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Abstract

We have developed a new version of the code built by Campo Bagatin et al.
, 1994a,b and Campo Bagatin, 1998 to model the collisional evolution of the
asteroid size distribution. The new code distinguishes between “intact”, un-
fractured asteroids that did not undergo catastrophic collisions, and asteroids
converted by energetic collisions into reaccumulated bodies, or “rubble—piles”.
The distinction can also be made on a physical ground, by assigning differ-
ent collisional parameters to the two kinds of objects, with the objective of
simulating the different responses to energetic impacts that rubble—piles may
have — due to their different structure — in comparison to unshattered bodies.
Rubble-piles abundance turns out to be generally higher when such targets
are supposed to transfer less kinetic energy to the fragments than monolithic
asteroids.

We have run a number of simulations of the collisional evolution process
to assess the size range where reaccumulated bodies should be expected to be
abundant in the main asteroid belt. We find that this diameter range goes
from about 10 to 100 km, but may extend to smaller or larger bodies depend-
ing on the prevailing collisional response parameters, such as the strength of
the material, the strength scaling law, the fraction of kinetic energy of the
impact transfered to the fragments and the reaccumulation model.

Both the size range and the resulting fraction of rubble—piles vary widely
depending on the input parameters. This reflect the large uncertainties still
present in the modelisation of high velocity impact outcomes. In particular,
the simulations that take into account the derived “hydrocode” scaling laws
(Davis et al. , 1994) show that nearly 100% of the main belt asteroids larger
than a few kms should be reaccumulated objects. On the other hand the
present code shows that the scaling-law recently proposed by Durda et al. |
1998 produces almost no rubble—pile. This scaling—law was proposed to match
the actual population of asteroids which it fails to do if collisional processes
are accounted for in a self—consistent way.

Keywords: Minor planets, asteroids — Collisions — Reaccumulation — Collisional
evolution

I Introduction

Due to the large number of objects and the non—negligible orbital eccentricities
and inclinations, the asteroid belt population forms a collisional system. Typical
collision velocities are of the order of 5 km/s (Farinella and Davis, 1992, Bottke et
al. , 1994, Vedder, 1997) in the main belt, and at these speeds a wide range of
collisional outcomes is possible (Davis et al. , 1989, Petit and Farinella, 1993). We
refer to Campo Bagatin et al. , 1994a,b and especially to Campo Bagatin, 1998 for
an introduction and a review of asteroid belt physical and collisional issues.

In monolithic asteroidal impacts, there is an energy threshold beyond which
localized target damage associated with cratering events gives way to global shat-
tering and target breakup. In the latter case, the ejection velocity of the fragments



may either be large enough to allow all (or most) of them to escape “to infinity”
with independent heliocentric orbits, or conversely may be so low that most (or
all) of the fragments fall back and are reaccumulated into a gravitationally bound
“rubble—pile”.

Recent years’ space probes and radar observations of asteroids such as Mathilde
and Eros (NEAR probe), Gaspra and Ida (Galileo probe), Castalia, Toutatis and
1999JM8 (radar observations) are throwing new light into the previously poorly
known structures of asteroids. The characteristics of some of these bodies suggest
that they can be reaccumulated bodies; peculiar features such as the presence of
enormous crater basins, about half the size of the body itself, in the case of Mathilde,
suggest that the collisional response to energetic impacts may be different compared
to monolithic objects. In fact, rubble—piles may be less efficient than unshattered
objects in delivering kinetic energy of impacts to external fragments (Asphaug et al.
, 1998), due to some reasons that will be explained in Sec. III.

The reaccumulation process may be complicated by the existence of a correla-
tion between velocity and mass of the ejected fragments. Some evidence of such a
correlation has been found in the past from laboratory experiments (Nakamura &
Fujiwara, 1991; Nakamura et al. , 1992; Giblin et al. , 1994; Giblin, 1998). The
experimental results actually show a large dispersion in the data, and the slope of
the tentative linear fit matching them has to be considered with caution when con-
sidering a schematic mathematical correlation to display the phenomenon. In fact,
simplifying the “dispersed” mass—velocity correlation, i.e. velocity spread over a
large range of values for any given mass, with a well-defined, straight power—law re-
lationship may yield in some case to misleading results, as will be shown in Sec. IV.A
and IV.B.

Anyway, this is potentially an important finding, because such a correlation
would strongly affect the extent to which reaccumulation is effective in creating a
“shoulder” in the collisionally evolved size distribution (Campo Bagatin et al.
1994b) or determining the internal structure of the resulting rubble-pile objects
(Wilson et al. , 1999) and the amount of material falling back after a shattering
event. Recent data, however, indicate that the velocity-mass correlation may be
weaker or stronger—depending on the material properties—than assumed earlier,
and possibly depending on the specific impact conditions or the experimental setup
(Giblin, 1998).

Another possible complicating factor is that non-disruptive cratering events may
also create a deep layer of regolith (fragmented material) and thus favour the trans-
formation of intact asteroids into rubble—piles. However, quantitative estimates (e.g.
Farinella et al. , 1993) show that the crater ejecta accumulated over an asteroid’s
lifetime typically account for only a small fraction of the total mass.

Here, we shall report the numerical results that we have obtained on the abun-
dance of rubble—pile asteroids in the main belt population, as a function of size and
of some poorly known collisional response parameters. Hopefully, future data on
the outcomes of hypervelocity impacts, the internal structure of asteroids and their
size distribution as a function of material type will further constrain our models.

In Sec. II, an outline of the numerical models performing the simulations of



the collisional evolution is given, together with a description of the scaling laws that
have been used, and of the models of reaccumulation considered in the fragmentation
code. The definition of “rubble-pile” is given in Sec. III, and a discussion on the
possible physical differences existing between these kind of bodies and monolithic
bodies is also included. The results of various simulations are shown and explained
in Sec. IV. Finally, some conclusions are drawn from the results of the whole set of
simulations performed in this work and are presented in Sec. V.

IT Numerical Model

The aim of the present work is to give an estimate of the abundance of reaccumulated
asteroids in the main belt as a function of their size, taking into account the depen-
dence on various physical effects and modelling assumptions. For this purpose, we
have developed a new version of the numerical evolution model described in Campo
Bagatin et al. , 1994a,b. This code simulates the collisional history of asteroids by
evolving in time the populations of objects residing in a set of Ny, discrete size bins
(usually 60), integrating numerically a set of Ny, non-linear, first—order differential
equations. From one bin to the next one, the mass of the bodies changes by a factor
of 2, i.e. the diameter changes by a factor of 2!'/3. In the original version of the
code, at any time step the expected number of collisions between bodies belonging
to any pair of bins is computed, and in each case a collisional outcome algorithm
provides the size distribution of the objects resulting from the impacts, which are
then redistributed into the size bins. In the current version, the collisional algorithm
also records the kind of outcome occurring in each case (cratering, reaccumulation
or disruption, with the latter term denoting breakup without reaccumulation) and
separates the resulting bodies into reaccumulated objects and “single” fragments.
This allows us to compute, in any size bin, the fraction of reaccumulated bodies
over the total population, and how this fraction evolves with time (we assume that
at the beginning of the evolution it is zero).

The collisional outcome algorithm works in the following way. For each colliding
body the available impact energy F per unit volume V' is compared to a fragmenta-
tion threshold S (the impact strength), which is assumed to scale with size according
to two different effects: a gravitational self-compression effect as suggested by Davis
et al. , 1985 and Housen et al. , 1991, and a strain-rate effect (Housen and Hol-
sapple, 1990). The latter effect decreases the strength for increasing sizes, until
the former takes over and makes large bodies stronger and stronger (Davis et al. ,
1994). In absence of well established data, and to make things simple, we neglect
any dependence of the imapct strength on the impact velocity. When the available
energy exceeds the threshold, this corresponds to a shattering event, where the mass
of the largest intact fragment is less than half the mass of the target. Otherwise, it
is a cratering event. We have considered three main scaling laws, basically the ones
summarized in Davis et al. , 1994, that we report here for the sake of completeness.

Energy scaling:
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S is the material strength, as measured by laboratory experiments, « is the so—called
self-compression coefficient, G the gravitational constant, p the material density, R
the target radius. Figure 1 shows the variation of S as a function of the radius of
the target R. Here, as well as in all our simulations, we have assumed a value of
the self-compression coefficient o = 100. For the energy scaling and the strain-rate
scaling, Sy = 3-10°% J/m?, while for the hydrocode scaling, Sy = 8.22-10° J/m?3.

Note that some authors prefer to consider the specific energy—that is the energy
per unit mass (Q%, or simply Q*)—for shattering, instead of the strength; it’s worth
recalling that these two quantities are related by the following simple relationship:
Q"= S/p.

The behaviour of the three scaling laws written above are displayed together
with the scaling law proposed by Durda et al. , 1998, in Fig. 1.

The energy—scaling for the strength was formerly proposed by Davis et al.
1985, who just accounted for gravitational self-compression, without any strain—
rate effect. As can be seen in Fig. 1, for a given material the strength is constant for
any body of size smaller (strength regime) than the size at which the gravity scaling
increases the value of the strength. After a transition range, the strength keeps on
steadily increasing with size (gravity regime).

In the case of strain—rate scaling, we used two different exponents: the nominal
value 0.24, that can be found in Eq. 2, and 0.33. The first one refers to what
Housen et al. , 1991 report, the second one is to follow more recent calculations
(Holsapple, 1994). This exponent has been given different values in the last two
decades. Fujiwara, 1980, and independently, Farinella et al. , 1982 suggested the
0.5 value, that meant a marked dependence of strain-rate effects on size, large
objects — below the gravity regime — should have then been very weak. Later scaling
theories performed by Housen et al. , 1991 suggested a much shallower value for this
dependence (0.24). In recent years, both hydrocodes and revisited scaling theories
are suggesting again a higher value for this exponent (0.33, Holsapple, 1994; 0.43,
Davis et al. , 1994; 0.59, 0.667, Housen and Holsapple, 1999).

The hydrocode—scaling instead is a recently derived scaling law, inferred from
hydrocode simulations of fragmentation processes (Davis et al. , 1994)), it depends
on the properties of different materials and has a strong dependence of strain—rate



scaling on size, namely a decrease of 2-3 orders of magnitude between 10 cm and
25 km.

We also report here a recently proposed scaling law (Durda et al. , 1998), that
was argued to match the actual distribution of asteroids in the main belt, if inserted
in the present fragmentation and collisional evolution codes. We checked that scaling
law with our self—consistent fragmentation code and we anticipate here that the final
size distribution does not fit the observations, mainly because of inconsistencies in
Durda et al. model (see Sec. IV.F).

Once the comparison between the impact energy per unit volume and the value of
S is made, the impact may happen to be either a cratering event, or a fragmentation
event. In both cases the size distribution of the created fragments is calculated. See
Petit and Farinella, 1993 and Campo Bagatin, 1998 for a detailed presentation of
the fragmentation model. The critical quantity that discriminates cratering from
shattering is the mass fraction between the largest remnant (M) and the target
(Mr), which is given by:

(4)

M SM 1.24
fir = LR—0.5[ T]

in the case of shattering frr < 0.5.

As for the reaccumulation process, we have followed Campo Bagatin et al. |,
1994b in adopting two different models.

a) A “mass—velocity” model (Petit and Farinella, 1993), PF modelin what folows,
that assumes that there is a weak power—law correlation between the mass and ve-
locity of fragments ejected in a catastrophic collision, according to the experimental
results mentioned in Sec. I. The general aspect of the relationship between mass m
and velocity V that we adopted in our nominal case is

Vo M. (5)

The value of exponent r has been found to be about 1/6 by Nakamura and Fujiwara,
1991, or to be in between 0 and 1/6, with a mean value of 1/13 (Giblin, 1998), with
a considerable dispersion of data around the proposed slopes. Any fragment with
velocity larger than the escape velocity V..., derived from the gravitational potential
of the two colliding bodies, will escape, while those slower than V. will reaccumulate
on the largest remnant. In this model, a given mass corresponds to a single velocity.

b) A so—called “cumulative” model, in which no correlation between mass and
velocity of fragments is considered. In this case, the velocity distribution is the same
for all fragment mass and the fraction of mass with a velocity larger than V' is

=MD (V) ©

where k is a given exponent, larger than 2 (to allow for conservation of energy),
and generally assumed to be k ~ 9/4, and V,,,;,, is a lower cutoff for the velocity of
fragments. By integrating over v between v,,;,, and co we obtain the total kinetic



energy of the ejected fragments Ey,. Hence:

k—2Fp,
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The kinetic energy of the fragments is a given fraction of the impact kinetic energy
deposited in the target Ex/2:

Epy = frn. 8
This model assumes that in each mass bin, there are fragments with velocity larger
than V., which would escape. The fraction of such fragments is f(> Vis.). The
other ones are reaccumulated on the largest remnant.

The above defined fxpg is a poorly known parameter in collisional processes.
Laboratory experiments suggest values of the order of 0.01, while in order to be able
to reproduce the formation of asteroid families this value is constrainted to be of
the order of 0.1. It may even vary with size and probably with impact speed. In
the simulation presented in Sec. IV.F, we define fx g as a function of the target size.
The situation seems to be more complex in the case of reaccumulated objects, as
discussed in Sec. III.

The three scaling laws previously described have been derived from physical
considerations. We also tested the scaling law proposed by Durda et al. , 1998,
which was derived by fitting the observed size distribution of asteroids with the
results of their model. We used the parameters from their fit 1. The quantity
derived by Durda et al. is Q)},, the specific energy for dispersal, i.e. MpQ7, is the
minimum kinetic energy of the projectile required to disperse at least half the mass
of the target, accounting for potential reaccumulation. From their numbers, we get:

Q*D 11445 - 107 DLO286(5.932-10—6 \/8.895 10124-6.586 1010 In (D)+2.466 1011 ln(D)2), (9)

where D = 2R. In our collisional model, we consider the specific energy required
to shatter the target, (5. Reaccumulation is accounted for subsequently, by the
specification of the fraction of kinetic energy given to the fragments (fx ) and the
velocity distribution (PF or cumulative). How are Q%, and Q% related ?

As a first step, let us derive the relationship between @}, and fxpr. Here we
assume a cumulative velocity distribution (Eq. 6). Since dispersal is defined by
(> Vese) > 1/2, from Eq. 6 we obtain that for the critical collision corresponding to
QD Vmin = 2=k ... We recall that Q7 is the minimum projectile energy required
for target dispersal, assuming that 1/2 of the projectile energy Fy is delivered to the
target and that a fraction fx g of this is partitioned into kinetic energy of fragments.
Thus, for the critical collision corresponding to ()7, we have:

2
fke = g _ i 22/ ﬁ,
MrQp k-2 D

(10)



Following Durda and Dermott, 1997 (their Eq. 7), we define the minimum energy
to disperse a given target as the sum of the energy needed to shatter the body and
the energy required to disperse the fragments:

QS My 1 2G M2

Ex = Q% My = Pt 0411 =—=F. (11)

Here, we introduce fsy which is the fraction of kinetic energy of the projectile used
to shatter the target, assumed to be 1/2 in our work, while Durda and Dermott
used fsg = fre. In Eq. 10, for consistency with Eq. 11 and Durda and Dermott,
we use:

4G My
2 —10.822 . 12
Vese = 0.8 D (12)
This yields:
1 2G My k=2 o, 1
* = . 0.411 = A [ P70 1
Qs = fon | @~ 0 2| g - o]y

Figure 1 shows the value of Spyrsa = Q%5p as a function of R, using p = 2500 kg/m?,
as in all our simulations.

Once the outcome of the impacts between any given pair of asteroids is cal-
culated, the results are plugged into the collisonal evolution model, as mentioned
above.

Campo Bagatin et al. , 1994a, and Campo Bagatin, 1998, showed that in a
collisional system with a sharp cutoff at small sizes, a perturbation to the stationary
distributions arises in form of “waves”, that is oscillations about the steady state
power law distribution found by Dohnanyi, 1969. To avoid this “wave” effect, we
do not evolve the smaller mass bins that would directly be influenced by the cutoff
with the general algorithm. Instead, we force those bins (typically the 15 smaller
mass bins) to follow a power law distribution, the exponent of which is the average
power law exponent of the next 10 bins. In this way, the bins that evolve according
to the general algorithm always have an appropriate set of projectiles and then do
not exhibit the wave pattern. If the number of constrainted bins is decreased, we
may see a wave develop. If it is increased, nothing changes, but this increase the
computational requirement. Due to this forcing of the number of bodies in the small
size bins, there is a change in mass. But it is negligeable due to the rather shallow
size distrbution at small sizes, the mass being in the large bodies.

IIT About “Rubble—Piles”

The existence of asteroid rubble—piles is both possible and probable. It is possible
because from a theoretical point of view it is clear that such objects may form;
on the other hand, many authors have suggested such bodies to explain features
of comets and asteroids compositions (Weissman, 1986, Asphaug and Benz, 1994,
Melosh and Ryan, 1997, Whipple, 1998, Wilson et al. , 1999). And it is now also
probable that rubble—piles exist; observations of the late comet Shoemaker—Levy 9
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(1994), and of asteroid 253 Mathilde, observed in 1997 by the NEAR probe, suggest
low densities and porous constitutions due to their structure (Chapman et al., 1999,
Cheng et al., 1999, Davis et al., 1999).

Many arbitrary definitions may be given in general of what a “reaccumulated
body” is, depending on the amount of mass contributed by the minor fragments with
respect to that of the largest remnant resulting from the breakup. Strictly speaking,
we could consider as a reaccumulated body any fragment coming from a shattering
event on which a single pebble had softly landed attracted by its gravitational field.
Of course, that would provide little information about the structure of the asteroids
wandering in the asteroid belt and of the Near Earth Asteroids. Among the many
possible arbitrary definitions, we have selected the following simple one: we consider
a body to be reaccumulated if the total mass of the reaccreted minor fragments is
greater than the mass of the largest single fragment My g, that is if

1
MLR < §M, (14)

M being the mass of the whole reaccumulated body. Of course in reality the tran-
sition is probably not so sharp: in many instances the impact outcome will be a
single large body coated with a layer of smaller reaccreted bodies accounting for less
than half of the total mass, but still forming a deep “megaregolith”, in other cases
the result will be the formation of an aggregate of a few huge (2-3) fragments, as
seems to be the case of Toutatis. However, the definition given above appears to us
suitable as a first approximation.

There are a few points about reaccumulated bodies that should be stressed in
order to distinguish them from monolithic, unshattered objects.

Some laboratory experiments have been performed by D.R.Davis and E.Ryan
by impacting pre—shattered targets, that is objects that have been previously frag-
mented by a primary impact and then glued together with a special, weak glue,
simulating gravitational binding. These targets were then re-impacted. Many in-
formations about the physical characteristics of the target — such as the impact
strength Sy — were obtained from the size distribution of the resulting fragments.
In this way they estimated that this parameter does not change in a significant way
with respect to the case of non—pre—shattered material. No significant correlation
between mass and velocity of fragments has been found in this case. On the other
hand, no information on other physical parameters like fx was available from these
experiments. Apart from this attempt for looking for differences between the re-
sponse to impacts on reaccumulated and monolithic bodies, there are some physical
reasons that suggest in principle a different behaviour.

Some authors have studied the propagation of shock waves in porous (non-
homogeneous) bodies both by analysing experimental outcomes (Love et al. , 1993),
and by means of hydrocode numerical simulations (Asphaug et al. , 1998), with
similar conclusions pointing towards difficulties in the propagation itself.

When a monolithic body is shattered by an energetic collision, the shock wave
generated at the contact surface travels accross the body exciting the pre—existing
flaws, that coalesce and give rise to many different fragments; the shock wave even-
tually rebounds at the opposite side of the body and subsequently extinguishes (e.g.:
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Grady, 1985). Part of the energy liberated in the impact still remains as kinetic en-
ergy that is delivered to the fragments (this fraction can be characterized by fx )
to work against gravitational binding energy. The fragments that are aggregated by
self-gravity after ejection, fall upon each other in a random way forming an irreg-
ular structure with many voids, eventually with a layer of regolith formed by fine
debris over the surface. If such an object happens to undergo a subsequent energetic
collision we expect that a large amount of damage is produced in the proximity of
the impact point, with the appearance of fast ejecta. The generated shock wave is
destined to extinguish quite quickly, in fact it shall rebound on the surface of the
fragments in which it develops and shall not be able to propagate further in the tar-
get: this is a main difference in the response to impacts between monolithic bodies
and rubble—piles. (Note that this may not be true if the projectile is larger than the
fragments forming the rubble-pile). The fact that the shock wave is aborted implies
that the fragments forming the structure of a rubble—pile — excluding the ones very
close to the impact point — should not be seriously damaged, in agreement with the
experiments by Ryan et al. , 1991, so their mass distribution should be more or less
the same as before the impact. A large part of the impact energy is then expected
to go into a very large number of highly inelastic collisions between the fragments
forming the rubble-pile, and into rotations of the fragments themselves that shall
scramble the object changing somehow its shape. As a result of this process, a lot of
energy is dissipated, and little kinetic energy is going to reach external fragments,
which then will not be able to escape the binding energy of the rubble—pile. If this
is what happens in this kind of impacts, the dispersion of rubble—piles requires more
energetic impacts than the dispersion of unshattered bodies, a conclusion supported
also by Love et al. , 1993. Following this conjecture, we have chosen to make two
different kinds of simulations. Even if the scenario described above looks reasonable
(we are still working on a quantitative estimate of this kind of kinetic process), we
conservatively chose to consider—at least for the nominal case—all bodies, both
rubble—piles and unshattered bodies, to respond to impacts in the same way (fxp =
0.1), and we investigated the effect of considering rubble—piles as having a different
response, schematically summarized by imposing fxz = 0.01.

IV Results

All the simulations reported below have been run considering the full diameter range
from 1 m to 1000 km, although we have plotted only the range from 100 m to 1000 km
(anyway, no reaccumulation was found to be noticeable at smaller sizes). The mean
relative collisional velocity assumed is V. = 5.85 km/sec. The simulated time span
for the collisional evolution of the asteroid belt is 4.5 x 10° yr, namely the age of the
Solar System. In Table 1, we give the scaling laws and parameters for each collisional
model we used. As described in Sec. II, each model, except Durda’s scaling law, can
have two different velocity distributions: the PF distribution, characterised by “r”,
and the cumulative distribution, characterised by “k”. Hence a collisional model
will be designated by its number and a subscript (PF or cum) defining the velocity
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distribution. The time—evolution algorithm uses real asteroidal cros—section and
intrinsic collision probabilities (Bottke et al. |, 1994). For the initial conditions,
we have assumed the same moderate-mass population that we had adopted in our
earlier works (Campo Bagatin et al. , 1994a,b). We refer to those papers, to Davis
et al. , 1985, 1989, 1994 and to Campo Bagatin, 1998 for a detailed discussion of
the general features of the collisional evolution process and its dependence on the
starting conditions and the assumed impact response parameters. It is interesting
to note that some constraints on the a priori unknown parameters can be derived
by the observed spin rate distribution of asteroids, besides their size distribution
(Davis et al. , 1989; Farinella et al. , 1985, 1992).

IV.A Case 1: the Strain—Rate scaling law

We compare here the effect of the two velocity distributions. Figure 2 presents the
fraction of rubble-piles in the case of strain-rate scaling law (case 1), as a function
of diameter of the target. The solid line shows the cumulative velocity distributions,
while the dashed line shows PF velocity distributions. The main feature is the large
rubble-pile fraction for bodies from a few hundred kilometers down to 10 or 1 km.
The upper cutoff is due to the large strength of bodies of that size. In order to
have a rubble-pile, according to our definition, the mass of the largest fragment
after the collision and before reaccumulation must be less than half the target mass
(the reaccumulated body needs to be at least twice as massive as the largest intact
fragment), corresponding to what is called a fragmentation. Hence the kinetic energy
of the projectile must be larger than 47/3R*S, implying a minimum size for the
projectile (R, > Ry min = R(2S/(pV2)))'/?). Given the large value of S, the number
of available projectiles is quite small, and the probability of shattering the largest
targets over the age of the solar system is quite low. In addition, the kinetic energy
deposited by a shattering collision grows with target size faster than the binding
gravitational potential, hence the kinetic energy available for the fragments is large
enough to allow them to escape the gravitational potential. Thus the lack of rubble-
piles of large size is due to a deficiency of both fragmentation and reaccumulation.
At the small-size cutoff, on the contrary, the velocity distribution plays an important
role.

IV.A.1 Cumulative velocity distribution

We first consider the cumulative velocity distribution case. In Fig. 3a, we present
the ratio of reaccumulated mass over mass of the largest intact fragment for a critical
mass projectile—that is for a projectile large enough to shatter the target—(solid
line) and the maximum ratio over different projectile sizes (dashed line). The hor-
izontal dotted line sets the limit for what we call a rubble-pile. Actually, reaccu-
mulation to form a rubble-pile can occur only for targets larger than about 20 km,
which corresponds to the smallest size of rubble-piles in Fig. 2. Note that when
rubble-piles can form (dashed line above the horizontal dotted line) then impacts
by the smallest projectiles capable of shattering the targets can already create them
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(the solid line crosses the horizontal dotted line at the same point as the dashed
line). These small projectiles are the most numerous, and hence this explains the
rather large fraction of rubble-piles obtained in the collisional evolution. In addition,
for targets smaller than 100 km, the rubble—pile formed contains more than half the
mass of the original target. Hence, it belongs to the same bin than the target, so
very few of the formed rubble-piles belong to the bins smaller than ~20 km. The
rubble-piles in these bins, when hit by a larger than critical projectile, would not
reaccumulate, and hence would disappear from the population.

IV.A.2 PF velocity distribution

Figure 3b presents the same quantities in the case of PF velocity distribution. In
this case, targets down to 1.4 km can be shattered and yet produce a rubble-pile.
However, one needs a projectile larger than the critical size to obtain a rubble pile. In
Fig. 4, we display the size of the critical projectile (solid line), the size of the smallest
projectile that yields a rubble-pile (short-dashed line) and the size of the projectile
giving the largest reaccumulation ratio (long-dashed line), as a function of target
size. We can see that down to 10-20 km, the size of the smallest impactor that can
create a rubble-pile is just slightly larger than the critical shattering impactor (which
is just in the next size bin). Hence the number of reaccumulation events is quite
significant compared to the number of disruptions. For smaller sizes, the number of
projectiles that can create a rubble-pile is less and less significant compared to the
number of disruptive projectiles, and the mass of the reaccumulated body becomes
a smaller fraction of the target mass. Hence the fraction of rubble-piles decreases
below ~10 km, and remains non-zero even at sizes smaller than 1.4 km, actually
down to ~500 m.

Another major difference with the cumulative velocity distribution is the large
gap in size between the reaccumulated body and the largest escaping fragments.
In the PF model, the largest fragments are the slowest, and therefore they are the
ones that will reaccumulate. Only the rather small fragments can escape. In the
cumulative velocity distribution, on the contrary, fragments of every size have the
same velocity distribution. Thus for any given fragment size, there is the same
fractions of escaping fragments and of reaccumulated fragments. It results then
that the size distribution of escaping fragments shows a smaller gap between the
reaccumulated body and the largest escaping fragment.

IV.B Case 2: a shallower mass-velocity relationship

The PF and cumulative velocity distributions can be viewed as the two extremes of a
wide spectrum of velocity distributions. For the cumulative distribution, we assume
no relation between mass and velocity. For the PF distribution, there is a strict
relation between the mass and the velocity of the fragments. Up to now, we have
studied the case were the mass-velocity relationship is as steep as the experiments
allow. We now consider a PF velocity distribution with a shallower dependance,
i.e. a smaller value of the exponent r: » = 1/13. In this case, the small fragments
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tend to have a lower velocity, and thus less kinetic energy than before. Since we did
not change the other parameters, there is an excess of kinetic energy to be shared
between the largest fragments. So the largest fragments tend to have a larger velocity
than before, and most of them would escape the gravitational binding potential. As
a result, we expect to have less rubble-piles with to this small value of r than with
the former larger value, as can be seen in Fig. 5.

IV.C Case 3: more dissipative rubble-piles

We consider now the case in which rubble-piles have a lower efficiency in delivering
kinetic energy to fragments. As explained in Sec. III, rubble-piles are very likely
to be at least as resistant to shattering than monolithic objects, but they might
be much more resistant to dispersion. The only change in fragmentation model in
this case, compared to case 1, is in the fxg coefficient, set to 0.01 for rubble-piles,
considered now to be more dissipative.

Figure 6 represents the fraction of rubble-piles. The main difference with the
previous case (Fig. 2) is a larger fraction of rubble-piles at sizes smaller than 200 km.
The upper cutoff is the same as in case 1, for the same reasons. In the main size
range for which rubble-piles are important, their fraction changes from ~40-60% in
case 1 to ~60-90% in the present case, depending on the reaccumulation model. Due
to the small amount of kinetic energy that the fragments can get, when a collision
occurs most of them would reaccumulate on the largest one. While monolithic
bodies continue to be disrupted by some critical collisions, rubble-piles instead would
survive the same collisions; actually, they are shattered by those collisions, but then
they reaccumulate to form a body of essentially the same size. In this way their
populations grows with time.

At the lowest cutoff size, the cumulative velocity distribution case allows for
rubble—piles down to 4 km, that is to sizes five times smaller than for case 1 (20 km).
Reaccumulation and creation of rubble-piles is then possible for targets as small as
4 km. At the beginning of the simulation, there is no rubble-pile in the range 4—
14 km. Very few rubble-piles are created in this size range by collisions on targets
larger than 20 km by larger than critical projectiles. These rubble-piles, on the other
hand, are mostly shattered and reaccumulated to roughly the same size; all these
processes result in a small population of rubble-piles at this size range.

For the PF velocity distribution case, rubble-piles as small as 500 m can be
shattered and reaccumulated. However, here again—as explained in Sec. IV.A.2—for
sizes smaller than ~10 km, this requires projectiles larger than the critical shattering
size. Since these projectiles are less numerous than critical ones, the most common
outcome of a shattering collision would be the creation of monolithic fragments,
smaller than half the target’s mass. Then the fraction of rubble-piles is more or less
the same—in this size range—for the PF velocity distribution case, in the case of
“standard” and low values of fxg.
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IV.D Cases 4 and 7: weak bodies

We consider now “weaker” bodies, for which the strain-rate scaling law with S, =
3-10% J/m?3 and the hydrocode scaling law representative of basalt with Sy = 8.22-
10% J/m? are considered. The main difference between the PF and the cumulative
velocity distribution that we have seen so far, i.e. a noticeable fraction of rubble-
piles that extends to smaller sizes in the former case than in the latter, holds for the
cases of weaker bodies that we have tested. In these cases, we will study only the
cumulative velocity distribution, since it gives smooth final populations. In the PF
cases, rubble-piles are simply also present at sizes an order of magnitude smaller.

The fractions of rubble-piles for both cases 4 and 7 are shown on Fig. 7. This
fraction is larger than for case 1 (Fig. 2), and rubble-piles are present at smaller and
larger sizes. At all sizes, targets can be shattered by smaller projectiles than in case
1, that is with less kinetic energy. Hence the fragments created in the collisions are
less likely to escape, even for collisions by critical projectiles. Targets larger than
200 km can therefore be shattered and reaccumulated, as well as the ones smaller
than 10 km. The smaller size of critical projectiles increases their number for a given
target size, thus favouring the creation of rubble-piles between 10 and 200 km, as
compared to case 1. Here, the strength in the strain—rate scaling law is 10 times
smaller than the one displayed on Fig. 1. So it becomes smaller than for hydrocode
scaling at sizes smaller than about 5 km. It follows that rubble-piles exist only down
to ~4 km in the case of hydrocode scaling, while they exist down to ~2 km in the
case of strain-rate scaling.

IV.E Cases 5 and 6: Strong bodies

We consider now the two cases in which we assume very “strong” targets. One
can see on Fig. 1 that multiplying the strain-rate scaling strength by 10 makes it
very close to the energy scaling strength. So we expect to get rather similar results
in both cases. In the present cases, as opposed to the previous ones, it is rather
difficult to create rubble-piles. The energy required to shatter a given target is 10 to
100 times larger than before, and the critical impacts deliver a lot of kinetic energy
to the fragments, while the largest fragments are rather large, making it difficult
to reaccumulate enough mass to form what we call a rubble-pile. Actually, for the
cumulative distribution velocity cases, there are essentially no rubble-piles (fraction
less than 3 - 1072%) at any size.

In the PF velocity distribution cases, rubble-piles can still be created, albeit in a
narrower size-range, as can be seen in Fig. 8. The largest rubble-piles are about half
the size as those in case 1, while the smallest ones are about twice as large, around
1 km. The maximum fraction of rubble-piles is about 40%, between 20 and 50 km.

IV.F Case 8: Durda et al. scaling law

We finally consider the scaling law proposed by Durda et al. , 1998 that they
obtained by fitting the “debiased” observed size distribution of asteroids for bodies
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larger than a few kilometers. A note of caution is necessary here. First, as mentioned
in Sec. I, they derived a scaling law for the critical specific energy for dispersal,
while our model requires the critical energy for shattering. This led us to define
a varying frx g as a function of the size of the target (Eq. 10). Second, the details
of fragmentation models are different (see Durda and Dermott, 1997 and Petit and
Farinella, 1993). For consistency reasons, we only considered the cumulative velocity
distribution case, with & = 9/4. In Fig. 9, we have plotted Eq. 10 with this value
of k, and @7, given by Eq. 9 and Vs, by Eq. 12. This curve is characterized by a
maximum of 0.6 around 6-7 km and significant decreases for both smaller and larger
targets.

For the creation of rubble-piles, we must consider three different regimes. First,
for the large targets, larger than ~200 km, the strength is very large, so large that
almost no projectile can shatter targets of that size. In case shattering occurs, the
kinetic energy available is so large that enough fragments escape to avoid creating
a rubble-pile, despite the decrease of fxp from 0.1 to 0.015. For intermediate size
targets, between 1 and 200 km, the strength is in the same range as in the previous
cases. However, fxp is large at that size, and the kinetic energy of the fragments
allow them to escape. Finally, for smaller targets, even though the strength is quite
small and fxg is small also, the gravitational binding energy decreases too fast to
allow for much reaccretion. In addition, the collisional lifetime of bodies of that size
is quite small, due to the small strength, and most of the fragments are actually
regenerated by fragmentation of larger targets. These freshly created fragments
appear at first as monolithic bodies.

As noted above, fx g reaches unrealistically low values at small sizes, and maybe
even at large sizes. This results from the requirement that only half the mass of the
target has a kinetic energy large enough to escape (Eq. 10). However, it may turn
out that the amount of kinetic energy of the fragment is larger than the minimum
required by f(> Vi) > 1/2. This is the case, for example, for small targets where
the critical shattering energy is quite large compared to the gravitational binding
energy, thus yielding to Vi, > Vese. So a more realistic definition of fx g could be:

k 2
frE = max (m 9-2/k Ueic, 0.1). (15)
D

In this case, Q% is computed from the first part of Eq. 13. However, the ratio

- 0.411 2950
@b
never exceeds ~0.05, even when fx g has no lower limit, and it can be much smaller
than that if we use Eq. 15. Hence the strength is mostly unchanged, and there is no
reaccumulation of rubble-piles (according to our definition). In all the simulations
performed using Durda et al. scaling law, the maximum reaccumulation is about
20-25% of regolith on top of the largest fragment.

Here we give a brief explanation as why we think that Durda et al. , 1998
is not totally self-consistent. The collisional evolution model used is that work
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is essentially the one described in Durda and Dermott, 1997 (hereafter D & D)
which seems to suffer from some unphysical assumptions. D & D use a power-law
differential size distribution for the fragments resulting from a collision between a
target and a projectile larger than D,,;, determined by their eq. (9)

dN = BD 7dD. (16)

They make a confusion in the definition of p. They first give its value as being
slightly larger than 2.5 (eq. (11), page 149), and then as being slightly larger than 3.5
(page 155). The later value actually corresponds to the differential size distribution
exponent, while the former corresponds to the cumulative size distribution. Their
eq. (12) relates the differential size distribution exponent to the fractional size of the
largest remnant b. So the appropriate range of values for p is really 3.5 to 4. In their
simulations, they fix p, hence fixing b. So the size of the largest fragment is fixed
with respect to the size of the target, regardless of the kinetic energy of the collision.
Finally, in D & D, the reaccumulation is neglected. Actually, they don’t consider the
reaccumulation to be a different process from shattering. In a shaterring followed by
reaccumulation, one would first have a power-law size distribution of fragments, and
then, some of them (which ones depend on the mass-velocity relationship) would
reaccrete on the largest fragment. Hence the distribution would consist of a very
large fragment (the rubble pile) and a power-law distribution of smaller fragments,
with a gap in between. In Durda et al. , 1998, the only change is to define the
minimum kinetic energy required as:

The largest remnant can therefore be either a monolithic fragment or a rubble pile.
But the size distribution is always a power-law with a fixed exponent, starting from
that largest remnant. In addition, the values they use for p (2.82 and 2.47) seem to
be cumulative size distribution exponents, which is not clearly stated, and contrary
to the expected differential size distribution exponent.

IV.G Benz and Asphaug, 1999 scaling law

During the review process, we have learnt about the new scaling laws proposed by
Benz and Asphaug, 1999 and which was not yet published at the time we performed
all the calculations presented in the present paper. Here again, as in Durda et al. ,
1998, the authors give (07, as a function of the size of the target. In addition, all the
other assumptions that we make about the outcome of a collision are not present
in that work, neither explicitly nor implicitly. Therefore, it is not really relevant to
use Benz and Asphaug scaling law in our model. However, we run a simulation for
a basaltic target, and defining Q)% according to Eq. 13, fxr being given by Eq. 15.
For reasons similar to those presented in Durda et al. case, we found no rubble—pile
satisfying our defintion.
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V Conclusions

Our results show that reaccumulation is probably commonplace (albeit not “univer-
sal”) for main-belt asteroids in the intermediate diameter range from ~10 to 200 km.
In this range the fraction of rubble-piles goes from about 30% to 100%, depending
on physical parameters. This may extend to smaller or larger sizes, namely from
0.5-1 to 500 km, depending on the collisional response parameters. The upper cutoff
varies mainly with the assumed scaling law for the impact strength S, allowing for
larger targets to reaccumulate after collisions if they are weak. Rubble-piles can
exist in a noticeable fraction down to ~0.5-1 km if we assume a fixed mass-velocity
relationship such as the one in Eq. 5. For a probably more realistic velocity distri-
bution, such as the one given in Eq. 6, the smallest rubble-piles have a diameter
of 3 to 15 km, depending on the strength of the targets. When assuming weak
targets, such as with the hydrocode scaling law, or the strain-rate scaling law with
Sp = 3-10% J/m3, the fraction of rubble-piles exceeds 90% from 5 to 300 km. On
the opposite, for strong targets, the formation of rubble-piles becomes more diffi-
cult. Actually, no rubble-pile is formed with the cumulative velocity distribution,
for the energy scaling and the strain-—rate scaling with Sy = 3 - 107 J/m?, and it
does not exceed 40% for the PF velocity distribution. When applying our algorithm
to Durda et al. , 1998 scaling law, and changing from @7, to @5, we obtain no
rubble—pile according to our definition (largest fragment less than half the mass of
the reaccumulated body).

The simulations performed in this work show that the mass-velocity dependence
is a main feature of the physics of collisions at high velocity. Caution has to be
taken when considering this relationship in a very schematic way, especially for
small values of the exponent of the power law. In fact, neglecting the dispersion of
data actually present in all laboratory experiments on this issue, may lead to wrong
conclusions. We find a very strong dependence of the reaccumulation fraction, at
any given size, on the mass—velocity relationship. Considering very shallow mass—
velocity relationships, leads to very small fractions of rubble-piles, below 20% for
r =1/13 around 100 km (Fig. 5), and negligible at other size ranges; close to 0% at
all sizes for r = 0. We believe that this is only an effect of the way the mass—velocity
relationship is modelled. Experimental results for the mass and velocity of fragments
show that data are widely dispersed, and that they are loosely distributed about
some power—law relationship. If we schematically assume a mathematical expression
like the one given in the text for that relationship, we are forcing every fragment of
mass m; to have a given velocity v;. In the case in which the relationship between
these two quantities is very shallow, that is when r is very small or, as an extreme
case, when it is zero, then all fragments would have almost the same speed. That
speed may be smaller or larger than the escape velocity from the body. In the case
with 7 = 1/13 we find that most of the fragments have velocities larger than the
escape velocity, and we obviously end up with almost no reaccumulation. In this
way we introduce an artificial bias into the process, that shows up to be relevant
at very small values of the exponent r. More laboratory experiments are indeed
needed to better bound this relationship. It is clear now that having no relationship
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between mass and velocity of fragments (that is assuming a cumulative model) is not
at all the same thing as having a mass—velocity relationship with a null exponent.
It seems obvious that both PF and cumulative models are two “extreme” ways to
model the reaccumulation process; in the former case the mass-velocity relationship
is taken into account “too seriously”, while in the latter it is completely neglected.
Is the truth somewhere in between? That is probably the case, and we intend to
refine the modelling of the phenomenon in future work.

Another interesting result of our simulations is that if we wish to model in a
realistic way the collisional evolution of asteroidal systems, we should not neglect
the physical differences between reaccumulated and unshattered bodies. We have
summarized this differences just focusing on the response to impacts in terms of
the different fraction of kinetic energy fx g, (fxr=0.1 for unshattered objects, and
fkE=0.01 for rubble—piles) delivered to the fragments in the two cases, and we have
found that this implies a detectable difference in the population of asteroids at the
end of the collisional evolution, and that the fraction of reaccumulated asteroids is
noticeably higher.

Both the facts that rubble-piles may be harder to disrupt compared to unshat-
tered objects, and that they may not be unusual also at km-sizes, may have direct
consequences on future deviation/destruction strategies regarding the risk of impact
events on Earth by asteroids.
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Figure captions

Figure 1: Strength versus diameter of the target according to the different scaling
laws considered in the simulations. The strength is the critical energy per unit
volume needed to shatter a target so that the largest fragment has half the mass of
the inital target.

Figure 2: Fraction of rubble-piles (reaccumulated asteroids with mass larger than
twice the mass of the largest fragment) versus diameter at the end of collisional evo-
lution. This plot corresponds to the case 1, strain-rate scaling, for both cummulative
(solid line) and PF (dashed line) velocity distribution. The curves are somewhat
irregular due to the stochastic nature of the collisional process. Depending on the
size of the critical projectile compared to the center of the corresponding bin, the
largest fragment can vary a lot, and also its ability to reaccrete material.

Figure 3: Ratio of mass of reaccumulated fragments over mass of the largest fragment
after shattering, as a function of target size, for case 1. Solid line corresponds to an at
least critical projectile (belonging to the smallest bin that is large enough to shatter
the target), and dashed line to the maximum reaccumulation when varying the
projectile mass. (a) Cumulative velocity distribution. (b) PF velocity distribution.

Figure 4: Projectile diameter versus target diameter for the critical projectile (solid
line), the smallest projectile capable of creating a rubble-pile (short-dashed line)
and for the maximum reaccumulation (long-dashed line) for case 1 and PF velocity
distribution, as a function of target size. The two dashed curves stop when there is
no more reaccumulation. The roughness of the curve is due to the discreteness of
the size bins (size ratio of 2!/3), preventing to find the exact critical values.

Figure 5: Same as Fig. 2, but for PF velocity distribution and r = 1/13.

Figure 6: Same as Fig. 2, but for more dissipative rubble-piles, i.e. fxr = 0.01 for
rubble-piles.

Figure 7: Same as Fig. 2, but for cases 4 (solid line) and 7 (dashed line).
Figure 8: Same as Fig. 2, but for cases 5 (solid line) and 6 (dashed line).

Figure 9: fxp as a function of target diameter, as derived from Durda et al. best
fit for Q7
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Case | Scaling law Sy (J/m?) fxE r k
1 Eq. 2 3 106 0.1 1/6  2.25
2 Eq. 2 3 106 0.1 1/13 -
3 Eq. 2 310°  0.1/001 1/6 225
4 Eq. 2 3 10° 0.1 1/6  2.25
5 Eq. 2 3107 0.1 1/6  2.25
6 Eq. 1 3 106 0.1 1/6  2.25
7 Eq. 3 8.22 10° 0.1 1/6  2.25
8 Eq. 13 ; Eq. 10 - 225

Table 1: The physical parameters used in the simulations are summarized here. The
material density p = 2500 kg/m? and the self-compression coefficient o = 100. For
each case we list here the scaling law, the material strength Sy, anelasticity coefficient
fxE, mass—velocity exponent r, and cumulative velocity distribution exponent £,
when applicable.
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Figure 3; A. Campo Bagatin et al.
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Case 1: PF velocity distribution
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Figure 5; A. Campo Bagatin et al.

Case 2: Strain rate scaling law. Shallow

mass—velocity relation
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Figure 6; A. Campo Bagatin et al.

Case 3: Strainrate scaling law, low f, . rubble—piles
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Figure 7; A. Campo Bagatin et al.

Case 4 and 7: Weak bodies
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Figure 8; A. Campo Bagatin et al.

Case 5 and 6: Strong bodies
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Figure 9; A. Campo Bagatin et al.

Durda et al. scaling law. k = 9/4

0.1

1073
T

0.01

0.1 1 10

Diameter (km)

33



