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Abstract. Given a Free BDD for the characteristic function of an input-output
relation T'(x, y), we show how to construct a combinational logic circuit satis-
fying that relation. Such relations occur as environmental constraints for module
specifications, as parts of a proof strategies, or can be computed from existing
circuits, e.g., by formal analysis of combinational cycles. The resulting circuit C'
can be used for further analysis, e.g. symbolic simulation, or to reformat a circuit
as a logic optimization tactic.

The constructed circuit includes supplementary parametric inputs to allow all legal
outputs to be generated in the case that 7" is non-deterministic. The structure of
the circuit is isomorphic to that of the BDD for 7", and hence is as compact as the
BDD. In particular, when 7" represents a relation between bit vector integer values
definable in Presburger arithmetic, the constructed circuit will have a regular bit
slice form.

1 Introduction

A general Boolean relation T'(x, y) admits multiple interpretations and representations
arising in various contexts. We consider the case when the a variables are considered
to be inputs presented to some system component, and y are output variables that the
system component generates, subject to the constraint that the given @ and the generated
vy must satisfy the T relation. The problem we address is to construct a combinational
circuit satisfying the input-output relation represented by a Free Binary Decision Dia-
gram (FBDD). Since an FBDD is a generalization of the more common Ordered BDD
(OBDD), such a construction will also work for OBDDs.

The primary context we consider is that of a verification constraint or precondition.
In this case, the input variables x encode the state of some module under verification,
and the output variables y provide the input stimulus to that module. The set of stimuli
to be presented to the module, in general or for a particular verification task, may depend
on the current state of the module. For example, Yuan et al. [19] describe a verification
methodology where a module’s environment is specified as a constraint which can depend
on the state of the module. Jain and Gopalakrishnan’s methodology [12]] also includes
“action” constraints which depend on the system state. These constraints are used as a
verification tactic rather than a specification of the module’s environment. Aagaard et
al. [[L] also use tactical constraints, but their constraints do not depend on the state of the
module and thus are a special case of the more general one we consider.

Input-output relations may arise in other contexts. For example, such a relation may
be derived from a combinational logic circuit, summarizing the behavior of the circuit.
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In such a case the input-output relation will be complete (for each = at least one y
exists that satisfies 7") and deterministic (for each x at most one y exists that satisfies
T). One can also analyze the context of a subcircuit to construct a nondeterministic
input-output relation for the allowable behaviors of the subcircuit which will preserve
the overall behavior of the containing complete circuit [[18]]. Another use of input-output
relations is in the analysis of cyclic circuits built of combinational gates. Such circuits
may reliably settle their output values to a deterministic function of their inputs despite
their cyclic topology. The constructivity analyses of Shiple [[1'7] and Namjoshi et al. [15]]
generate Boolean relations (output bit by output bit in Shiple’s analysis) that represent
the combinational function of cyclic circuits, along with checking whether those cyclic
circuits are indeed not state holding.

Input-output relations are also used as a means to express the intended function of
a machine being designed in high level languages such as SMV [14]. One advantage of
using relations for design is the natural representation of non-determinism.

A Boolean relation T'(x, y) may be represented in various ways. A OBDD [8] can
be used to represent the characteristic function of the relation. A generalization of the
OBDD representation is the FBDD [9], where variables may occur in different orders
on different paths from root to terminal. Both FBDDs and OBDDs are constrained so
that variables occur at most once on any path. The added flexibility of FBDDs permits
a much more compact representation for some relations.

Another possible representation is as a multiple output combinational logic circuit
with inputs x and outputs y. If the relation T is complete and deterministic then the
required values of the outputs are well defined, and can be expressed as the positive
cofactors of the bitwise characteristic functions:

(Elj;ﬁiyj'T(mv y)) |yz

In the general case, a given value of  might be related to multiple y values or to
none. One can supplement a circuit with two additional features to allow it to accurately
represent a general input-output relation 7'(x, y). To handle incompleteness, one can add
an extra output v(x) = Jy.T'(x, y) to the circuit, indicating whether any y exists that
is related to a given input . To handle non-determinism one can add extra parametric
inputs p to the circuit, so that for every output value y that satisfies T'(x, y) for a given
input x, there is some value of p such that the circuit will generate y when applied to
the inputs (z, p).

A multiple output combinational logic circuit provides a broadly applicable repre-
sention for 7'. As Jain and Gopalakrishnan [12], Aagaard et al. [[1], and Bertacco et
al. [3] point out, symbolic simulation is a powerful technique for exploring the behavior
of a circuit. Symbolic simulation can be directly applied to the combinational circuit
representation of 7. Other state exploration engines such as those based on SAT [4]
or ATPG [5] generally accept combinational logic circuits as a problem representation.
Logic emulation hardware is another state exploration mechanism for which a combi-
national logic circuit is an ideal problem representation.

When T represents a constraint on the inputs to some module under verification,
the outputs of the circuit we construct for 7" would be connnected to the inputs of the
module, and the composite circuit submitted to state exploration. While the circuit we
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construct does not reduce the number of input variables compared to the unconstrained
circuit, the constraints on the inputs can prevent false error reports that could have
occurred if improper input stimuli were allowed to propagate into the module [19].
The constraints may also improve the efficiency of state exploration techniques such as
symbolic simulation by reducing BDD sizes [1].

A combinational logic circuit also provides a structure for implementation in digital
hardware. In this case, the relation to be implemented should be complete, so the v
output should be constant 1 and can be ignored. An implementation will also generally
be deterministic. If the input-output relation to be implemented is non-deterministic, the
supplementary inputs p in the non-deterministic circuit representation can be connected
to arbitrary constants or variable signals to form a deterministic circuit.

Our contribution is an elegant translation procedure that constructs a combinational
logic circuit, with inputs « and p and outputs y and v, from a general input-output
relation T'(x, y) represented as the Free BDD of its characteristic function. The size of
the circuit is proportional to the number of nodes in the Free BDD. When the input-
output relation is non-deterministic, the supplementary parametric inputs p are used to
index all the output y values related to a given input .

In the remainder of this paper, we will first discuss the details of the construction
procedure. We will then demonstrate that the circuit constructed does effectively repre-
sent the input-output relation. Next we address the compactness of the circuit. Finally
we review related work and conclude.

2 Circuit Construction Procedure

Given an FBDD for an input-outputrelation T'(x, y ), we construct a circuit implementing
T that has the same top level topology as the FBDD. First we describe the high level
structure and signal flow of the circuit. We will then discuss the internal details of each
of the modules that compose the circuit.

2.1 High Level Signal Flow

For every node in the BDD for 7" there is an instantiation of a basic module. The basic
modules come in two types, corresponding to the two classes of variables that occur in
the BDD. There is an input module that is used in place of BDD nodes labeled by input
variables, and an output module used in place of nodes labeled by output variables. The
connections between modules are created to match the edges between the corresponding
BDD nodes.

We describe the construction process in terms of an example. Suppose we are given
the BDD shown in Figure[Il. The circuit shown in Figure [ provides a combinational
logic representation for that relation. The inputs to the circuit are at the bottom of the
figure, with two main input variables x_1 and x_2, and two supplementary parametric
inputs p_1 and p_2. There are many possible ways to parameterize or encode the y in
terms of a set of parameters p. In our encoding we use one parameter input bit for each
output bit. The outputs are at the top of the figure, with the two main outputs y_1 and
y-2 and the supplementary output v.



116 J.H. Kukula and T.R. Shiple

Fig. 1. Binary Decision Diagram Representing Input-Output Relation
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Fig. 2. Circuit Implementing Relation. Disconnected inputs are to be driven by constant 0.
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Just as there are seven nodes in the BDD, there are seven major modules in the
circuit. In this top level diagram, each connection point on the modules is marked with
an arrow to indicate the direction of signal flow. Disconnected inputs are driven by logic
value 0. Each edge in the BDD corresponds to two wires in the circuit, one that flows
from terminal to root and one that flows from root to terminal.

The overall logic flow in the circuit can be broken into three phases. The first phase
flows from the terminal nodes to the root node, the second from the root node back to the
terminal nodes, and the third phase across all the nodes labelled by the same variable.

In the first phase, constant 0 and 1 values corresponding to the terminal nodes start to
flow toward the root, combining with the circuit inputs & along the way. This terminal-to-
root flow results in the v signal which is the auxiliary circuit output, indicating whether
any valid circuit outputs are possible for the particular values being presented at the inputs
x. In this first phase, each node will receive signals from the modules corresponding to
the destination nodes of its two outgoing edges, indicating whether those two nodes have
any path to the 1 terminal consistent with the presented values of the primary circuit
inputs.

In the second phase, signals propagate from the root to the terminals to activate a
single path from root to terminal. This path is steered by the primary circuit inputs and
also by the auxiliary inputs. Each node receives a signal that indicates whether any of its
incoming edges are active. If an incoming edge is active, then the current node is active
and must choose which outgoing edge to activate. If the node is labeled by an input
variable, then the node is constrained to choose as directed by the value of that variable.
If the node is labeled by an output variable, then the node will choose as directed by
the corresponding auxiliary input variable if possible. During the first phase of signal
propagation the node received signals from the two destination nodes which indicated
which of them had possible paths to the 1 terminal. The node can then use these signal
values to be sure to choose a valid value for the primary circuit output signal, one that
can form part of an unbroken path from the root of the BDD to the 1 terminal.

In the third phase, the value of the circuit outputs y are computed, based on the
activated path. If the activated path includes a node labelled by a particular output bit y;,
then the edge of that node followed by the path will fix the value of the output bit. If the
activated path does not include y;, then the value of the corresponding parametric input
p; is used. The modules substituted for the nodes labelled by a single output variable y;
are connected together in a serial chain. There are two logic signals propagated along
this chain. The order of the nodes in the chain is arbitrary. This chain gathers information
to compute the value of y;. For each output variable we also include a single multiplexor
to handle the case where the activated path does not include a node labelled by that
variable. So in this circuit there are two multiplexors, shown near the top of Figure 2
corresponding to the two output variables y_1 and y_2. If the BDD for an input-output
relation doesn’t include any nodes at all for a particular output variable, then the value of
that output variable is not constrained by the inputs, and can simply be copied directly
from the corresponding supplementary parameter variable. In this case no multiplexor
is needed.

Another implementation detail arises in handling multiple edges leading to the same
destination node. In the circuit we build, this is translated, in part, to a collection of
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signals whose disjunction drives the module corresponding to the destination node. We
implement this here with a chain of OR gates, one in each of the modules corresponding
to the sources of the edges which all have the same destination node.

2.2 Input Module
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Fig. 3. Module for Input Node

Figure[3 shows the internal details of the module to be substituted for each BDD node
labelled with a circuit primary input x;. The upper part of the circuit is a multiplexor
whose data inputs are the signals from the two outgoing edge destination modules. The
multiplexor control is the signal z;. If there is a compatible path to the 1 terminal along
the edge labeled by the present value of z;, then there is a compatible path from this
node to the 1 terminal.

The lower part of the circuit steers the active path in the second phase. If this node
is marked as active by one of its incoming edges, then it activates one of its destination
nodes as chosen by the value of x;. The OR gates at the outputs work with the other nodes
that have edges to the same destination, so that if any of these source nodes activate their
edges to that destination, then the activation will reach that node.

2.3 Output Module

Figure Blshows the module to substitute for a BDD node labelled by a primary output
variable y;. Again the upper part is for the first phase of propagation and the lower part
for the second phase. In the first phase the circuit computes the paths through the BDD
allowed by the current values of the inputs x before the output values are picked. There
is a path to the 1 terminal through this output node compatible with the « inputs if there
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Fig. 4. Module for Output Node

is a path from either of its destination nodes. So a simple OR gate is enough for the first
phase.

In the second phase, if an incoming edge to the module is activated then it must
choose an outgoing edge to activate. The val_in signal to the module is driven in the top
level circuit by the parametric input p;. If both outgoing edges indicate the existence of
paths to the 1 terminal, then the edge suggested by p; will be activated. If only one edge
has a path to the 1 terminal, then that edge will be activated and the p; value is ignored.

The value for y; will be computed in the third phase of computation in the circuit.
The OR gate at the top right of the diagram works together with all the other nodes
labeled by y;. If any of these nodes has been activated and has chosen the 1 value, then
the output should be driven to 1. Otherwise the 0 value should be chosen.

The OR gate at the top left accumulates a value for y; indicating whether any of
the BDD nodes labelled by y; were activated. This value is then fed to the multiplexor
which chooses the final value for y;. If a node was activated, then the value determined
by that node and passed along through the value chain should be chosen. If no node was
chosen, this indicates that an edge was activated that skipped over the y;. In this case its
value is unconstrained by the present values of the x inputs, and the value of p; should
be chosen.

3 Circuit Correctness

Let T (x, p, y, v) denote the input-output relation of the circuit constructed from the
Boolean relation T'(x, y). In this section we prove that T correctly implements 7". We
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start with two lemmas, whose proofs use induction based on a topological ordering of
the nodes of the FBDD. Each node n in an FBDD represents some Boolean function

fo(z,y).
Lemma 1. For a given x, the “find_out” signal from a module n has the value 1 iff, for
some y, fn(x,y) =1

Proof (sketch): This is clearly true for a node whose edges both lead to terminal nodes.
If the find_in_0 and find_in_1 edges reflect the existence of a path to the 1 terminal, then
each module will in turn determine if a path exists flowing through the corresponding
node. Thus by induction, for all modules find_out reflects the existence of a path. m

Since the v output is given by the find_out signal of the module corresponding to the
root node, this shows the value of v for a given x is Jy.T'(x, y).

Lemma 2. The “choose_in” signals will activate a single path through the BDD from
the root node to the 1 terminal, if any such path exists for the given input x.

Proof (sketch): A topological order of the BDD nodes determines a series of cuts
which partition the nodes into a root set and a terminal set, where any BDD edge that
crosses the cut will be directed from a node in the root set to a node in the terminal set.
We can prove inductively that the number of activated edges crossing any cut is exactly
1if Jy.T'(x, y), and 0 otherwise. The induction starts with the base case of the cut with
all the BDD nodes on the terminal side, where the root edge coming into the root node
is activated just in case Jy.T'(x, y) is true. Now we assume that the i’th cut has a single
activated edge crossing it, and show that the ¢ 4 1’th cut will also be crossed by a single
activated edge. Each node will activate a single outgoing edge if the incoming edge is
activated, or neither outgoing edge if the incoming edge is not activated. Thus each node
n preserves the number of activated edges crossing the cuts just before and after n.

With these basic properties of the circuit established, we can now prove the correc-
tness of T¢.

Theorem 1. The input-output relation T (x, p, y, v) for the circuit built from the rela-
tion T'(x, y) satifies:
T(:l}, y) = Tc(ill, Yy, 1)
TC(mapa Y, 1) = T(.’B, y)
Proof (sketch): Since any path from root to terminal includes at most one node labelled
by any given output variable y;, then the third phase will propagate to the output y; the
value computed corresponding to the outgoing edge from that node (or the corresponding
p; if no such node is included). Thus
TC(IE, DY, 1) = T(wa y)

Since each output module attempts to steer the path to follow the choices suggested
by the parametric input p, the path activated will drive the outputs to p if T'(x, y) holds.
This together with the value of v shows that

T(:E, y) = TC(wa .Y, 1)
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4 Circuit Compactness

Since the circuit constructed by this technique has the same high level topology as
the BDD of the input-output relation, its size is proportional to the BDD. The circuit
generated is not at all locally optimal. There are many constant inputs to modules, such
as the constants corresponding to the BDD terminal nodes and the starting points of the
various node chains. There are also disconnected outputs of modules, principally at the
last edges of the second pass root-to-terminal propagation, since the activation signal
does not have to be propagated to the terminal nodes. These constants and disconnected
outputs provide straightforward opportunities for simple local logic optimization, but
other more sophisticated techniques could also be applied. As long as the input-output
relation’s BDD is reasonably compact, the circuit we construct should provide an efficient
high level structure and a good starting point for such low level optimization, which could
be followed by mapping to a specific technology if the circuit is to be manufactured as
digital hardware.

In order to generate a more efficient circuit, before converting the BDD to a circuit
one could apply exact [[L1] or approximate [L6] variable reordering techniques to attempt
to reduce the size of the BDD. Since the circuit construction procedure we provide here
also applies to the Free BDD representation of an input-output relation, one could further
reduce the size of the circuit by exploiting the freedom to use different variable orderings
on different branches of the diagram [10].

Kukula et al. [13] observe that a relation between radix-encoded integers definable
in Presburger arithmetic will have a compact, regularly-structured OBDD so long as the
variable ordering interleaves the bits in the order of the encoding weights. In this case
the circuit constructed will have a bit slice form, a linear array of repeated instances of
a single module. Such a circuit is not only efficient in terms of gate count but also lends
itself to an efficient physical layout.

5 Related Work

Brown [7] discusses parametric general solutions for Boolean equations. His method of
successive elimination will give the same parametric functions as implemented by the
circuit we construct in the special case of an OBDD. Brown’s methods deal with general
Boolean functions rather than specific circuit implementations or BDD representations,
and in particular he does not address the issue of circuit size.

Our construction technique is most closely related to the stimulus generation al-
gorithm of Yuan et al. [19] and the parametric constraint representation of Aagaard et
al. [1]. Yuan et al. present an algorithm which generates random stimuli satisfying a
constraint, represented as a BDD, which may depend on state variables of the design.
Our circuit has a flow very similar to their algorithm. The main differences between their
work and ours are that our technique constructs a compact circuit rather than generating
a single stimulus instance, and the output value selection of our circuit is controlled by
parametric inputs, rather than weighted random numbers as in Yuan et al. The circuit
constructed by our technique can be used by a wide variety of downstream tools such as
SAT or symbolic simulation.
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Aagaard et al. present an algorithm which generates a vector of OBDDs over a set
of parametric input variables; the combinations of values of these BDDs span the space
of stimulus values which satisfy some constraint. The constraints they deal with do not
involve any dependence on state variables in the design, and hence their technique is
limited to unary relations. In contrast, we work with the more general problem of binary
relations. Another difference is that their algorithm generates a parametric result in the
form of OBDDs. Some relations will not admit a tractable parametric representation
as a vector of OBDDs. Since we map directly from a Free BDD representation of the
input-output relation to a circuit, our technique can be used with a broader range of
relations.

Other related work includes synthesis of multiplexor circuits from BDDs [2]]. In that
work, a multi-rooted BDD defines the vector of output functions to be implemented. Our
technique differs, working instead with the input-output relation and also in working
with incomplete and/or non-deterministic functions. Synthesis from the input-output
relation can result in circuits considerably more compact than those built from the multi-
rooted functional BDD used in multiplexor synthesis. Consider the arithmetic function
max(a,b + ¢), where a, b, and ¢ are n-bit vectors representing integers in the usual
radix-2 encoding. Each output bit of this function can be represented by a BDD with
size bound O(n), by using an interleaved variable ordering. With n output bits to be
represented, the total shared size of the multi-rooted BDD will be quadratic in n unless
there is significant node sharing across the multiple outputs. But there is a conflict
between the variable orders required by the max and addition functions if nodes are
to be shared. With the low-order bits ordered at the top, the max function will give a
compact multi-rooted BDD representation, since the high-order bit nodes at the bottom
of the BDD can be shared by all the low order nodes. However, efficient multi-rooted
representation of addition requires the low order bits at the bottom to be shared by all
the high order nodes. Whichever order is chosen, one function or the other will fail to
share the nodes at the bottom of the BDD. Thus the entire multi-rooted BDD will end
up being quadratic in the bit-width. In contrast to this, the circuit constructed by our
technique will grow only linearly with the bit-width since the input-output relation is
definable in Presburger arithmetic.

6 Conclusion

We have presented a simple and direct mapping from a Free BDD representing an input-
output relation T'(x, y) to a compact combinational circuit. This mapping supports both
incomplete and non-deterministic relations by means of a supplementary output signal
and a set of supplementary parametric inputs. The combinational circuit provides a
flexible representation which can be used for verification or synthesis.

The usefulness of the OBDD representation has led to a variety of extensions. We
have presented our circuit construction technique in terms of the more general Free
BDD representation. Another common extension is to add various attributes to the BDD
edges, for example complementation [6]. Edge complementation can reduce BDD size
by up to a factor of two. It is quite possible to construct a circuit directly from a BDD
with complemented edges, but the modules required grow by about a factor of two,
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so there doesn’t appear to be any advantage. Our next steps in this research will be to
investigate other extensions to OBDDs to see which of them can support effective circuit
construction techniques.
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