
L.T. Yang et al. (Eds.): EUC 2005, LNCS 3824, pp. 1099 – 1106, 2005.
© IFIP International Federation for Information Processing 2005

Optimal Multicast Loop Algorithm for Multimedia
Traffic Distribution

Yong-Jin Lee1 and M. Atiquzzaman2

1 Department of Technology Education,
Korea National University of Education,

San 7 Darakri, Chungbuk, 363-791, Korea
lyj@knue.ac.kr

 2 School of Computer Science, University of Oklahoma,
200 Felgar Street, Norman, OK 73019, USA

atiq@ou.edu

Abstract. We have presented an optimal algorithm for minimal cost loop prob-
lem (MCLP), which consists of finding a set of minimum cost loops rooted at a
source node. In the MCLP, the objective function is to minimize the total link
cost. The proposed algorithm is composed of two phases: in the first phase, it
generates feasible paths to satisfy the traffic capacity constraint, and finds the
exact solution through matching in the second phase. In addition, we have de-
rived several properties of the proposed algorithm. Performance evaluation
shows that the proposed algorithm has good efficiency for small network with
light traffic. Our proposed algorithm can be applied to find multicast loops for
real-time multimedia traffic distribution.

1 Introduction

Current computer networks consist of backbone networks that serve as the major
highways to transfer large volumes of communication traffic, and local networks that
feed traffic between the backbone node and end-user nodes connected to the back-
bone. Several researchers have proposed algorithms for discovering the topology of
the Internet backbone [1-2]. A local area network (LAN) connected to a backbone
node, can be regarded as an end-user node. A local network, therefore, consists of a
backbone node and several end-user nodes hanging off a LAN.

In a local network, the total traffic volume of end-user nodes that can be served by
a port of the backbone node is limited. So, the local network consists of a backbone
node (source node) and several trees or loops that cover all end-user nodes to satisfy
the constraints on traffic volume. Topology discovery is required to find all the trees
or loops in a local network that satisfies the constraints.

Issues related to topology discovery for local network has been classified into two
problems in the literature: capacitated minimum spanning tree problem (CMSTP)
[3,4] and minimum cost loop problem (MCLP) [5,6]. The CMSTP finds the best way
in the least cost aspect to link end-user nodes to a source node. It determines a set of
minimal spanning trees with a capacity constraint. In the MCLP, end-user nodes are
linked together by a loop that is connected to a port in the backbone node. The links

1100 Y.-J. Lee and M. Atiquzzaman

connecting end-user nodes have a finite capacity and can handle a restricted amount
of traffic, thus limit the number of end-user nodes that can be served by a single loop.
The objective of the design is to form a collection of loops that serve all user nodes
with a minimal connection cost.

The objective of this paper is to formulate the MCLP and to develop an exact algo-
rithm to solve the problem. We propose a dynamic programming-based exact algo-
rithm. Our proposed algorithm solves the MCLP in two phases: In the first phase, the
algorithm uses dynamic programming to generate feasible solutions to satisfy the
traffic capacity constraint. In the second phase, it finds exact solution by applying the
matching procedure to the set of the capacitated loops found in the first phase.

Our performance evaluation results demonstrate that the time complexity of our
proposed exact algorithm is large when the number of nodes in the local network is
large. Since the MCLP is NP-hard [7], it is difficult to find the exact solution for large
network in short computing time. We, therefore, suggest using our exact algorithm for
small local networks (less than thirty nodes), and heuristic methods can be used for
large local networks.

The main contributions of this paper are: (i) formulation of the MCLP, (ii) propos-
ing and evaluating its exact solution, and (iii) determining the threshold in choosing
between heuristic methods and the exact algorithm depending on the size of the local
network.

The suggested algorithm can be applied to the design of synchronous optical net-
work (SONET) and the finding of multicast loops rooted at a source node in order to
transfer the message to end-user nodes in the local network.

The rest of the paper is organized as follows. Section 2 presents the mathematical
formulation of the MCLP. Section 3 describes our proposed dynamic programming
based algorithm for the MCLP. Section 4 evaluates the computational complexity and
execution time of our proposed algorithm. Finally, concluding remarks are given in
section 5.

2 Formulation of the MCLP

The MCLP (see Fig. 1) is concerned with finding a set of minimal cost loops that are
used form the multicast paths for real time traffic, such as multimedia. The end-user

Fig. 1. MCLP

 Optimal Multicast Loop Algorithm for Multimedia Traffic Distribution 1101

nodes are linked together by a loop connected to a port in the backbone node, where
the links connecting the end-user nodes have finite capacity, i.e. they can handle lim-
ited amount of traffic (Q). This translates to restricting the number of end-user nodes
served by a single loop. The solution of the MCLP results in a collection of loops that
serve all end-user nodes with a minimal connection cost.

We now consider the modeling of the MCLP. Assume that there is graph, G=(V,
E), where V={0,1,2,..,n}, traffic requirement at node is Wi (i∈V-{0}) and link cost
between node i and node j is dij (j∈V-{0} and (i,j) ∈E). Q represents maximum traffic
served by single loop. Index 0 represents the source node and can be viewed as an
object such as the backbone router with several ports. End-user nodes originate traf-
fics and can be regarded as hosts or switching hubs. The problem formulation for the
MCLP is described by Eq. (1). The objective of the MCLP is to find a collection of
least-cost loops rooted at node 0. Lp is the pth loop (p=1,2,..,lcnt: where lcnt is the
number of loops in the solution) whose two of nodes are connected the source node.
A particular case occurs when each Wi is equal to one. In that case, the constraint
means that no more than Q nodes can belong to any loop of the solution. With this
constraint, we can confine the fault to the loop only in which it occurred. xij represents
link between node i and node j (i,j: i=1,2..,n; j=1,2…,n). If link (i,j) is included in any
loop (Lp) of the solution, then xij is set to 1. m represents the number of links in the
solution.

10

..

,

,

orx

mx

QxW

TS

xdMinimize

ij

ji
ij

pLi
iji

ji
ijij

=

=∑

∑ ≤

∑

∈

 (1)

3 Solution of the MCLP

Having formulated the MCLP in the previous section, we now develop solution for
the problem. Our solution consists of two phases: feasible path generation phase and
matching phase as described below.

3.1 Feasible Path Generation Phase

To generate the feasible paths for the MCLP using dynamic programming, we define
stage variable and state variables: Stage variable, k (k=1,2…), is the number of nodes
to form a path rooted at the source node to any arbitrary node j. State variables, j and
Sare the node index to be connected and the set of node indexes included in the path
in order to connect node j, respectively. Then, using the principle of optimality, the
recurrence relation can be obtained as shown in Eq. (2).

1102 Y.-J. Lee and M. Atiquzzaman

∞=

⊆⋅⋅⋅⋅=

+−=

∑ ≤+

−≠∈

∈

),(

),2,1(

] }){,([),(

,

1
,

Sjf

else

NSk

dqSqfMinSjf

QWWf

k

j

qjk
jqSq

k

Sq
jqI

 (2)

In Eq. (2), fk(j,S) represents the least cost to connect node j with the paths of which

the number of nodes included in S is k to connect node j. fk(j,S) is set to infinity when
the sum of traffics at end-user nodes exceeds Q.

Since boundary condition represents the cost to connect from the source node to
node j directly without intermediate nodes, it is defined by Eq. (3).

 f0(j,-) = d0j (3)

To obtain a feasible solution, we compute f1(j,S) for all (j,S) satisfying

QWW j
Sq

q ≤+∑
∈

 by using f0. Then, f2(j,S) is computed using f1. By repeating this

procedure, we reach the phase where QWW j
Sq

q >+∑
∈

, for all (j,S).

Since fk(j,S) are infinity for all (j,S) at such a phase, we set L=k. This means that the
loop cannot be extended any further. So, paths obtained at the previous stage k
(0,1,2,..,L-1) are feasible solutions.

3.2 Matching Phase

At stage k of the feasible path generation phase, fk(j,S) represents the cost of the path
composed of the same elements as j ∪S, but the order of elements included in the set
is different.

Among fk(j,S), the minimum cost, f'k(Pm) is computed. That is, the cost for Pm at
stage k, f'k(Pm) is as follows:

 f'0(Pm) = f0(j,-) + dj0, k = 0 (4)

 f'k(Pm)=Min[fk(j,S) + dj0], k = 1,2,..,L-1
 ∀ (j,S) such that Pm –{j ∩S} = φ

The value of f'k(Pm) from Eq. (4) represents the cost of the loop including the con-

nection cost to the source node, which is composed of the same node indexes of dif-
ferent order. Node set of the optimal policy, Rm corresponds to f'k(Pm). Rm is the set of
node indexes included in the loop rooted from the source node and represents the
node sequence of loop by adding the source node to both end-side indexes. Of course,
node 0 is not included in Rm.

Finally, since n nodes have to be included in any loop (Rm) rooted at the source
node without duplicate inclusion in the optimal solution, the optimal solution can be

 Optimal Multicast Loop Algorithm for Multimedia Traffic Distribution 1103

obtained by substituting f(Rm) for f'k(Pm) from Eq. (4). There can be several collec-
tions which have the element, Rm, to satisfy the split condition of set N'. Thus, the
global optimal value, F, is the least value among the cost, f(Rm), corresponding to Rm,
and can be expressed by Eq. (5).

F = Min [∑ f(Rm)], (5)

∀ Rm such that ∪Rm = N' and Ri ∩Rj = φ (i ≠ j)

3.3 Optimal MCLP Algorithm

From the above model, the optimal MCLP algorithm is described as the following.

OPTIMAL MCLP ALGORITHM
Feasible path generation Phase
1. for k = 0 and for all j such that j∉N' do
2. f0(j,-) ← d0j

3. end for
4. while fk(j,S) ≠ ∞, ∀ (j,S) do

5. if ∑ ≤+
∈Sq

jq QWW , then

6. for all k such that k = 1, 2,.., S and S ⊆Nj do
7.] }){,([),(

,
qj1k

jqSq
k dqSqfMinSjf +−← −≠∈

8. end for
9. else fk(j, S) ←∞
10. end if
11. end while
12. L ← k
Matching Phase
13. for k = 0 and for all j such that j∉N' do
14. f'0(Pj) ← f0(j,-)+dj0
15. end for
16. for all k such that k=1,2,..,L-1 do
17. m ← 1
18. for all j such that

Sq
qj

∈
< }Min{ do

19. Pm ← {j}∉S
20. m ← m+1
21. end for
22. end for
23. for all k such that k=1,2,..,L-1 do
24. m ← 1
25. for all (j, S) such that Pm - {j∉S} = ∅ do
26. f'k(Pm) ← Min [fk(j,S) +dj0]
27. m ← m+1
28. end for

1104 Y.-J. Lee and M. Atiquzzaman

29. end for
30. for all m do
31. for all Rm such that ∪Rm = N' and Ri∩Rj = ∅ (i≠j) do
32. find f(Rm)
33. end for
34. end for
35. for all m do
36. F ← Min [f(Rm)]
37. end for
38. find the set of optimal loops(R) corresponding to F.

4 Performance Evaluation

Having formulated the MCLP and its solution in Sections 2 and 3, in this section, we
evaluate the performance of the algorithm in terms of its computational complexity.

4.1 Properties of MCLP algorithm

We present the following Lemmas in order to show the properties of the proposed
algorithm (referred hereafter simply MCLP algorithm).

Lemma 1. Feasible path generation phase ends in the finite stages.

Proof) The finish time of feasible path generation phase depends on the relationship-
between Σn

i=1 Wi and Q. In the worst case (Σn
i=1 Wi ≈ Q), we might generate maxi-

mumfeasible paths. In such a case, k is close to n. The maximum of k (= L) can be
nearly
same as n-1, but more than or equal to n. If L is equal to n, we will find single loop.
This is against our assumption (Σn

i=1 Wi > Q). Thus, we can finish the feasible path
generation phase in at most n-1 stages.

Lemma 2. The number of additions and comparisons in the feasible path generation
phase are n(n-1)2L and n(n-2)2L, respectively.

Proof) In each stage (k=1,2..,L), we have to add n-1Ck for n nodes, and compare n-1Ck
for the previous stage and n nodes. Therefore, the number of additions

=
k

k
n Ckn∑ ⋅

=
−

L

1
1 ∑

−−−
−−=

=

L

1)!1()!1(

)!2(
)1(

k knk

n
nn =)1(12

L

1
−−

=
∑− kn
k

Cnn = n(n-1)2L and the

number of comparisons
kn

k
Ckn 1

L

1
)1(−

=
⋅∑ −= = the number of additions –

k
k

n Cn∑
=

−

L

1
1 k

k
nkn

k
CnCknn ∑−⋅∑−=

=
−−−

=

L

1
112

L

1
)1(≈ n(n-1)2L – n(2L-1) = n(n-2)2L.

Lemma 3. The upper bound for the number of additions and comparisons in the
matching phase are n(n-1)2L and n(n-2)2L, respectively.

Proof) In the matching phase, we need not consider the sequence of nodes unlike in
the feasible path generation phase. The amount of computations is decreased in most

 Optimal Multicast Loop Algorithm for Multimedia Traffic Distribution 1105

cases. However, since there might exist the case that the amount of computation is
same according to the traffic capacity constraint (∑n

i=1 Wi ≤ Q) regardless of the con-
sideration for node sequence, we can state that the number of additions and compari-
sons in the matching phase is same as those in the feasible path generation phase in
the worst case. Thus, upper bound for the number of additions and comparisons in the
matching phase are n(n-1)2L and n(n-2)2L, respectively.

Lemma 4. MCLP algorithm produces the optimal solution.

Proof) In the feasible path generation phase, we enumerate the feasible paths by us-
ingthe optimality principle of dynamic programming. So, there can be no other feasi-
ble paths except our solutions. In the matching phase, we first find partitions of which
unions compose of the node set, N' = {1,2,..,n}. Next, we generate loops composed of
theabove partitions. These loops are found by adding the index of the source node to
indexes of both end nodes included in the partition and are sub-optimal solutions.
Then, we select the least cost solution among sub-optimal solutions. Therefore, it is
natural for the selected solution to be the global optimal solution.

4.2 Numerical Experiments

We consider the amount of computation in the stage variable (k). It is maximal when
the traffic requirement at each node is one (Wi =1, ∀i) and the maximum traffic per
single loop is Q. First, for any stage (k), fk(j,S) must be computed for k×nCn-1 different
(j,S) pairs. Since such computation requires k additions and k-1 comparisons, where k
=1 to L, the number of additions and comparisons in the feasible path generation
phase are n(n-1)2L and n(n-2)2L, respectively by Lemma 2. In addition, the upper
bound for number of additions and comparisons in the feasible path generation phase
are n(n-1)2L and n(n-2)2L, respectively by Lemma 3.

Fig. 1 shows the mean real execution time of MCLP algorithm for three different
cases (heavy traffc- Q=1/2∑n

i=1 Wi, medium traffc- Q=1/3∑n
i=1

 Wi, and light traffic-
Q=1/4∑n

i=1
 Wi). For each case, ten problems were randomly generated and executed on

workstation. MCLP algorithm shows the best efficiency when the sum of the traffics
is much less than Q. That is, when the number of nodes is 10, mean execution times
for light, medium, and heavy traffic cases are 0.3, 0.3, and 0.2 seconds respectively
(since results for 10 nodes are very small, they are not shown in Fig. 1). On the other
hand, when the number of nodes is 30, mean execution times for light, medium, and
heavy traffic cases are 60, 134 and 200 seconds respectively. As the number of nodes
becomes large, memory access time increases sharply. The reason is why k×nCn-1

storage spaces are required in each stage k to store fk(j,S). However, the current main
memory cannot maintain all the results from the previous computation. If we can use
the huge main memory, we will reduce the computation time. In addition, the reason
for the less execution time in the light traffics is that since L value in MCLP algorithm
becomes small in light traffic case, the amount of computations for MCLP algorithm
also becomes small. To summarize, the proposed MCLP algorithm is affected by the
traffic volume and Q, and is effective in the case when the number of nodes is less
than thirty and the traffic volume is light. Since the execution time increases sharply
as the number of nodes is more than thirty, it is desirable to use the heuristic method
for the network with large nodes or heavy traffic.

1106 Y.-J. Lee and M. Atiquzzaman

Mean Execution Time

174

200

134

24

60

25

0

80

160

240

20 30
Number of Nodes (n)

se
c

Heavy traffic Medium traffic Light traffic

Fig. 2. Mean execution time

5 Conclusions

In this paper, we have presented the problem formulation and an optimal algorithm
for the MCLP. The proposed algorithm minimizes the total cost to discover the opti-
mal loops rooted at the source node. It consists of generating the feasible paths using
dynamic programming and finding the exact solution by matching procedure. Several
properties about the performance of our algorithm were derived, and through experi-
ments, it was shown that the proposed algorithm is effective for small local network
of which total traffic volume is relatively smaller than the maximum traffic to be
served by a port of the source node. Our proposed algorithm can be used to discover
the multicast loops for real-time multimedia traffic. Future work consists of develop-
ing a heuristic algorithm applicable to local networks with large number of nodes.

References

1. Breibart, Y., Garofalakis, M., Martin, C., Seshadri, S., and Silberschatz, A.: Topology Dis-
covery in Heterogeneous IP Networks. INFOCOM. (2000) 265-274.

2. Lin, H., Lai, H., and Lai, S.: Automatic Link Layer Topology Discovery of IP Networks.
IEEE ICC’99. (1999) 1034-1038.

3. Lee, Y. and Atiquzzaman, M.: Least Cost Multicast Spanning Tree Algorithm for Local
Computer Network. IEEE ICCNMC’05. (2005) 268-275.

4. Lee, Y. and Atiquzzaman, M.: Least Cost Heuristic for the Delay-Constrained Capacitated
Minimum Spanning Tree Problem. Computer Communications. Vol. 28. (2005) 1371-1379.

5. Gavish, B.: Topological Design of Telecommunication Networks-Local Access De-
sign Methods. Annals of Operations Research, Vol. 33. (1991) 17-71.

6. Lee, Y.: Minimal Cost Heuristic Algorithm for Delay Constrained Loop Network", Interna-
tional Journal of Computer Systems Science &Engineering. Vol. 19, No. 4, CRL Publish-
ing. (2004) 209-219.

7. Lenster, J. and Kan, R.: Complexity of Vehicle Routing and Scheduling Prob-
lems. Networks, Vol. 11. (1981) 221-227.

	Introduction
	Formulation of the MCLP
	Solution of the MCLP
	Feasible Path Generation Phase
	Matching Phase
	Optimal MCLP Algorithm

	Performance Evaluation
	Properties of MCLP algorithm
	Numerical Experiments

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

