Tehran, Iran
{mehdipur,szamani,msedighi}@aut.ac.ir

††Department of Informatics, Graduate School of Information Science and Electrical

Engineering, Kyushu University, Japan
noori@c.csce.kyushu-u.ac.jp

{murakami,inoue}@i.kyushu-u.ac.jp

Abstract. Extracting appropriate custom instructions is an important phase for
implementing an application on an extensible processor with a reconfigurable

functional unit (RFU). Custom instructions (CIs) are usually extracted from

critical portions of applications. It may not be possible to meet all of the RFU

constraints when CIs are generated. This paper addresses the generation of

mappable CIs on an RFU. In this paper, our proposed RFU architecture for an

adaptive dynamic extensible processor is described. Then, an integrated

framework for temporal partitioning and mapping is presented to partition and

map the CIs on RFU. In this framework, two mapping aware temporal

partitioning algorithms are used to generate CIs. Temporal partitioning iterates

and modifies partitions incrementally to generate CIs. Using this framework

brings about more speedup for the extensible processor.

1. Introduction

 An extensible processor with a reconfigurable functional unit (RFU) can be an

alternative to General Purpose Processors (GPPs), Application-Specific Integrated

Circuits (ASICs) and Application-Specific Instruction set Processors (ASIPs) to achieve

enhanced performance in embedded systems. ASICs are not flexible and have an

expensive and time consuming design process. On the other hand, GPPs are very flexible

but may not offer the necessary performance. ASIPs are more flexible than ASICs and

have more potential to meet the high-performance demands of embedded applications,

compared to GPPs but the synthesis of ASIPs traditionally involved the generation of a

complete instruction set architecture for the targeted application. This full-custom solution

is too expensive and has long design turnaround times.

Another method for providing enhanced performance is application-specific instruction

set extension. By creating application-specific extensions to an instruction set, the critical

portions of an application’s dataflow graph (DFG) can be accelerated by using custom

functional units. The nodes of these DFGs are the instructions of critical potion of

applications and the edges of DFGs represent the dependency between instructions. In our

method, custom instruction is a sequence of instructions that are extracted from hot basic

blocks (HBBs). HBBs are basic blocks which are executed more than a predefined

number of times. A basic block is a sequence of instructions that is terminated by a

control instruction. Instruction set extension improves performance and reduces energy

consumption of processors but not as effective as ASICs. Instruction set extension also

maintains a degree of system programmability, which enables them to be utilized with

more flexibility. Using an extensible processor with a reconfigurable functional unit

proposes favorable tradeoff between efficiency and flexibility, while keeping design

turnaround time much shorter. The reconfigurable part of an extensible processor executes

critical portions of an application to gain higher performance. It can be coarse grain or

fine grain. The latter is more flexible but it is slower comparing with the coarse grain one.

Extracting CIs from applications is an important stage in accelerating application

execution. Some generated CIs cannot be mapped on reconfigurable hardware because

some RFU constraints, like physical constraints, cannot be considered at the CI generation

phase. We call this kind of CIs rejected CIs.

Identifying optimal set of custom instruction to improve the computational efficiency

of applications has received significant attention recently. Research in reconfigurable

computing is often more in line with our goal. Some papers in reconfigurable computing

investigate the identification of application sections that are mapped to a reconfigurable

fabric. In [7], the authors combine template matching and generation based on the

occurrence of patterns which usually led to small templates. Methods presented in [5] and

[8] impose further constraints by allowing multiple input-single output patterns. Arnold et

al. [1] avoid the exponentially increase of these patterns by using an iterative technique

that detects 2-operator patterns, replace their occurrences in the DFG and repeats the

process. Atasu et al. [2] search a full binary tree and decide at each step whether or not to

include a particular instruction in a pattern, but they do not take into account the

underlying hardware architecture. Clark et al. [4] search possibly good patterns by starting

with small patterns and expanding them considering the input, output and convexity

constraints [16].

In this paper, we propose a novel framework for generating CIs. Our main goal is

proposing a framework for generating CIs for AMBER, an adaptive dynamic extensible

processor presented in [11]. However, this framework can be used for CI generation as a

general methodology. AMBER uses a coarse grain reconfigurable functional unit with

fixed resources. Initial CIs are generated by a CI generation tool and some of them might

be rejected because of violating RFU constraints. Rejection of CIs decreases the speedup.

We do not use any pruning algorithm for making smaller CIs from rejected CIs because

obviously, by using bigger CIs, more speedup can be obtained. We use a mapping-aware

temporal partitioning algorithm to generate CIs.

Temporal partitioning can be stated as partitioning a data flow graph into a number of

partitions such that each partition can fit into the target hardware and also, dependencies

among the graph nodes are not violated [3, 6]. Different algorithms have been presented

for temporal partitioning. Karthikeya et al. [6] proposed algorithms for temporal

partitioning and scheduling of large designs on area constrained reconfigurable hardware.

SPARCS [12] is an integrated partitioning and synthesis framework, which has a temporal

partitioning tool to temporally divide and schedule the DFGs on a reconfigurable system.

Tanougust et al. [15] attempted to find the minimum area while meeting timing

constraints during temporal partitioning. In [14], Spillane and Owen focused on finding a

sequence of conditions for an optimized scheduling of configurations to achieve the

desired trade-offs among reconfiguration time, operation speed and area. In [9], a design

flow was proposed for the compilation of data flow graphs for a reconfigurable system. In

this paper, we propose a modified version of this framework for generating appropriate

CIs for the RFU of AMBER. In this framework, temporal partitioning is done iteratively

and gets feedbacks from mapping to modify partitions and map them onto the RFU. Also,

it takes advantages of the basic design flow of [9] to generate CIs and improve target

extensible processor speedup.

In Section 2, the architecture of RFU proposed for AMBER is described. Section 3

discusses the design flow proposed for generating CIs and details of temporal partitioning

algorithms and their incremental versions. In Section 4, experimental results are presented

and finally, Section 5 concludes the paper.

2. AMBER RFU Architecture

In [11] an adaptive extensible processor (AMBER) was presented which has the

capability of tuning its extended instructions to the running application. AMBER uses a

RISC processor as the base processor. In the first stage of this work, a coarse grain

reconfigurable functional unit (RFU) was designed for AMBER using a quantitative

approach [4]. The presented RFU architecture is an array of functional units (FUs) (Fig. 1).

FUs support all fixed point instructions of the base processor except multiplication,

division and load. Twenty-two applications from Mibench [17] were used to provide

quantitative analysis. In addition, a mapping tool was developed to map CIs on the RFU.

The details of RFU design is out of scope of this paper, and therefore we describe the

specification of the final architecture. According to the obtained results, eight inputs, six

outputs and 16 FUs brought about a reasonable CI rejection rate. Rejection rate represents

the percentage of CIs that cannot be mapped on the RFU according to its defined

constraints. In the proposed architecture, there are left to right connections in the 4th row

and right to left connections in the 3rd row. The outputs of FUs in each row are fully

connected to the inputs of FUs in the subsequent row. Moreover, there are extra vertical

connections, as in Fig. 1, between non-subsequent rows to keep the CI rejection rate low.

Fig. 1. Architecture of the RFU designed for AMBER

3. Integrated Temporal Partitioning and Mapping

As mentioned in Section 1, in this paper, our main focus is on a method for CI generation.

In the following sections, we explain the details of the approaches used for generating CIs.

3.1. Overview

Initial CIs were extracted from hot basic blocks of applications according to the algorithm

presented in [11]. Two different approaches for generating appropriate CIs are presented.

Appropriate CI set means the set of CIs which satisfy the RFU primary constraints and

may have the capability of being mapped successfully on the RFU. RFU primary

constraints are the architectural constraints including the number of inputs, outputs and

nodes. In the first approach (CIGen) (Fig. 2(a)), appropriate CIs are generated for each

application considering the RFU primary constraints by using the CI generation tool. For

rejected CIs, CIGen follows a conservative method to generate appropriate CIs. One

important drawback of this CI extraction procedure is that it cannot consider all of the

constraints such as routing resources constraints. Therefore, some of these CIs may not be

mapped to the RFU and should be executed on the base processor.

 Integrated Framework is the second CI generation approach that performs an

integrated temporal partitioning and mapping process to generate mappable CIs. The

proposed design flow for Integrated Framework is shown in Fig. 2(b). This design flow

takes rejected CIs and attempts to partition them to appropriate CIs with the capability of

being mapped on the RFU. In our methodology, a DFG corresponds to a CI and partitions

obtained from the integrated temporal partitioning process are the same appropriate CIs

which are mappable on the RFU. In the first stage, RFU primary constraints are

considered to generate initial CIs. Then for each CI generated in the first step, the

mapping process is done and the generated CIs are accepted and finalized if they can be

mapped on the RFU. Otherwise, an incremental temporal partitioning algorithm modifies

the CI (partition) by moving some of the nodes to the subsequent CI (partition). Mapping

algorithm attempts to reduce total connection length between the nodes and satisfy the

RFU architectural constraints simultaneously. In the next step, the mapping process is

repeated. This process is done iteratively until all partitions are mapped successfully on

RFU. This framework gains the following advantages:

1. Reducing the number of rejected CIs that can affect the overall performance by
partitioning the rejected CIs to appropriate CIs which can be mapped on the RFU.

2. Using a mapping-aware temporal partitioning process to prohibit the rejection of CIs
by modifying CIs according to the feedbacks obtained from the mapping process.

In the Integrated Framework, two algorithms were developed for temporal partitioning

which are described in the following section.

(a) (b)

Fig. 2. Design flows for CIGen (a) and the Integrated Framework (b)

3.2. Horizontal and Vertical Traversing Temporal Partitioning (HTTP and VTTP)

HTTP [9] is used as the first temporal partitioning algorithm in the Integrated Framework.

This algorithm traverses DFG nodes horizontally according to the ASAP (As Soon As

Possible) level of the nodes and adds them to the current partition while architectural

constraints are satisfied. The ASAP level of nodes represents their order to execute

according to their dependencies [2, 9]. For example, a parent node should be executed

before its descents because of data dependencies between them. HTTP algorithm

partitions the input DFG by horizontally traversing of DFG nodes. This algorithm usually

brings about more parallelism for instruction execution that may result in increasing

required intermediate data size. On the other hand, intermediate data size can affect data

transferring rate and configuration memory size. We present another temporal partitioning

algorithm to vertically traversing of DFG nodes. Although using this algorithm creates

partitions with longer critical paths it reduces the intermediate data size.

3.3. Partitions Modification

In Integrated Framework, each partition which does not satisfy RFU constraints, is

modified by selecting and moving proper nodes to the subsequent partition and then a new

iteration starts. For HTTP and VTTP algorithms, two different strategies are used as

incremental algorithms for partition modification.

Incremental HTTP. This complementary algorithm selects a node and moves it to the next

partition. A new partition is created and the number of partitions is increased by 1 if there

is no more partition. The best choice for moving nodes are the nodes with highest ASAP

level. All nodes in a partition are sorted according to their ASAP level and the node with

the highest ASAP level is selected to move to the subsequent partition. In Fig. 3(a), the

nodes 15, 13, 11, 9, 14, 12, 10, 8, 3, 7 are selected in order and moved to the next partition.

Incremental VTPP. This algorithm chooses another strategy for selecting and moving the

nodes. The most important characteristic of VTTP is extracting long paths by in-depth

traversing of DFG nodes. Therefore, selecting nodes from a partition should be done

according to this property; otherwise the results of the modification process will converge

to those of the HTTP algorithm. Our experiments justify this statement. In the first attempt,

a node with the highest ASAP level is selected and moved to the next partition. In other

attempts for modifying the same partition, the nodes are selected from the path where the

previous moved node had been located. A node with the highest ASAP level from another

path is selected if there is still any node belonging to the current partition on the

processing path. In Fig. 3(b), the nodes 15, 14, 6, 13, 12, 5, 11, 10, 4, 7 are selected in-

order and moved to the next partition during the incremental VTTP.

3.4. Mapping Procedure

In our Integrated Framework, the mapping process is the same as the well-known

placement problem [13]. Mapping process can be defined as the placement of the DFG

nodes on a fixed architecture RFU, to determine the appropriate positions for DFG nodes

on the RFU. Minimizing the connection length, area and the longest wire are usually the

main goals in this process [13]. Assigning CI instructions or DFG nodes to FUs is done

based on the priority of the nodes. We calculated slack of nodes [10] to determine their

priority for partitioning. Slack of each node represents its criticality. For example, slack

equal to 0 means that it is on the critical path of DFG and should be scheduled with the

highest priority. ASAP level of nodes determines the order of partitioning for the nodes

with equal slack value.

The nodes with lower value of ASAP level should be scheduled according to their

execution order in the DFG. Therefore, in the first step, ASAP, ALAP (As Late As

Possible) and slack values of each node in the DFG are determined [9, 10]. Assigning a

position for each selected node starts by determining an appropriate row for that node.

Row number is set to the last row if the selected node is on a critical path with the length

more than or equal to the RFU depth. Otherwise, row number is selected according to

slack and ALAP of the selected node and the number of unoccupied cells available in the

RFU rows. For the nodes which do not belong to any critical path longer than the RFU

depth, their starting row is set to ALAP- slack -1. This means that we reserve FUs of the

lower rows for the nodes belonging to the critical path. Therefore, spiral shaped mapping

of nodes are possible for long critical paths. After determining the row number, an

appropriate column is determined for the selected node. Column number is determined

according to the minimum connection length criterion. All unoccupied cells of the RFU in

the determined row are checked to find an FU which gives the minimum connection

length. For each row, a maximum capacity is considered to prohibit gathering many nodes

in a row. Capacity of rows is determined with respect to the longest critical path and the

number of critical paths in the DFG. Referring to the RFU architecture in Fig. 1 and its

routing resources, though the RFU depth is equal to 5, our mapping algorithm can map

CIs whose critical path length are at most equal to 8. Fig. 3 show examples of mapping of

CIs on the RFU. Corresponding CI of the first partition in Fig. 3(b) has been mapped on

RFU in a spiral shaped path because of its long length.

(a) (b)

Fig. 3. Examples of HTTP (a) and VTTP (b) and their related incremental versions

 4. Experimental Results

SimpleScalar tool set (PISA configuration)[18] and 22 applications of Mibench [17] were

used for doing experiments. Initial CIs were generated according to the method proposed

in [11]. CI rejection rate with respect to RFU architectural constraints was about 10%.

Table 1 shows the minimum and maximum length of initial CIs. Also it shows the

minimum length of rejected CIs which are applied to Integrated Framework. Application

names include rejected CIs are shown in bold face. Last column of Table 1 depicts in 9 of

the 22 applications, there was not any rejected CI, which means that all CIs in these

applications were mapped on the RFU successfully. Also, for 13 of the 22 applications

that include rejected CIs, CI rejection percentage is at least 1.9% for sha and at most

43.2% for blowfish and blowfish(dec).

The base line processor was a 4-way in-order RISC processor with a 32KB L1 data

cache (1 clock cycle latency); a 32KB L1 instruction cache (1 clock cycle latency) and a

1MB unified L2 cache (6 clock cycles latency). On the other hand, it was assumed that the

RFU has a variable latency based on the length of the longest critical path [11]. It was

presumed that the first row of the RFU takes one clock cycle and the other rows take 0.5

clock cycles for execution. For generating appropriate CIs, as mentioned in Section 3, we

used two different approaches. First, we used CIGen to generate CIs with respect to RFU

constraints. For these CIs, the mapping process was done and some of them were rejected

again at the mapping stage because of the RFU routing resource constraints. Experiments

show that 10 of 13 applications already have some rejected CIs using the CIGen.

Table 1. CIs length for Mibench applications

Application Name Min. CI length Max. CI length Min. Rejected CI length CI Rejection %

adpcm(enc) 5 7 - 0

adpcm(dec) 5 7 - 0

bitcounts 4 20 20 14.3

blowfish 5 16 15 66.7

blowfish (dec) 5 16 15 66.7

basicmath 3 11 - 0

cjpeg 5 59 11 20.7

crc 5 5 - 0

dijkstra 4 9 - 0

djpeg 4 48 8 23.8

fft 3 16 16 8.3

fft (inv) 3 16 16 8.3

gsm (dec) 5 14 14 6.3

gsm (enc) 4 26 13 9.5

lame 3 13 7 8.3

patricia 3 6 - 0

qsort 5 7 - 0

rijndael (enc) 5 16 10 46.3

rijndael (dec) 5 18 10 57.1

sha 5 18 7 18.5

stringsearch 5 9 - 0

susan 6 10 - 0

In the second approach, we used the Integrated Framework to partition the rejected CIs

and generate appropriate CIs, which are successfully mapped on the RFU. We compared

two HTTP and VTTP algorithms with respect to critical path length of generated CIs,

intermediate data size and speedup. Fig. 4(a) compares two algorithms with respect to

intermediate data size. For 6 of 13 applications, intermediate data size is smaller using

VTTP. For 7 remaining applications intermediate data size is the same. Another

comparison was done with respect to critical path length. Fig. 4(b) shows that VTTP

generated CIs with critical length equal to or more than HTTP because it traverses DFG

nodes in depth, whereas HTTP traverses them horizontally. Finally, we compared both

algorithms regarding the speedup obtained from the extensible processor. Fig. 5 depicts

the comparison of speedup achieved using HTTP and VTTP. Using both of these

algorithms, all CIs were mapped successfully on the RFU but HTTP resulted in better

speedup, since it benefits from parallelism more in the instruction execution. In other

words, critical path length is less using HTTP, and therefore, RFU execution latency was

smaller. In addition, according to Fig. 5, both HTTP and VTTP offer better speedup

compared to CIGen.

0

20

40

60

80

100

120

140

160

180

No. of 32bit

 Intermediate Data

b
it
c
n
ts

b
lo
w
fi
s
h

b
lo
w
fi
s
h

(d
e
c
)

c
jp
e
g

d
jp
e
g ff
t

ff
t
(i
n
v
)

g
s
m
 (
d
e
c
)

g
s
m
 (
e
n
c
)

la
m
e

ri
jn
d
a
e
l

(e
n
c
)

ri
jn
d
a
e
l

(d
e
c
)

s
h
a

HTTP Intermediate Data Size VTTP Intermediate Data Size

0

1

2

3

4

5

6

7

8

Critical

Path Length

b
it
c
n
ts

b
lo
w
fi
s
h

b
lo
w
fi
s
h

(d
e
c
)

c
jp
e
g

d
jp
e
g ff
t

ff
t
(i
n
v
)

g
s
m
 (
d
e
c
)

g
s
m
 (
e
n
c
)

la
m
e

ri
jn
d
a
e
l

(e
n
c
)

ri
jn
d
a
e
l

(d
e
c
)

s
h
a

HTTP Critical Path Length VTTP Critical Path Length

(a) (b)

Fig. 4. Intermediate data size (a) maximum critical path length for CIs (b)

1

1.05

1.1

1.15

1.2

1.25

1.3

Speedup

b
it
c
o
u
n
ts

b
lo
w
fi
s
h

b
lo
w
fi
s
h

(d
e
c
)

c
jp
e
g

d
jp
e
g ff
t

ff
t
(i
n
v
)

g
s
m
 (
d
e
c
)

g
s
m
 (
e
n
c
)

la
m
e

ri
jn
d
a
e
l

(e
n
c
)

ri
jn
d
a
e
l

(d
e
c
)

s
h
a

HTTP VTTP CIGen

Fig. 5. Speedup comparison between HTTP, VTTP and CIGen

5. Conclusion

In this paper, an integrated framework was presented to address generating appropriate

custom instructions and mapping them on the RFU of an adaptive extensible processor.

First, an RFU was presented for AMBER, a dynamic adaptive extensible processor.

Generating appropriate CIs by applying the RFU constraints to the CI generation tool may

still cause some generated CIs to be rejected. This approach does not have the capability

of considering constraints such as routing resource constraints before mapping. Integrated

Framework is the second approach we used to generate CIs. This framework can be used

as a general approach for generating CIs. Integrated Framework uses mapping-aware

temporal partitioning algorithms for generating appropriate CIs. In this framework, each

rejected CI is partitioned to multiple partitions and is iteratively modified to meet the RFU

constraints. CI modification is done using incremental versions of HTTP and VTTP

algorithms. Our proposed mapping algorithm uses spiral shaped paths to cover CIs

including critical path lengths more than the RFU depth. The experimental results showed

that for the attempted benchmarks, this framework successfully mapped all CIs on the

RFU. Also, the Integrated Framework using both HTTP and VTTP brought about more

speedup enhancement compared to CIGen. In addition, HTTP gained higher performance

in comparison with VTTP because of more instruction parallelism.

Acknowledgement

The authors would like to thank System LSI Laboratory of Kyushu University for

providing the necessary facilities and equipments. This work has been supported by Iran

Telecommunication Research Center (ITRC).

References

1. Arnold, M., Corporaal, H., Designing domain-specific processors. In Proceedings of the Design,

Automation and Test in Europe Conf, 2001, pp. 61-66.

2. Atasu, K., Pozzi, L., Lenne, P., Automatic application-specific instruction-set extensions under

microarchitectural constraints, 40th Design Automation Conference, 2003.

3. Bobda, C., Synthesis of dataflow graphs for reconfigurable systems using temporal partitioning and

temporal placement, Ph.D thesis, Faculty of Computer Science, Electrical Engineering and

Mathematics, University of Paderborn, 2003.

4. Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K., Application-Specific Processing on a

General-Purpose Core via Transparent Instruction Set Customization, In Proceedings of the 37th

annual IEEE/ACM International Symposium on Microarchitecture, 2004.

5. Halfhill, T.R., MIPS embraces configurable technology, Microprocessor Report, 3 March 2003.

6. Karthikeya, M., Gajjala, P., Dinesh, B., Temporal partitioning and scheduling data flow graphs for

reconfigurable computer, IEEE Transactions on Computers, vol. 48, no. 6, 1999, pp.579–590.

7. Kastner, R. Kaplan, A., Ogrenci Memik, S., Bozorgzadeh, E., Instruction generation for hybrid

reconfigurable systems, ACM TODAES, vol. 7, no. 4, 2002, pp. 605-627.

8. Lee, C., Potkonjak, M., Mangione-Smith, W.H., MediaBench: A tool for evaluating and synthesizing

multimedia and communications systems, In Proceedings of the 30-th Annual Intl. Symp. On

Microarchitecture, 1997, pp 330-335.

9. Mehdipour, F., Saheb Zamani, M., Sedighi, M., An integrated temporal partitioning and physical

design framework for static compilation of reconfigurable computing system, International Journal of

Microprocessors and Microsystems, Elsevier, vol. 30, no. 1, Feb 2006, pp. 52-62.

10. Micheli, G.D., Synthesis and optimization of digital circuits, McGraw-Hill, 1994.

11. Noori, H., Murakami, K., Inoue, K., General Overview of an Adaptive Dynamic Extensible Processor

Architecture, Workshop on Introspective Architecture (WISA’2006) , 2006.

12. Ouaiss, I., Govindarajan, S., Srinivasan, V., Kaul M., Vemuri R., An integrated partitioning and

synthesis system for dynamically reconfigurable multi-FPGA architectures, In Proceedings of the

Reconfigurable Architecture Workshop, 1998, pp. 31-36.

13. Sherwani N, Algorithms for VLSI physical design automation, Kluwer-Academic Publishers, 1999.

14. Spillane, J., Owen, H., Temporal partitioning for partially reconfigurable field programmable gate

arrays, IPPS/SPDP Workshops, 1998, pp. 37-42.

15. Tanougast, C., Berviller, Y., Brunet, P., Weber, S., Rabah, H., Temporal partitioning methodology

optimizing FPGA resources for dynamically reconfigurable embedded real-time system, International

Journal of Microprocessors and Microsystems, vol. 27, 2003, pp. 115-130.

16. Yu, P., Mitra, T., Characterizing embedded applications for instruction-set extensible processors, In

Proceedings of Design and Automation Conference, 2004, pp. 723- 728.

17. http://www.eecs.umich.edu/mibench.

18. http://www.simplescalar.com.

