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Abstract. We introduce ApproxCount, an algorithm that approximates
the number of satisfying assignments or models of a formula in propo-
sitional logic. Many AI tasks, such as calculating degree of belief and
reasoning in Bayesian networks, are computationally equivalent to model
counting. It has been shown that model counting in even the most restric-
tive logics, such as Horn logic, monotone CNF and 2CNF, is intractable
in the worst-case. Moreover, even approximate model counting remains
a worst-case intractable problem. So far, most practical model counting
algorithms are based on backtrack style algorithms such as the DPLL
procedure. These algorithms typically yield exact counts but are lim-
ited to relatively small formulas. Our ApproxCount algorithm is based
on SampleSat, a new algorithm that samples from the solution space of
a propositional logic formula near-uniformly. We provide experimental
results for formulas from a variety of domains. The algorithm produces
good estimates for formulas much larger than those that can be handled
by existing algorithms.

1 Introduction

In recent years, we have seen tremendous improvements in our abilities to solve
large Satisfiability (SAT) problems. The field benefits from significant progress
both in terms of our theoretical understanding of the SAT problem, and in terms
of practical algorithm design and engineering of solvers. Because the state-of-
the-art SAT solvers can often handle formulas with thousands of variables [19],
problems from many other domains, such as planning [8] and microprocessor
verification [16], have been encoded to SAT instances, and solved effectively by
SAT solvers. This indirect approach is often competitive with, if not faster than,
solving the problems directly with methods developed specifically for the domain
under consideration.

Broadly speaking the “SAT approach” appears to work quite well for NP-
complete problems. However, many tasks in AI belong to higher complexity
classes than NP, and therefore, presumably, cannot be encoded as SAT problems,
without introducing exponentially many variables. A number of these tasks are
computationally equivalent to counting the satisfying assignments of a formula
in propositional logic [11]. For example, consider a knowledge base (KB) written
in propositional logic with no explicit probabilistic information and a statement
s. The degree of belief in s, which is defined as P (s|KB), can be calculated by
M(s∧KB)
M(KB)

, where M(·) is the model (satisfying assignment) count of the input



formula. Moreover, probabilistic reasoning using Bayesian belief networks can
also to be reduced effectively to counting models of Boolean formulas.

It has been shown that many techniques developed for SAT, such as DPLL [4]
and clause learning [9], can be adapted to solve model counting problems. How-
ever the memory usage and run time of such algorithms often increase exponen-
tially with problem size, and such algorithms are therefore limited to relatively
small formulas.

In this paper, we present ApproxCount, an approximate model counting al-
gorithm based on a biased random walk strategy. Random walk strategies have
been shown to be effective on a variety of SAT instances [13]. Recently, a bi-
ased random walk strategy was used in SampleSat [17], a new algorithm that
samples from the solution space of a Boolean formula near-uniformly. Follow-
ing the scheme outlined by Jerrum et al [7], ApproxCount uses SampleSat to
repetitively draw samples from the solution spaces of a Boolean formula and its
sub-formulas.

A key advantage of a sampling approach for counting over approaches based
on complete backtrack search is that the run time can be controlled much better.
After the first several samples (satisfying assignments) are drawn, we can obtain
a reasonably accurate estimate of total run time depending on how accurate we
want our final count to be. In applications where a decision has to be made by
a certain deadline, the algorithm can adapt by drawing fewer samples in each
iteration.

The number of calls ApproxCount makes to SampleSat is determined by the
number of variables in the formula under consideration. An intriguing question
is whether the error in each intermediate result due to SampleSat’s deviation
from uniformly sampling will accumulate to an unmanageably large overall er-
ror rate. After all, even a small error in each step can potentially lead to an
exponential deviation from the exact count, which would make our approach of
little practical use. Somewhat surprisingly, our experiments show that the errors
from setting different variables appear to offset each other, resulting in an overall
final estimate that is within a factor two of the exact count in many domains,
including random 3CNF formulas, several structured problems, and constructed
combinatorial instances.

For random 3CNF formulas, the complexity of model counting is determined
by the clause/variable (C/V) ratio. Low C/V ratios are particularly difficult for
counting procedures because of the very large number of satisfying assignments.
In recent years, in work on DPLL based model counters, the C/V ratio that
requires the largest run time has shifted from 1.2 to 2.0, with the introduction
of new techniques and algorithms. In our work, we show that the error rate of
ApproxCount on random 3CNF formulas stays relatively constant for different
C/V ratios, when given the same total run time. This suggests that our approach
is more robust compared to the DPLL style techniques.

The difficulty in evaluating our ApproxCount algorithm is that exact model
counting programs often do not work on larger instances. We therefore introduce
a class of structured formulas, where we know the exact number of satisfying
assignments (obtained from basic combinatorics). For DPLL style methods, the
run time explodes exponentially with the problem size. However, we will show



that ApproxCount approximates the model counts will high accuracy, while the
run time scales only polynomially with problem size.

The reminder of this paper is organized as follows. Background with theoret-
ical results and development of existing model counting approaches is discussed
in the next section. In Section 3, we review the SampleSat algorithm. Section
4 provides a detailed description of our new approximate model counting algo-
rithm, and discusses on several implementation issues. Experimental results are
given in Section 5. We then discuss how to extend our algorithm to deal with
real numbers in probabilistic reasoning. In the last section, we summarize the
main results of this paper.

2 Background

Before we start our discussion, we first define some terms that we use throughout
this paper. Without loss of generality, the Boolean formulas we discuss are in
their conjunction normal form (CNF) unless otherwise indicated. A CNF is a
conjunction of clauses. A clause is defined as a disjunction of literals. A literal is
a Boolean variable, which ranges over {True, False}, or its negation. When an
assignment of truth values to the Boolean variables makes a formula evaluate to
True, the formula is said to be satisfied, and the assignment is called a satisfy-
ing assignment, or interchangeably, a model of the formula. M(F ) denotes the
number of unique satisfying assignments of formula F .

2.1 Complexity Results
The problem of counting the satisfying assignments of a propositional logic for-
mula is #P-complete [15], a complexity class that is at least as hard as the
polynomial-time hierarchy [14]. To approximate the model count within δ, we
look for a number M that satisfies

M/(1 + δ) ≤ M(F ) ≤ M (1 + δ).

For any positive δ, approximating the model count of an arbitrary Boolean
formula F is NP-hard. This is straightforward because given an approximate
counting oracle, one can determine the satisfiablity of F by the positivity of M .
M > 0 is equivalent to F being satisfiable.

However, it is somewhat surprising that counting and approximate counting
of some most restrictive classes of propositional logic are intractable in the worst
case. One of such examples is 2MONCNF, a subset of both monotone CNF (all
variables occur positively) and 2CNF. Determining satisfiability of 2MONCNF
is trivial because each formula in 2MONCNF is satisfied by assigning truth value
True to each variable. Counting the models of 2MONCNF is shown to be #P-
complete, and it is NP-hard to approximate the count to a factor of 2n1−ε

for
any positive constant ε [11]. Note approximating to a factor of 2n is equivalent
to satisfiability problem.

Because of these strong negative results, for any interesting classes of proposi-
tional logic, guaranteed approximate counting algorithms that run in worst-case
polynomial time are not expected to exist. There must be tradeoffs between
the approximate factor guarantee and the worst-case run time guarantee. In
practice, most existing algorithms sacrifice the run time guarantee to achieve a
guaranteed approximation, which is often the exact count.



2.2 Counting by DPLL Searching

DPLL algorithm [4] was designed to find a satisfying assignment of a Boolean
formula. The basic strategy of DPLL is that instead of looking for a satisfying
assignment of the original formula F directly, one chooses any variable α that
appears in F , and a satisfying assignment of either formula (F ∧ α) or formula
(F ∧¬α) is also a satisfying assignment of F . The two sub-formulas can be sim-
plified by unit-propagation, and solved recursively by calling DPLL algorithm.

The algorithm can be extended to a model counting algorithm in the following
way [2]. Because the satisfying assignments of formula (F ∧ α) and formula
(F ∧ ¬α) are disjoint,

M(F ) = M(F ∧ α) + M(F ∧ ¬α).

It is observed that when the two sub-formulas are simplified by unit-propagation,
variables that appear in F may not appear in the simplified version of (F ∧ α)
or (F ∧ ¬α). To expedite the search, if there are n variables in formula F , n+

variables in Unitprop(F ∧ α), and n− variables in Unitprop(F ∧ ¬α), then

M(F ) = M(Unitprop(F ∧ α)) · 2n−n+
+ M(Unitprop(F ∧ ¬α)) · 2n−n−

.

In 2000, the idea of connected component analysis was introduced by Bayardo
and Pehoushek [1] as an enhancement to Relsat’s model counting ability. They
draw connectivity graph for the formula. Nodes in the graph are variables in the
formula. Two nodes are connected if the corresponding variables appear in the
same clause. If a formula F can be decomposed to sub-formulas F1, F2, . . . , Fi,
which are induced by the connected components of its connectivity graph, then

M(F ) =
i∏

j=1

M(Fj).

Therefore before picking a variable and branching on it as described previously,
a formula is divided into components, and the models of each component is
counted by a DPLL model counter recursively.

The most recent additions to DPLL model counting are the ideas of com-
ponent caching and clause learning [12]. Component caching records the previ-
ous counted sub-problems, and therefore avoids counting the same components
repetitively. Clause learning is much like that of ZChaff [9], where reasons of pre-
viously discovered conflicts are captured in new clauses, and the learned clauses
are added to the original formula to avoid running into the same conflicts again.
The introduction of these two powerful tools accelerate the model counting pro-
cedure by orders of magnitude.

2.3 Counting by Compiling

Another existing approach to model counting is to compile CNF formulas to
logics for which counting operation is tractable. Examples of such logics include
Ordered Binary Decision Diagrams (OBDD) [6], and its superset, Determinis-
tic, Decomposable Negation Normal Form (d-DNNF) [3]. Model counting is a



polynomial operation for both OBDD and d-DNNF, but CNFs cannot always
be compiled to these forms of polynomial size. Although this approach is con-
ceptually different from that of DPLL, the actual computation is often similar.
For example, the search tree constructed by DPLL with component analysis can
be view as a tree-structured d-DNNF, and the component caching idea corre-
sponds to reuse of NNF fragments in non-tree-structured d-DNNF. Huang and
Darwiche [6] show that DPLL algorithm can be used to compile CNFs to OB-
DDs efficiently, and techniques in SAT solvers, such as clause learning and unit
propagation, can be utilized in the compiling process.

2.4 Our Proposal: Counting by Sampling
Since model counting problem is downward self-reducible [7], meaning that it
can be solved using oracles to solve its sub-problems, approximate counting
of solutions can be reduced to almost-uniform sampling of the solution space
in polynomial time. ApproxCount algorithm is based on near-uniform sampling.
One advantage of using sampling-based approximate counter is that the run time
and accuracy are based on the number of samples the algorithm draws in each
iteration. One can get a faster (and less accurate) approximation by reducing
sample size. This is especially important in time-critical decision making. In
searching and compiling based model counters, one cannot halt the execution
and retrieve an approximation since it is very possible that many solutions reside
in the final branches of the search tree, and, in case of connected component
analysis, non-existent of solutions in the last component implies non-existent of
solutions in the whole formula.

The best known methods for sampling from a predefined distribution in com-
binatorial space are Markov Chain Monte Carlo (MCMC) methods. MCMC
methods set the target distribution as the stationary distribution of an ergodic
Markov chain. With infinite time, the constructed Markov chain is guaranteed
to reach its stationary distribution. However, in practice for complex combina-
torial problems such as SAT, the Markov chain almost always takes exponential
time to reach its stationary distribution [17]. The most widely used sampling
algorithms such as Gibbs sampling are often trapped in modes (local minima)
and does not converge in practical time limit.

For this reason, we built ApproxCount on SampleSat algorithm [17]. Sam-
pleSat is capable of sampling from solution space of a propositional logic near-
uniformly and efficiently. We will first briefly review SampleSat algorithm, and
then we will describe our implementation of an approximate counter based on
it.

3 SampleSat

SampleSat algorithm is based on random walk strategies widely used in solving
satisfiability problem [13, 18]. The inherent randomness in random walk style
SAT solvers often leads the algorithms to different models in different runs. This
provides a biased sampling of solution space. To reduce this bias, MCMC moves,
more specifically, Metropolis moves are injected to interleave with random walk
moves. This hybrid approach makes the sampling much more uniform, and is
useful in many domains, including approximate model counting discussed in
this paper.



3.1 Random Walk

Random walk (RW) as a local search heuristic was first proposed by Papadim-
itriou [10]. The algorithm starts from a random truth assignment. If the assign-
ment has not already satisfied the formula, at each step, one unsatisfied clause
is chosen uniformly at random. And then a variable in the clause is chosen by
some heuristic ChooseVar. The value of the variable is flipped. The algorithm
repeats these steps until a satisfying assignment is reached.

Procedure RW
repeat

c:= an unsatisfied clause chosen at random
x:= a variable in c chosen by heuristic ChooseVar(c)
flip the value of x;

until a satisfying assignment is found.

Fig. 1. Random walk strategies.

It has been shown that when ChooseVar(c) is “picking a variable in c uni-
formly at random”, the RW procedure solves any 2CNF instance in quadratic
time with high probability. For more general instances however, the algorithm
needs to adopt a heuristic with greedy bias, which tries to satisfy more clauses
on each flip. Therefore, the concept of “break value” of a variable is introduced.
The break value of a variable is defined by the number of clauses that are cur-
rently satisfied but become unsatisfied when the truth value of the said variable
is changed. In SampleSat, we follow the heuristic used in WalkSat [13], and define
ChooseVar as in Figure 2.

Heuristic ChooseVar(c)
if there exists a variable x in c with break value = 0

return variable x
else

with probability q
x:= a variable in c chosen at random;
return variable x

with probability (1-q)
x:= a variable in c with smallest break value
return variable x

Fig. 2. Heuristic ChooseVar used in WalkSat and SampleSat.

With multiple runs, we found that WalkSat is able to reach every solution of
instances from many domains, such as random 3CNF, planning, and verification.
However, the sampling is biased, especially for random 3CNF formulas. For
example, we found in our experiments on a 70-variable random 3CNF formula
near the transition point that the most frequently visited solution is reached
17,000 times more often than the least frequently visited solution. From the
theoretically point of view, it is possible to construct a formula, for which a
random walk strategy visits one model exponentially more often than it visits
another model [17]. Intuitively, a model whose neighbors are all models of the



formula cannot be reached by random walk unless it was hit by the initial guess
of the algorithm. To reduce the bias and make the sampling more uniform, we
incorporate Metropolis moves to the algorithm.

3.2 Metropolis
Metropolis moves are injected into random walk moves because of their favor-
able limiting properties. The limiting distribution of Metropolis algorithm is uni-
formly distributed over all models. Metropolis algorithm determines the change
of a variable assignment by the decrease in the number of satisfied clauses, ∆cost,
caused by the change and a predetermined constant T representing temperature.
The detail of our Metropolis move implementation is given in Figure 3.

Metropolis Algorithm
x:= a variable chosen uniformly at random;
if ∆cost(x) ≤ 0

flip the value of x;
else

with probability e−∆cost/T

flip the value of x.

Fig. 3. Metropolis moves.

SampleSat combines random walk moves with Metropolis moves. At each
step, the algorithm makes a random walk move with probability p, and it makes
a Metropolis move with probability (1 − p). Experiments show p = 50% yields
good sampling results in many domains.
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Fig. 4. Sampling of a hard 70-variable random 3SAT instance using SampleSat. Source:
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Figure 4 shows the sampling result of this hybrid algorithm on the 70-variable
random formula mentioned in Section 3.1. The instance has 2531 solutions. Each



dot in the figure presents one solution. The y-axis represents the solution fre-
quency (#hits/#runs) of the solutions. We observe that the models are sam-
pling quite uniformly. More specifically, the ratio between the highest solution
frequency and the lowest solution frequency is reduced to a factor of around 10,
compared to a factor of 17,000 when using the random walk strategy alone.

4 ApproxCount algorithm

Since SampleSat produces efficient near-uniform sampling of the solution space,
ApproxCount extends it to an approximate model counter based on the work
of Jerrum et al [7]. The idea is to count the model of formula F , we first draw
K samples from the solution space of F . (Note that a sample is a satisfying
truth assignment.) The value of K is determined by the accuracy we want for
our algorithm. If we consider a variable x1 in F , and among the K samples,
we denote the number of samples in which x1 is assigned truth value True as
#(x1 = True), and the number of samples in which x1 is assigned truth value
False as #(x1 = False). Assume the K samples are drawn from the uniform
distribution over the models, and K is sufficiently large, then

M(F ∧ x1)
M(F )

≈ #(x1 = True)
K

, and
M(F ∧ ¬x1)

M(F )
≈ #(x1 = False)

K
.

To ensure the stability of the algorithm, in each step we always pick truth value
t such that #(x1 = t) ≥ #(x1 = ¬t). Without loss of generality, we assume t is
True. The approximation above is equivalent to

M(F ) ≈ K

#(x1 = True)
·M(F ∧ x1).

Mx1 = M(F )
M(F∧x1) , called multiplier of variable x1, can be approximated by

K

#(x1=True)
, and formula (F ∧ x1) is simplified with unit propagation and the

simplified sub-formula Fx1=True can be counted by the above procedure recur-
sively. The overall calculation is

M(F ) =
M(F )

M(Fx1=t1 )
· M(Fx1=t1)
M(Fx1=t1,x2=t2)

· · · · ·
M(Fx1=t1,x2=t2,...,xn−1=tn−1 )

1
= Mx1 · Mx2 · · · · ·Mxn ,

where t1, t2, · · · , tn−1 are chosen such that the multipliers are always no greater
than 2.

The outline of the algorithm is given in Figure 5. We have experimented with
4 heuristics for PickVar in the algorithm:

– pickbiased: always pick the variable that maximizes |#(x = True) − #(x =
False)|. The variables first selected by this heuristic are likely backbone vari-
ables, and setting them to their right values may help simplify the whole
formula.



ApproxCount Algorithm
repeat

Draw K samples from the solution space of F ,
x := choose a variable in F by PickVar(F )
Among these K samples,
if #(x = True) > #(x = False)

F := Unitprop(F , x = True)
multiplier Mx := K/#(x = True)

else
F := Unitprop(F , x = False)
multiplier Mx := K/#(x = False)

until F = empty
output product of all multipliers.

Fig. 5. Approximate Counts.

– pickunbiased: always pick the variable that minimizes |#(x = True)−#(x =
False)|. The variables first selected by this heuristic are likely don’t-care
variables, and setting them early may help the accuracy of counting.

– pickrandom: pick a variable uniformly at random.
– pickbyorder: first choose variable 1, and then variable 2, etc. In many struc-

tured problems, the variable order in the input formula often carries some
domain information. For example, in graph coloring problems, the first vari-
able may represent the first node is colored with the first color, etc. Following
this order may help model counting. This heuristic is also designed for users
who want to specify the order in which the variables should be set. To do
so, users just need to rename the variables in input formula according their
desired order of assignment.

We did experiments to compare the effectiveness of the first three heuristics.
(The last one is fully user-definable and encoding dependent, and will require
separate study.) Table 1 shows that pickrandom clearly dominates the other 2
heuristics. In all experiments that we will show in the next section, we used
heuristic pickrandom.

Table 1. We rank heuristics pickbiased, pickunbiased, and pickrandom according to
their accuracy in a suite of 100 formulas. The suite includes 50 random formulas and
50 structured formulas.

position pickrandom pickunbiased pickbiased
1st place 78 18 4
2nd place 10 59 31
3rd place 12 23 65

The run time of ApproxCount algorithm is upper-bounded by the product of
the number of variables n, the number of solutions drawn in each iteration K,
and the time needed to draw a solution c. Interesting and hard solution count-
ing problems are usually under-constrained and have many solutions1. For these

1 We will discuss more about this in Section 5.1.



problems, c does not increase drastically with the problem size, and Approx-
Count has a polynomial run time with regard to the problem size. In the left
pane of Figure 7, we show the run time of ApproxCount for a class of synthetic
formulas.

5 Experimental Results

We tested our algorithm on formulas from a variety of domains. It is well-known
in satisfiability testing that algorithms’ performance depends heavily on the
problem structures. This is also true for model counting. Algorithm that per-
forms well in one domain may not work well in other domains.

5.1 Random Formulas
There has been much interest in counting the satisfying assignments of random
3CNF formulas. Random formulas are generated for different clause/variable
(C/V) values. Unlike in satisfiability testing, where different algorithms all ex-
perience the peak of difficult at phase transition point around C/V = 4.26, the
peak of difficulty for 3CNF model counting apparently shifts with the develop-
ment of algorithms. Birnbaum and Lozinskii [2] report the peak of difficulty at
C/V = 1.2 with their DPLL based CDP algorithm. Bayardo and Pehoushek [1]
incorporate connected component analysis, and report the peak of difficulty at
C/V = 1.5 with their DDP algorithm. Sang et al [12] add clauses learning and
component caching to component analysis, and find the peak at the ratio of 1.8.
Darwiche [3] compiles random 3CNF formulas to d-DNNFs, and also finds the
peak at C/V = 1.8. Huang and Darwiche [6] use DPLL to compile these formu-
las to OBDDs, and find the peak at C/V = 2.0. The peak of difficulty is away
from the peak of satisfiability test at 4.26 for these algorithms because instead
of stopping at the first model, the algorithms need to visit every branch of the
search tree with models. Formulas with less constraints have many more models,
and make the counting harder.

For ApproxCount algorithm, counting models of formulas with the same
number of variables and different ratios consumes almost the same amount of
time2. Figure 6 shows the quality of approximation for different C/V ratios. The
x-axis is the C/V ratio for random 3CNF formulas, and y-axis is the average
error rate. If the approximate model count is a, and exact model count is t, the
error rate is defined as |a−t|

min(a,t)
. 20 instances were generated at each ratio. From

the figure, we see the error rates are quite low considering that approximation is
NP-hard in the worst-case. We also observe that the error does seem relatively
independent of the C/V ratio.

5.2 Application Domains
We also tested ApproxCount on structured formulas. Most of these formulas are
taken from SATLIB [5]. The counting results are given in Table 2. In most of
these domains, ApproxCount approximates the true model count within a factor
of 2 or better. There are some domains, such as Boolean Vector, that are harder
than others for ApproxCount.
2 Actually higher ratio formulas have more clauses, and make ApproxCount spend

slightly more time than lower ratio formulas, but the difference is very small.
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5.3 Synthetic Domains

So far we have discussed instances that DPLL-based model counters can count
exactly in order to evaluate the accuracy of our approximate model counter.
However, ApproxCount can also provide good estimates for formulas that DPLL-
based counters cannot count in reasonable time and memory limits. To show this,
we need to design a class of formulas that we know the exact model counts by
other means.

For this reason, we encode the following combinatorial problem to Boolean
logic: suppose there are n different items, and you want to choose from the n
items a list (order matters) of m different items (m ≤ n). Let P (n, m) represent
the number of different lists you can construct. The value of P (n, m) is given by
P (n, m) = n!

(n−m)! .
The encoding to propositional logic works as follows. For each position i, and

each item j, we use a Boolean variable xi,j to represent “whether position i will
hold item j”. We have the following three kinds of clauses:

– “each position holds at most one item”: this translates into mn(n − 1)/2
clauses

¬xi,j1 ∨ ¬xi,j2, for any i, j1 > j2;

– “each position holds at least one item”: this translates into m clauses

∨n
j=1xi,j, for any i;

– “different positions hold different items”: this translates into nm(m − 1)/2
clauses

¬xi1,j ∨ ¬xi2,j, for any j, i1 > i2.



Table 2. ApproxCount results in application domains.

All Interval Series
instance #var #clauses #models ApproxCount result

ais6 61 581 24 24
ais8 113 1520 40 40

Circuit Fault Analysis
instance #var #clauses #models ApproxCount result

ssa7552-158 1363 3064 25 × 1030 7 × 1030

ssa7552-159 1363 3032 7 × 1033 3 × 1033

Graph Coloring
instance #var #clauses #models ApproxCount result
flat30-3 90 300 1968 2422
flat30-4 90 300 720 985
flat30-5 90 300 1362 1338

Boolean Vector
instance #var #clauses #models ApproxCount result

2bitcomp 5 125 310 9.8 × 1015 3.6 × 1015

2bitcomp 6 252 766 21 × 1028 3.8 × 1028

Logistics
instance #var #clauses #models ApproxCount result

prob004-log-a 1790 18026 2.6 × 1016 1.4 × 1016

Bounded Model Checking
instance #var #clauses #models ApproxCount result

dp02s02.shuffled 319 683 1.5 × 1025 1.2 × 1025

Therefore, each instance of the problem is encoded to a Boolean formula with mn
variables and (mn(m+n−2)/2+m) clauses. These formulas seem hard for DPLL-
based counters. As shown in the left pane of Figure 7, with the increase of length
of the list, the run time of both Relsat [1] and Cachet [12] grows exponentially.
The run time of ApproxCount is polynomially related to the problem size. In
the right pane, we see that the estimates produced by ApproxCount are very
close to the theoretical results.

Table 3. ApproxCount results on P (n,m). The last column gives the average error in
each step that actually contributes to the final error.

n m #var #clauses #models ApproxCount result error per step
20 10 200 2810 6.7 × 1011 7.2 × 1011 0.05%

20 15 300 4965 2.0 × 1016 1.6 × 1016 0.09%
20 20 400 7620 2.4 × 1018 2.8 × 1018 0.04%

25 10 250 4135 1.2 × 1013 1.1 × 1013 0.04%

25 15 375 7140 4.3 × 1018 4.8 × 1018 0.03%
25 20 500 10770 1.3 × 1023 1.4 × 1023 0.02%

30 10 300 5710 10.9 × 1013 9.1 × 1013 0.07%
30 15 450 9690 2.0 × 1020 2.1 × 1020 0.01%

30 20 600 14420 7.3 × 1025 5.9 × 1025 0.04%
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We have experimented with larger formulas in the class than those given in
Figure 7 to see how the algorithm scales. The results are given in Table 3. From
the table, we see the algorithm scales well on this class of formulas. Because
ApproxCount calculates the total count by the product of estimated multipliers
of each variable, the error at each step could potentially accumulate to a large
overall error. To understand why this does not happen, we calculate the error
rate of ApproxCount at each step of a small formula P (20, 4) using Cachet, and
find the average error rate (as defined in Section 5.1) of each estimated multiplier
is 0.71%, with a standard deviation of 0.48%. However, in about 50% of the steps
ApproxCount over-estimates the multipliers, and in the other 50% of the steps
it under-estimates the multipliers. Overall these errors cancel out each other for
the most part, and result in an overall error rate of around 5%. If we distribute
this error to the 80 steps, each step only contributes 0.06% to the final error, and
other part is canceled by the opposite errors at other steps. For larger formulas,
however, we can no longer calculate error rate at each step. In the last column
in Table 3, we calculate the average error rate at each step that contributes to
the final error. This error rate is consistently low across all sizes of formulas in
the table.

6 Dealing with Real Numbers in Probabilistic Reasoning

In many probabilistic reasoning models, such as in Bayesian networks, proba-
bilities are represented by real numbers, therefore the reasoning tasks can often
be converted naturally to weighted model counting of Boolean formulas [12]3. In
weighted model counting, each variable a is assigned a weight wa ∈ [0, 1], and its
negation ¬a is assigned weight 1−wa. w(a = t) is defined as wa when t is True,
and 1−wa when t is False. The weight of a model is the product of the weights

3 Discussion about the conversion is available at http://www.cs.washington.edu
/homes/kautz/talks/counting-sat04.ppt.



of its literals. The weighted model count of a formula F , noted as Mw(F ), is
the sum of the weights of all of its models.

Unweighted counting we discussed in previous sections can be considered as
a special case of weighted counting where each variable has a weight 0.5. We can
use pure propositional logic to encode these real number weights. For example,
if a variable a has a weight 0.375 we can encode a as (a1 ∧ a2) ∨ (a3 ∧ a4 ∧ a5),
and use unweighted model counter to count the model. The weighted model
count can be calculated as the model count of the encoded formula divided by
2n, where n is the number of variables. However, this approach introduces many
new variables, and makes the counting inefficient.

ApproxCount algorithm can be easily modified to calculate weighted model
count. Because

Mw(F )

=
( Mw(F )
Mw(Fx1=t1) · w(x1 = t1)

w(x1 = t1)
)

·
( Mw(Fx1=t1 )
Mw(Fx1=t1,x2=t2) · w(x2 = t2)

· w(x2 = t2)
)
·

· · · ·
(Mw(Fx1=t1,x2=t2,...,xn−1=tn−1 )

1 · w(xn = tn)
· w(xn = tn)

)

=
(
Mx1 · w(x1 = t1)

)
·
(
Mx2 ·w(x2 = t2)

)
· · · · ·

(
Mxn ·w(xn = tn)

)
.

At each step, the multiplier is estimated by the sum of weights of all samples
divided by the sum of weights of samples that assign truth value t to the variable
in consideration, where t is chosen such that the multiplier is no greater than 2
to maintain the stability of the estimate.

Weighted ApproxCount Algorithm
product := 1;
repeat

Draw K samples from the solution space of F ,
x := choose a variable in F by PickVar(F )
Among these K samples,
if #w(x = True) > #w(x = False)

F := UnitProp(F , x = True)
multiplier Mx := w(K)/#w(x = True)
product := product * multiplier * w(x = True)

else
F := UnitProp(F , x = False)
multiplier Mx := w(K)/#w(x = False)
product := product * multiplier * w(x = False)

until F = empty
output product.

Fig. 8. Approximate Weighted Model Counts.

Figure 8 gives the modified ApproxCount algorithm. In the algorithm, w(K)
represents the sum of weights of the K samples drawn, and #w(x = True/False)



represents sum of weights of samples that assign x to True/False among the K
samples drawn.

7 Conclusion

We have presented ApproxCount algorithm that approximates the model count
of a formula in propositional logic. We have shown that ApproxCount generates
good estimates for formulas in several domains. The approach extends the range
of formulas whose models can be counted approximately. ApproxCount proceeds
incrementally, setting one variable at a time and computing a multiplier at each
step. Most interestingly, our work suggests that the individual errors in the
multipliers have a tendency to cancel out, thereby making the approach a very
promising one. We also proposed modifications of the algorithm to deal with real
numbers in probabilistic reasoning models.
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