Skip to main content

NSAIDs for the Chemoprevention of Alzheimer’s Disease

  • Chapter
Inflammation in the Pathogenesis of Chronic Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 42))

Abstract

Epidemiologic and laboratory studies suggest that non-steroidal anti-inflammatory drug (NSAID) use reduces the risk of Alzheimer’s disease (AD). Initial reports in the early 1990’s indicated that a history of arthritis, a presumed surrogate of NSAID use, was associated with a lower risk of AD. [1] These reports were followed by epidemiologic studies in which NSAID use was assessed directly and the majority of these reports confirmed the inverse association with risk for AD. [2,3] Postmortem studies in humans [4], studies in animal models of AD [5,6], and in vitro studies [7,8] generally support the notion that NSAIDs can reduce the deleterious inflammation which surrounds amyloid beta (Aβ) plaques in the AD brain. In addition, some studies conducted in vitro and in rodents point to a subgroup of NSAIDs that may work by inhibiting amyloidogenic APP metabolism rather than through traditional anti-inflammatory mechanisms. [9-11] This novel property of NSAIDs is currently being explored in epidemiologic studies. Results from randomized clinical trials of NSAIDs and established AD and one trial on secondary prevention have not been promising and there have been no prevention trials completed. The feasibility of using NSAIDs as a chemopreventive agent in AD is discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGeer PL,Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology. 1996;47(2):425–432.

    PubMed  CAS  Google Scholar 

  2. Etminan M, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ. 2003;327:128–132.

    Article  PubMed  CAS  Google Scholar 

  3. Szekely CA, Thorne JE, Zandi PP et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology. 2004;23:159–169.

    Article  PubMed  Google Scholar 

  4. Mackenzie IR, Munoz DG. Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch Neurol. 2001;58(3):517–9.

    Article  PubMed  CAS  Google Scholar 

  5. Lim GP, Yang F, Chu T et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000;20(15):5709–5714.

    PubMed  CAS  Google Scholar 

  6. Lim GP, Yang F, Chu T et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging. 2001;22(6):983–991.

    Article  PubMed  CAS  Google Scholar 

  7. Dzenko KA, Weltzien RB, Pachter JS. Suppression of A beta-induced monocyte neurotoxicity by antiinflammatory compounds. J Neuroimmunol. 1997;80(1-2):6–12.

    Article  PubMed  CAS  Google Scholar 

  8. Netland EE, Newton JL, Majocha RE, Tate BA. Indomethacin reverses the microglial response to amyloid beta-protein. Neurobiol Aging. 1998;19(3):201–204.

    Article  PubMed  CAS  Google Scholar 

  9. Eriksen JL, Sagi SA, Smith TE et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest. 2003;112(3):440–449.

    Article  PubMed  CAS  Google Scholar 

  10. Sagi SA, Weggen S, Eriksen J, Golde TE, Koo EH. The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production. J Biol Chem. 2003;278(34):31825–31830.

    Article  PubMed  CAS  Google Scholar 

  11. Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212–216.

    Article  PubMed  CAS  Google Scholar 

  12. Brookmeyer R, Gray S. Methods for projecting the incidence and prevalence of chronic diseases in aging populations: application to Alzheimer’s disease. Stat Med. 2000;19(11-12):1481–1493.

    Article  PubMed  CAS  Google Scholar 

  13. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):1119–1122.

    Article  PubMed  Google Scholar 

  14. Gao S, Hendrie HC, Hall KS, Hui S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatry. 1998;55(9):809–815.

    Article  PubMed  CAS  Google Scholar 

  15. U.S. Census Bureau. Annual projections of the resident population by age, sex, race, and hispanic origin: lowest, middle, highest series and zero international migration series, 1999 to 2100. [http://www.census.gov/publication/www/projections/natdet-D1A.html] Accessed 07 April 2004.

    Google Scholar 

  16. Centers for Disease Control. Public health and aging: Trends in aging – United States and worldwide. Morbidity and Mortality Weekly Report. 2003;52(6):101–106.

    Google Scholar 

  17. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A. 1988;85(11):4051–4055.

    Article  PubMed  CAS  Google Scholar 

  18. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):351–357.

    Article  PubMed  CAS  Google Scholar 

  19. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–766.

    PubMed  CAS  Google Scholar 

  20. Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004;140(8):627–638.

    PubMed  CAS  Google Scholar 

  21. Jarrett JT, Berger EP, Lansbury PT Jr. The C-terminus of the beta protein is critical in amyloidogenesis. Ann N Y Acad Sci. 1993;695:144–148.

    Article  PubMed  CAS  Google Scholar 

  22. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  23. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis. 1996;3(1):16–32.

    Article  PubMed  CAS  Google Scholar 

  24. Selkoe DJ. Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci. 2000;924:17–25.

    Article  PubMed  CAS  Google Scholar 

  25. McGeer PL, McGeer EG. Mechanisms of cell death in Alzheimer disease–immunopathology. J Neural Transm Suppl. 1998;54:159–166.

    PubMed  CAS  Google Scholar 

  26. Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.

    Article  PubMed  CAS  Google Scholar 

  27. McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(5):741–749.

    Article  PubMed  CAS  Google Scholar 

  28. Eikelenboom P, Bate C, Van Gool WA et al. Neuroinflammation in Alzheimer’s disease and prion disease. Glia. 2002;40(2):232–239.

    Article  PubMed  CAS  Google Scholar 

  29. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC. Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging. 2003;24(2):321–331.

    Article  PubMed  Google Scholar 

  30. Cagnin A, Brooks DJ, Kennedy AM et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358(9280):461–467.

    Article  PubMed  CAS  Google Scholar 

  31. Yasojima K, Schwab C, McGeer EG, McGeer PL. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res. 2000;887(1):80–89.

    Article  PubMed  CAS  Google Scholar 

  32. Rogers J, Cooper NR, Webster S et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1992;89(21):10016–10020.

    Article  PubMed  CAS  Google Scholar 

  33. Bradt BM, Kolb WP, Cooper NR. Complement-dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. J Exp Med. 1998;188(3):431–438.

    Article  PubMed  CAS  Google Scholar 

  34. Mehlhorn G, Hollborn M, Schliebs R. Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci. 2000;18(4-5):423–431.

    Article  PubMed  CAS  Google Scholar 

  35. Benzing WC, Wujek JR, Ward EK et al. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging. 1999;20(6):581–589.

    Article  PubMed  CAS  Google Scholar 

  36. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–235.

    PubMed  CAS  Google Scholar 

  37. Meade EA, Smith WL, Dewitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993;268(9):6610–6614.

    PubMed  CAS  Google Scholar 

  38. DuBois RN, Abramson SB, Crofford L et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063–1073.

    PubMed  CAS  Google Scholar 

  39. Couzin J. Drug safety. Withdrawal of Vioxx casts a shadow over COX-2 inhibitors. Science. 2004;306(5695):384–385.

    Article  PubMed  CAS  Google Scholar 

  40. Drazen JM. COX-2 inhibitors–a lesson in unexpected problems. N Engl J Med. 2005;352(11): 1131–1132.

    Article  PubMed  CAS  Google Scholar 

  41. Psaty BM, Furberg CD. COX-2 inhibitors–lessons in drug safety. N Engl J Med. 2005;352(11):1133–1135.

    Article  PubMed  CAS  Google Scholar 

  42. Mackenzie IR, Munoz DG. Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology. 1998;50(4):986–90.

    PubMed  CAS  Google Scholar 

  43. Halliday GM, Shepherd CE, McCann H et al. Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch Neurol. 2000;57(6):831–6.

    Article  PubMed  CAS  Google Scholar 

  44. Jantzen PT, Connor KE, DiCarlo G et al. Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci. 2002;22(6):2246–2254.

    PubMed  CAS  Google Scholar 

  45. Quinn J, Montine T, Morrow J, Woodward WR, Kulhanek D, Eckenstein F. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer’s disease. J Neuroimmunol. 2003;137(1-2):32–41.

    Article  PubMed  CAS  Google Scholar 

  46. Yan Q, Zhang J, Liu H et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci. 2003;23(20):7504–7509.

    PubMed  CAS  Google Scholar 

  47. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21(21):8370–8377.

    PubMed  CAS  Google Scholar 

  48. Kerr ML, Small DH. Cytoplasmic domain of the beta-amyloid protein precursor of Alzheimer’s disease: function, regulation of proteolysis, and implications for drug development. J Neurosci Res. 2005;80(2):151–159.

    Article  PubMed  CAS  Google Scholar 

  49. Weggen S, Eriksen JL, Sagi SA et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem. 2003;278(34):31831–31837.

    Article  PubMed  CAS  Google Scholar 

  50. Lanz TA, Fici GJ, Merchant KM. Lack of specific amyloid-beta(1-42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. J Pharmacol Exp Ther. 2005;312(1):399–406.

    Article  PubMed  CAS  Google Scholar 

  51. Beher D, Clarke EE, Wrigley JD et al. Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. Evidence for an allosteric mechanism. J Biol Chem. 2004;279(42):43419–43426.

    Article  PubMed  CAS  Google Scholar 

  52. Morihara T, Chu T, Ubeda O, Beech W, Cole GM. Selective inhibition of Abeta42 production by NSAID R-enantiomers. J Neurochem. 2002;83(4):1009–1012.

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi Y, Hayashi I, Tominari Y et al. Sulindac sulfide is a noncompetitive gamma-secretase inhibitor that preferentially reduces Abeta 42 generation. J Biol Chem. 2003;278(20):18664–18670.

    Article  PubMed  CAS  Google Scholar 

  54. Gasparini L, Rusconi L, Xu H, del SP, Ongini E. Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J Neurochem. 2004;88(2):337–348.

    Article  PubMed  CAS  Google Scholar 

  55. Peretto I, Radaelli S, Parini C et al. Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of beta-amyloid(1)(-)(42) secretion. J Med Chem. 2005;48(18):5705–5720.

    Article  PubMed  CAS  Google Scholar 

  56. Lleo A, Berezovska O, Herl L et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med. 2004;10(10):1065–1066.

    Article  PubMed  CAS  Google Scholar 

  57. Jankowsky JL, Slunt HH, Gonzales V et al. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med. 2005;2(12):e355.

    Article  PubMed  CAS  Google Scholar 

  58. Heyman A, Wilkinson WE, Stafford JA, Helms MJ, Sigmon AH, Weinberg T. Alzheimer’s disease: a study of epidemiological aspects. Ann Neurol. 1984;15(4):335–41.

    Article  PubMed  CAS  Google Scholar 

  59. French LR, Schuman LM, Mortimer JA, Hutton JT, Boatman RA, Christians B. A case-control study of dementia of the Alzheimer type. Am J Epidemiol. 1985;121(3):414–21.

    PubMed  CAS  Google Scholar 

  60. Jenkinson ML, Bliss MR, Brain AT, Scott DL. Rheumatoid arthritis and senile dementia of the Alzheimer’s type. Br J Rheumatol. 1989;28(1):86–8.

    Article  PubMed  CAS  Google Scholar 

  61. Graves AB, White E, Koepsell TD et al. A case-control study of Alzheimer’s disease. Ann Neurol. 1990;28(6):766–74.

    Article  PubMed  CAS  Google Scholar 

  62. Broe GA, Henderson AS, Creasey H et al. A case-control study of Alzheimer’s disease in Australia. Neurology. 1990;40(11):1698–707.

    PubMed  CAS  Google Scholar 

  63. McGeer PL, McGeer E, Rogers J, Sibley J. Anti-inflammatory drugs and Alzheimer disease. Lancet. 1990;335(8696):1037.

    Article  PubMed  CAS  Google Scholar 

  64. Beard CM, Kokman E, Kurland LT. Rheumatoid arthritis and susceptibility to Alzheimer’s disease. Lancet. 1991;337(8754):1426.

    Article  PubMed  CAS  Google Scholar 

  65. McGeer, P. L., Harada, N., Kimura, H., and McGeer, E. G. Prevalence of dementia amongst elderly Japanese with leprosy: Apparent effect of chronic drug therapy. Dementia. 1992;3(3):146–149.

    Google Scholar 

  66. Li G, Shen YC, Li YT, Chen CH, Zhau YW, Silverman JM. A case-control study of Alzheimer’s disease in China. Neurology. 1992;42(8):1481–8.

    PubMed  CAS  Google Scholar 

  67. Myllykangas-Luosujarvi R, Isomaki H. Alzheimer’s disease and rheumatoid arthritis. Br J Rheumatol. 1994;33(5):501–2.

    Article  PubMed  CAS  Google Scholar 

  68. Lucca U, Tettamanti M, Forloni G, Spagnoli A. Nonsteroidal antiinflammatory drug use in Alzheimer’s disease. Biol Psychiatry. 1994;36(12):854–6.

    Article  PubMed  CAS  Google Scholar 

  69. Andersen K, Launer LJ, Ott A, Hoes AW, Breteler MM, Hofman A. Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology. 1995;45(8):1441–5.

    PubMed  CAS  Google Scholar 

  70. Breitner JC, Welsh KA, Helms MJ et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging. 1995;16(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  71. Rich JB, Rasmusson DX, Folstein MF, Carson KA, Kawas C, Brandt J. Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology. 1995;45(1):51–5.

    PubMed  CAS  Google Scholar 

  72. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology. 1997;48(3):626–32.

    PubMed  CAS  Google Scholar 

  73. Beard CM, Waring SC, O’Brien PC, Kurland LT, Kokmen E. Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease: a case-control study in Rochester, Minnesota, 1980 through 1984. Mayo Clin Proc. 1998;73(10):951–5.

    PubMed  CAS  Google Scholar 

  74. in ’t Veld BA, Launer LJ, Hoes AW et al. NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol Aging. 1998;19(6):607–11.

    Article  PubMed  Google Scholar 

  75. Anthony JC, Breitner JC, Zandi PP et al. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology. 2000;54(11):2066–71.

    PubMed  CAS  Google Scholar 

  76. Broe GA, Grayson DA, Creasey HM et al. Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch Neurol. 2000;57(11):1586–91.

    Article  PubMed  CAS  Google Scholar 

  77. in ’t Veld BA, Ruitenberg A, Hofman A et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345(21):1515–21.

    Article  CAS  Google Scholar 

  78. Lindsay J, Laurin D, Verreault R et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002;156(5):445–453.

    Article  PubMed  Google Scholar 

  79. Wolfson C, Perrault A, Moride Y, Esdaile JM, Abenhaim L, Momoli F. A case-control analysis of nonsteroidal anti-inflammatory drugs and Alzheimer’s disease: are they protective? Neuroepidemiology. 2002;21(2):81–86.

    Article  PubMed  CAS  Google Scholar 

  80. Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC. Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology. 2002;59(6):880–886.

    PubMed  CAS  Google Scholar 

  81. Landi F, Cesari M, Onder G, Russo A, Torre S, Bernabei R. Non-steroidal anti-inflammatory drug (NSAID) use and Alzheimer disease in community-dwelling elderly patients. Am J Geriatr Psychiatry. 2003;11(2):179–185.

    Article  PubMed  Google Scholar 

  82. Cornelius C, Fastbom J, Winblad B, Viitanen M. Aspirin, NSAIDs, risk of dementia, and influence of the apolipoprotein E epsilon 4 allele in an elderly population. Neuroepidemiology. 2004;23(3):135–143.

    Article  PubMed  CAS  Google Scholar 

  83. Nilsson SE, Johansson B, Takkinen S et al. Does aspirin protect against Alzheimer’s dementia? A study in a Swedish population-based sample aged > or = 80 years. Eur J Clin Pharmacol. 2003;59(4):313–319.

    Article  PubMed  CAS  Google Scholar 

  84. The Canadian Study of Health and Aging: risk factors for Alzheimer’s disease in Canada. Neurology. 1994;44(11):2073–80.

    Google Scholar 

  85. Breitner JC, Gau BA, Welsh KA et al. Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology. 1994;44(2):227–32.

    PubMed  CAS  Google Scholar 

  86. Stata Statistical Software: Release 8.0. College Station, Texas: Stata Corporation; 2003.

    Google Scholar 

  87. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-III-R. 3rd, revised ed. Washington, DC: American Psychiatric Association;1987.

    Google Scholar 

  88. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–944.

    PubMed  CAS  Google Scholar 

  89. Breteler MB, in ’t Veld BA, Hofman A, and Stricker BH. AB-42 peptide lowering NSAIDs and Alzheimer’s disease. Neurobiol Aging. 2002;23(S1):S286

    Google Scholar 

  90. Zandi PP, Szekely CA, Green RC, Breitner JC, Welsh-Bohmer KA. Pooled analysis of the association between different NSAIDs and AD: Preliminary findings. Neurobiol Aging. 2004;25(S2):S5.

    Article  Google Scholar 

  91. Salas M, Hofman A, Stricker BH. Confounding by indication: an example of variation in the use of epidemiologic terminology. Am J Epidemiol. 1999;149(11):981–983.

    PubMed  CAS  Google Scholar 

  92. Psaty BM, Koepsell TD, Lin D et al. Assessment and control for confounding by indication in observational studies. J Am Geriatr Soc. 1999;47(6):749–754.

    PubMed  CAS  Google Scholar 

  93. Barrett-Connor E, Grady D. Hormone replacement therapy, heart disease, and other considerations. Annu Rev Public Health. 1998;19:55–72.

    Article  PubMed  CAS  Google Scholar 

  94. Stricker BH, Hofman A, Breteler MB. Letter to the Editor: Nonsteroidal drugs and Alzheimer’s disease. N Engl J Med. 2002;346(15):1171–1173.

    Article  Google Scholar 

  95. Rogers J, Kirby LC, Hempelman SR et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology. 1993;43(8):1609–1611.

    PubMed  CAS  Google Scholar 

  96. Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology. 1999;53(1):197–201.

    PubMed  CAS  Google Scholar 

  97. Aisen PS, Schmeidler J, Pasinetti GM. Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology. 2002;58(7):1050–1054.

    PubMed  CAS  Google Scholar 

  98. Aisen PS, Schafer KA, Grundman M et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819–2826.

    Article  PubMed  CAS  Google Scholar 

  99. Reines SA, Block GA, Morris JC et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology. 2004;62(1):66–71.

    Article  PubMed  CAS  Google Scholar 

  100. Sainati S, Ingram D, Talwalker S, Geis G. Results of a double-blind, randomized, placebo-controlled study of celecoxib in the treatment of progression of Alzheimer’s Disease. 6th International Stockholm-Springfield Symposium of Advances in Alzheimer’s Therapy; 2000; Stockholm, Sweden.

    Google Scholar 

  101. Black SE, Wilcock G, Haworth J, et al. A placebo-controlled, double-blind trial of the selective Abeta42-lowering agent Flurizan in patients with mild to moderate Alzheimer’s disease: Efficacy, safety, and follow-on results. 2005. Program No. 585.6. Washington, DC: Society for Neuroscience.

    Google Scholar 

  102. www.clinicaltrials.gov. Curcumin in patients with mild to moderate Alzheimer’s disease; Ringman J, Study Director; sponsored by John Douglas French Foundation and ISOA. [www.clinicaltrials.gov]. Accessed 22 March 2006.

    Google Scholar 

  103. www.clinicaltrials.gov. Efficacy study of MPC-7869 to treat patients with Alzheimer’s; Laughlin M, Study Director; sponsored by Myriad Pharmaceuticals. [www.clinicaltrials.gov]. Accessed 22 March 2006.

    Google Scholar 

  104. www.clinicaltrials.gov. A pilot study of curcumin and ginkgo for treating Alzheimer’s disease; Baum L, Principal Investigator; sponsored by BUPA Foundation and Institute of Chinese Medicine of the Chinese University of Hong Kong. [www.clinicaltrials.gov]. Accessed 22 March 2006.

    Google Scholar 

  105. Thal LJ, Ferris SH, Kirby L et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology. 2005;30(6):1204–1215.

    Article  PubMed  CAS  Google Scholar 

  106. www.clinicaltrials.gov. Anti-inflammatory treatment for age-associated memory impairment: a double-blind placebo-controlled trial; Small GW, Principal Investigator; sponsored by NIMH. [www.clinicaltrials.gov]. Accessed 22 March 2006.

    Google Scholar 

  107. ADAPT Steering Committee. Statement from the Steering Committee of the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT) to FDA. [www.jhucct.com/adapt/documents.htm]. Accessed 07 April 2006.

    Google Scholar 

  108. Myriad Genetics Incorporated. Flurizan™ Alzheimer’s disease phase 3 clinical trial. [http://www.myriad.com/research/trial_ad.php]. Accessed 22 March 2006.

    Google Scholar 

  109. Yang F, Lim GP, Begum AN et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–5901.

    Article  PubMed  CAS  Google Scholar 

  110. Martin BK, Meinert CL, Breitner JC. Double placebo design in a prevention trial for Alzheimer’s disease. Control Clin Trials. 2002;23(1):93–99.

    Article  PubMed  Google Scholar 

  111. Mukherjee D, Nissen SE, Topol EJ. Cox-2 inhibitors and cardiovascular risk: we defend our data and suggest caution. Cleve Clin J Med. 2001;68(11):963–964.

    Article  PubMed  CAS  Google Scholar 

  112. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2001;286(8):954–959.

    Article  PubMed  CAS  Google Scholar 

  113. Solomon SD, McMurray JJ, Pfeffer MA et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352(11):1071–1080.

    Article  PubMed  CAS  Google Scholar 

  114. Bresalier RS, Sandler RS, Quan H et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352(11):1092–1102.

    Article  PubMed  CAS  Google Scholar 

  115. Federal Drug Administration. FDA statement on naproxen. December 20 2004. [http://www.fda.gov/bbs/topics/news/2004/NEW01148.html]. Accessed 18 June 2005.

    Google Scholar 

  116. Buring JE. Special issues related to randomized trials of primary prevention. Epidemiol Rev. 2002;24(1):67–71.

    Article  PubMed  Google Scholar 

  117. Sesso HD, Gaziano JM, VanDenburgh M, Hennekens CH, Glynn RJ, Buring JE. Comparison of baseline characteristics and mortality experience of participants and nonparticipants in a randomized clinical trial: the Physicians’ Health Study. Control Clin Trials. 2002;23(6):686–702.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Szekely, C.A., Town, T., Zandi, P.P. (2007). NSAIDs for the Chemoprevention of Alzheimer’s Disease. In: Harris, R.E., et al. Inflammation in the Pathogenesis of Chronic Diseases. Subcellular Biochemistry, vol 42. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5688-5_11

Download citation

Publish with us

Policies and ethics