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Abstract
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1 Introduction

The pioneering work on chiral perturbation theory was based on global symmetry

considerations [1, 2, 3, 4]. The key observation, which gave birth to this develop-

ment, is that a suitable effective field theory involving Goldstone fields automatically

generates transition amplitudes which obey the low energy theorems of current al-

gebra and PCAC. The interaction among the Goldstone bosons is described by an

effective Lagrangian, which is invariant under global chiral transformations. The in-

sight gained thereby not only led to a considerable simplification of current algebra

calculations, but also paved the way to a systematic investigation of the low energy

structure [5, 6, 7].

The line of reasoning used to determine the form of the effective theory, however,

is of heuristic nature — a compelling analysis, which derives the properties of the

effective Lagrangian from those of the underlying theory, is still lacking. The problem

with the standard ”derivation” is that it is based on global symmetry considerations.

Global symmetry provides important constraints, but does not suffice to determine

the low energy structure. A conclusive framework only results if the properties of the

theory are analyzed off the mass shell: one needs to consider Green functions and

study the Ward identities which express the symmetries of the underlying theory at

the local level.

The occurrence of anomalies illustrates the problem: massless QCD is invariant

under global SU(Nf)R × SU(Nf )L, but, unless Nf ≤ 2, the corresponding effective

Lagrangian is not. Indeed, it is well-known from Noether’s theorem that a noninvari-

ant Lagrangian may describe a symmetric theory: under the action of the symmetry

group, the Lagrangian may only pick up a total derivative, such that the action is

not affected. This is precisely what happens in the presence of anomalies. Moreover,

a similar phenomenon also occurs in nonrelativistic effective theories. The effective

Lagrangian of a ferromagnet, e.g., is invariant under rotations of the spin directions

only up to a total derivative [8].

These examples indicate that there is a loophole in the heuristic argument: it is
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not legitimate to postulate that the effective theory is characterized by a symmetric

Lagrangian. Instead, the low energy analysis should exclusively rely on the Ward

identities of the underlying theory and the properties of the effective Lagrangian

should be derived from there. The purpose of the present paper is to show that this

can indeed be done. The result demonstrates that the ”Current algebra plus PCAC”

technique is strictly equivalent to the effective Lagrangian method. More specifically,

it will be shown that, if the underlying theory is Lorentz invariant and does not

contain anomalies, then the Ward identities insure that the low energy structure of

the Green functions may be described in terms of an effective field theory with a

symmetric effective Lagrangian.

2 Generating functional, Ward identities

Consider a spontaneously broken exact symmetry1: the Hamiltonian of the theory

is invariant under a Lie group G, but the ground state is invariant only under the

subgroup H ⊂ G. For each one of the generators of G, there is a conserved current

Jµ
i (x), i = 1, . . . , dG. Assuming that the spontaneous symmetry breakdown gives rise

to order parameters — vacuum expectation values of local operators with nontrivial

transformation properties under G — the Goldstone theorem [9] then asserts that

(i) the spectrum of the theory contains NGB = dG − dH massless particles (dG and

dH count the generators of G and H, respectively) and (ii) the transition matrix

elements of the currents between the vacuum and the Goldstone bosons are different

from zero. Using QCD-terminology, I refer to these particles as ”pions”, denoting the

corresponding one-particle states by |πa(p)>. The index a = 1, . . . ,NGB labels the

different Goldstone flavours and p is the four-momentum. Lorentz invariance implies

that the transition matrix elements are of the form

<0 | Jµ
i |πa(p)>= iF a

i p
µ . (2.1)

1The analysis is extended to approximate symmetries in section 10.
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According to the Goldstone theorem, the dG × NGB matrix F a
i is of rank NGB. In

a suitable basis, the states | πa(p) > are orthogonal and the ”decay constants” F a
i

are real and diagonal, F a
i = δa

i F(i); in particular, these constants vanish if the index

i labels one of the currents of the subgroup H. The matrix F a
i may contain several

independent eigenvalues [10]. The number of independent eigenvalues depends on

the structure of the Lie algebra G of the group.2 Denote the subalgebra spanned by

the generators of H by H and set G=H+K. The subspace K carries a representation

DK(h) of the subgroup H. If this representation is irreducible, then there is a single

decay constant. Otherwise, the number of independent eigenvalues of the matrix F a
i

is given by the number of irreducible components of the representation DK(h). Since

the vectors of the subspace K are in one-to-one correspondence with the Goldstone

bosons, the various components represent pion multiplets, transforming irreducibly

under H.

The following analysis deals with the Green functions formed with the currents.

It is convenient to collect these in the generating functional Γ{f}, defined by

ei Γ{f} =
∞
∑

n=0

in

n!

∫

ddx1 . . . d
dxn f

i1
µ1

(x1) . . . f
in
µn

(xn) ×

× <0 | T{Jµ1

i1
(x1) . . . J

µn

in
(xn)} |0> , (2.2)

where f i
µ(x) is a set of external fields, which play the role of auxiliary variables. The

generating functional admits a simple intuitive interpretation. The external field

may be viewed as a modification of the Lagrangian: L → L + f i
µJ

µ
i . Suppose that,

in the remote past, the system was in the ground state and consider the evolution

in the presence of the external field. The quantity ei Γ{f} is the vacuum-to-vacuum

transition amplitude, i.e., represents the probability amplitude for the system to wind

up in the ground state when x0 → +∞.

In the language of the generating functional, the Ward identities obeyed by the

Green functions of the currents take a remarkably simple form: in the absence of

anomalies, the Ward identities are equivalent to the statement that the generating

2Discrete symmetries may yield additional constraints.
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functional is invariant under gauge transformations of the external fields,

Γ{T (g)f} = Γ{f} . (2.3)

Gauge transformations correspond to space-time-dependent group elements, i.e., to

a map from Minkowski space into the group, x→ g(x) ∈ G. To specify the action of

the group on the external fields, it is convenient to use a matrix representation for

these fields. Consider a representation D(g) of the group. The generators ti of this

representation obey the commutation relation

[ti, tj ] = ifk
ijtk , (2.4)

where the fk
ij are the structure constants of the group. The corresponding matrix

representation of the external fields is defined in terms of the generators as fµ(x) =
∑

i tif
i
µ(x). In this notation, the external fields transform according to

T (g)fµ(x) ≡ D(x)fµ(x)D−1(x) − i∂µD(x)D−1(x) (2.5)

with D(x) ≡ D{g(x)}. In particular, the change in the external fields generated by

an infinitesimal gauge transformation is given by

δf i
µ(x) = ∂µg

i(x) + f i
jkf

j
µ(x)gk(x) , (2.6)

where g1(x), g2(x), . . . are the infinitesimal coordinates of the group element.

The invariance of the generating functional under gauge transformations of the

external fields expresses the symmetry properties of the theory on the level of the

Green functions. It represents the basic ingredient of the following analysis, while

the specific properties, which the theory may otherwise have, do not play any role.

Note that the generating functional is gauge invariant only if the Ward identities

obeyed by the Green functions of the currents do not contain anomalies. If anomalies

do occur, the generating functional transforms in a nontrivial manner under the

group. Throughout the first part of this paper, anomalies are disregarded, such

that equation (2.3) is valid as it stands. The modifications required to account for

anomalous Ward identities are discussed in section 9.
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3 Pion pole dominance

If the spectrum of asymptotic states contains a mass gap, the low energy structure is

trivial: the Fourier transforms of the Green functions admit a straightforward Taylor

series expansion in powers of the momenta. The low energy structure of theories

with a spontaneously broken symmetry is nontrivial, because the spectrum contains

massless particles — the singularities generated by the exchange of Goldstone bosons

do not admit a Taylor series expansion in powers of the momentum. The two-point-

function of the current, e.g., contains a pole term due to the exchange of a pion,
∫

ddxeipx <0 | T{Jµ
i (x)Jν

k (0)} |0>= i
pµpν

p2 + iǫ

∑

a

F a
i F

a
k + . . . (3.1)

The current algebra analysis of the low energy structure is based on the assumption

that

1. The Goldstone bosons generated by spontaneous symmetry breakdown are the

only massless particles contained in the spectrum of asymptotic states.

2. At low energies, the Green functions are dominated by the poles due to the

exchange of these particles.

The pole terms represent one-particle-reducible contributions, involving the propa-

gation of a pion between the various vertices. In the case of the two-point-function,

the pole term corresponds to a graph where the first current emits a pion which

propagates and gets absorbed by the second one. The three-point-function may re-

ceive contributions associated with the exchange of one, two or three pions: Graphs

involving a single pole connect two vertices, one of which involves the coupling of

a pion line to one current, while the other represents an interaction between a pion

and two currents; three poles occur if each of the three currents emits a pion, propa-

gating to a vertex, where the three pions interact with one another, etc. The cluster

decomposition property insures that the vertices occurring in the various graphs are

independent of the particular Green function under consideration — they only de-

pend on the momenta and the flavour quantum numbers of the pions and currents

which enter the vertex in question.
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Clustering implies that the simultaneous exchange of more than one pion between

the same two vertices necessarily also occurs. These processes may be pictured as

graphs containing loops. Again, the vertices occurring therein are the same as for the

one-particle-reducible terms, i.e., for the tree graphs. The corresponding contribution

to the Green function contains a cut in the relevant momentum transfer rather than

a pole.

The third assumption entering the ”current algebra plus PCAC” analysis is that

3. The vertices admit a Taylor series expansion in powers of the momenta.

The vertices determine the residues of the poles due to one-pion-exchange — the

assumption amounts to the hypothesis that these residues may be expanded in a

Taylor series. This represents a quantitative formulation of the first assumption: the

only singularities occurring at low energies are the poles and cuts due to the exchange

of Goldstone bosons. Once these singularities are accounted for, the amplitudes do

admit a Taylor series expansion.

An immediate consequence is that, at low energies, the hidden symmetry prevents

the Goldstone bosons from interacting with one another. Since this property is es-

sential for the consistency of the low energy analysis to be described in the remainder

of this paper, I briefly review the argument [11]. Consider the probability amplitude

for the currents to create pions out of the vacuum. Current conservation requires

pµ <π
a1(p1)π

a2(p2) . . . out |Jµ
i |0>= 0 , (3.2)

where pµ = pµ
1 + pµ

2 + . . . is the four-momentum of the final state. The amplitude

for pair creation, e.g., may contain a pole term proportional to the three-pion vertex

va1a2a3
(p1, p2, p3),

<πa1(p1)π
a2(p2) out |Jµ

i |0>= −i
pµ

3

p2
3 + iǫ

∑

a3

F a3

i va1a2a3
(p1, p2, p3) + . . .

As this represents the only one-particle-reducible contribution to the amplitude in

question, the remainder is free of poles. According to 2., the pole term dominates

the amplitude at low energies, while 3. implies that the vertex admits a Taylor series
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expansion, starting with a momentum independent term va1a2a3
(0, 0, 0). In the limit

pµ
1 , p

µ
2 , p

µ
3 → 0, current conservation thus yields

∑

a3
F a3

i va1a2a3
(0, 0, 0) = 0. In view

of the rank of the matrix F a
i , this implies that the three-pion-vertex vanishes in the

zero momentum limit, va1a2a3
(0, 0, 0) = 0.

The one-particle-reducible pieces can unambigously be distinguished from the

remainder only through the singularities which they produce — the residues of the

poles may be evaluated on the mass shell of the particles which meet at the vertex

in question. For the three-pion-vertex, this means that only the value at p2
1 = p2

2 =

p2
3 = 0 is of physical significance. On account of Lorentz invariance and momentum

conservation, the function va1a2a3
(p1, p2, p3) only depends on the three scalars p2

1, p
2
2

and p2
3. Since the vertex vanishes for p1 = p2 = p3 = 0, it vanishes everywhere on the

mass shell of the three particles, i.e., one-particle-reducible contributions containing a

triple pion vertex do not occur, in any amplitude. Note that Lorentz invariance plays

an essential role here — in the nonrelativistic regime, kinematics does not prevent

three Goldstone bosons from interacting with one another.

The production amplitude for three pions contains at most a single pole from a

tree graph, which involves a four-pion vertex joined to the current by a single pion

propagator,

<πa1(p1)π
a2(p2)π

a3(p3) out |Jµ
i |0>= −i

pµ
4

p2
4 + iǫ

∑

a4

F a4

i va1a2a3a4
(p1, p2, p3, p4) + . . .

At low momenta, this term again dominates over the remainder, such that current

conservation implies va1a2a3a4
(0, 0, 0, 0) = 0: the hidden symmetry prevents pions of

zero momentum from scattering elastically. In contrast to the preceding case, the four

scalars p2
1, . . . , p

2
4 are, however, not the only Lorentz invariants which can be formed

with the momenta: the Mandelstam variables are independent thereof. The residue

of the pole thus becomes a function of say, s and t, and the low energy expansion

starts with va1...a4
(p1, . . . , p4) = c1a1...a4

s + c2a1...a4
t+O(p4).

Using induction, the argument readily extends to vertices with arbitrarily many

pion legs: if the interaction among up to n pions is suppressed by two powers of

momentum, the relation (3.2) implies that this is the case also for n+1 pions: in-
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dependently of the number of pions participating in the interaction, the scattering

amplitudes are at most of order p2. At low energies, the interaction among the Gold-

stone bosons thus becomes weak — pions of zero energy do not interact at all. This is

in marked contrast to the interaction among the quarks and gluons which is strong at

low energies, because QCD is asymptotically free. The qualitative difference is cru-

cial for chiral perturbation theory to be coherent: in this framework, the interaction

among the Goldstone bosons is treated as a perturbation. The opposite behaviour

in the underlying theory prevents a perturbative low energy analysis.

4 Effective Lagrangian

The reformulation of the current algebra technique in the language of an effective field

theory is discussed in detail in the literature [1, 2, 4, 5]. The translation exclusively

involves general, purely kinematical considerations and does not leave anything to

be desired. I review this only very briefly, to set up notation.

The one-particle-reducible contributions, which describe the pole terms occurring

in the various Green functions, may be viewed as tree graphs of a field theory, with

pion fields as basic variables. Since the Goldstone bosons do not carry spin, they

are described by scalar fields, which I denote by πa(x): the fields are in one-to-

one correspondence with the massless one-particle-states | πa(p)> occurring in the

spectrum of asymptotic states.

In this language, lines connecting different vertices represent Feynman propaga-

tors of the pion field,

<0 |T{πa(x)πb(y)}|0>=
1

i
δab∆0(x− y) , ∆0(z) =

∫

ddp

(2π)d

e−ipz

−p2 − iǫ
(4.1)

Vertices which exclusively join pion lines represent interaction terms occurring in the

Lagrangian of the effective pion field theory, i.e., in the effective Lagrangian. It is

important here that the vertices admit a Taylor series expansion in powers of the

momenta. In the language of the effective field theory, the momenta correspond to

derivatives of the fields — the various terms occurring in the Taylor series represent
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local interaction terms, containing the pion fields and their derivatives. A momen-

tum independent vertex joining four pion lines, e.g., corresponds to an interaction

term of the form gabcdπ
aπbπcπd, while a vertex involving two powers of momenta is

represented by an interaction of the type g ′
abcd∂µπ

a∂µπbπcπd. The translation of the

various vertices into corresponding terms of the effective Lagrangian is trivial: if the

vertex in question joins P pion lines and involves a polynomial in the momenta of de-

greeD, the corresponding term in the effective Lagrangian contains P pion fields and,

altogether, D derivatives. Including the standard kinetic term, which characterizes

the propagator (4.1), the Lagrangian takes the form

Leff = 1
2
∂µπ

a∂µπa + v0(π) + v1
ab(π)∂µπ

a∂µπb + . . . (4.2)

The Taylor series v0(π) = 1
2
M2πaπa + 1

3!
gabcπ

aπbπc + 1
4!
gabcdπ

aπbπcπd + . . . yields all

vertices which are momentum independent. The symmetry, of course, forbids a pion

mass term, M = 0. In fact, as discussed in the preceding section, current conserva-

tion implies that all of the vertices vanish at zero momentum. Hence, the effective

Lagrangian does not contain any interaction terms without derivatives, v0(π) = 0 —

the leading terms in the low energy expansion of the various vertices are of O(p2).

The function v1
ab(π) collects all of these. The Taylor expansion of v1

ab(π) starts with

a term quadratic in π; the corresponding Taylor coefficient determines the constants

c1a1...a4
and c2a1...a4

, which, as discussed in the preceding section, account for the lead-

ing terms in the low energy expansion of the four-pion-vertex, etc. The effective

Lagrangian simply collects the information about the various vertices — no more, no

less.

The coupling of the pions to the currents may also be accounted for in the effective

Lagrangian. The vertex which links the current to a single pion, e.g., is described

by the term −F a
i f

i
µ∂

µπa, which is linear, both, in the external fields f i
µ(x) and in

πa(x). Vertices involving several pion legs or several currents correspond to terms in

the effective Lagrangian which contain a corresponding number of pion or external

fields. The full effective Lagrangian, which collects the purely pionic vertices as well
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as those which describe the interactions with the external fields, is of the form

Leff = Leff(π, ∂π, ∂
2π, . . . ; f, ∂f, . . .) . (4.3)

The general vertex occurring in this Lagrangian is of the type ∂DfEπP , where D

is the total number of derivatives, E specifies the number of external fields and P

counts the pion fields entering the interaction term in question. It is convenient to

define the order of the vertex as O = D+E, i.e., to treat the external fields as small

quantities of the same order as the momentum, f ∝ ∂ ∝ p. The Lagrangian then

consists of a series of terms3 with O = 2, 3, . . . ,

Leff = L
(2)
eff + L

(3)
eff + L

(4)
eff + . . . (4.4)

Note that, in this ordering of the vertices, the number P of pion fields is left open

— the term L
(2)
eff , e.g., contains vertices with arbitrarily many pion fields; it collects

the purely pionic contributions to the effective Lagrangian with two derivatives (the

kinetic energy and the term v1
ab(π)∂µπ

a∂µπb ), vertices which involve one external

field and one derivative (such as the term −F a
i f

i
µ∂

µπa ), as well as contributions with

two external fields and no derivatives. The ordering of the various vertices amounts

to a generalized derivative expansion of the effective Lagrangian.

The virtue of the representation in terms of effective fields is that the Feynman

graphs of a local field theory automatically obey the cluster decomposition property:

whenever a given number of pions and currents meet, the same vertex occurs, irre-

spective of the remainder of the diagram. By construction, the one-particle-reducible

contributions to the generating functional are given by the tree graphs of the effective

pion field theory. Moreover, the effective theory also provides for a very simple rep-

resentation of the multipion exchange contributions required by clustering: these are

described by graphs containing loops [4] [5]. The sum of all contributions, involving

the exchange of an arbitrary number of pions between the various vertices is given

by the sum over all Feynman graphs of the effective theory, which is to be treated in

3If the dimension is even, Lorentz invariance only permits terms of even order.
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the standard manner, as a quantum field theory: while the tree graphs represent the

classical limit, graphs with loops describe the quantum fluctuations. Accordingly,

the representation of the generating functional in terms of effective fields takes the

standard form of a Feynman path integral

ei Γ{f} = Z−1
∫

[dπ] ei
∫

ddxLeff (π,∂π,...;f,∂f,...) (4.5)

where Z is the same integral, evaluated at f = 0. This formula represents the

link between the underlying and the effective theories: the quantity Γ{f} on the left

hand side is the generating functional of the Green functions formed with the current

operators of the underlying theory, while the right hand side exclusively involves the

effective field theory. The pion pole dominance hypothesis formulated in section 3

implies that the two sides coincide, order by order in the low energy expansion.

As pointed out by Weinberg [5], the low energy expansion of the path integral

(4.5) may be analyzed perturbatively. To any given, finite order in the momenta,

(i) only graphs with a limited number of loops contribute and (ii) the derivative ex-

pansion of the effective Lagrangian is needed only to the corresponding order. More

specifically, a graph γ with L loops generates a contribution to the generating func-

tional of order O(pOγ), with Oγ =
∑

v∈γ(Ov −2)+(d−2)L. The sum extends over all

vertices of the graph and Ov is the order of the vertex v. The leading contribution

stems from the tree graphs of L
(2)
eff , i.e., from graphs which exclusively involve ver-

tices with Ov = 2 and do not contain loops, L = 0. The current algebra calculations

performed in the 1960’s concern this leading order of the expansion; in these calcu-

lations, only the first term in the derivative expansion of the effective Lagrangian is

needed. At first nonleading order, graphs containing one loop matter and the next

term occurring in the derivative expansion of the Lagrangian also contributes, etc.

Note that the suppression of the loop graphs depends on the dimension of space-time:

in four dimensions, the one-loop graphs are smaller by two powers of momentum as

compared to the tree graphs, while in d = 3, they are suppressed only by one power of

momentum. In two dimensions, loops are not suppressed at all — it is impossible to

analyze the low energy structure of two-dimensional models in terms of an effective
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field theory.

I add a few remarks concerning the properties of the measure [dπ], referring to

the literature [12] for a more detailed discussion. In the language of the path integral,

the measure on the space of field configurations is the essential element in the step

from the classical field theory to the corresponding quantum field theory. An explicit

specification of the measure requires regularization. In the perturbative domain one

is concerned with here, it is well-known that any regularization procedure may be

used and gives rise to the same result when the cutoff is removed. The measure, i.e.,

the integrand of the path integral, does, however, depend on the regularization.

In dimensional regularization, the measure takes a remarkably simple form. If

this cutoff procedure is used, the path integral may be evaluated in the standard

manner, decomposing the Lagrangian into kinetic term plus interaction and evalu-

ating the latter perturbatively, according to the Feynman rules. Equivalently, the

dimensionally regularized measure may be defined through the standard formula for

Gaussian integrals,

∫

[dπ]ei 1

2

∫

ddx∂µπ∂µπ
{

∫

ddxψa(x)π
a(x)

}2n
=

= (2n− 1)!!
{

∫

ddxddy ψa(x)
1
i
δab∆0(x− y)ψb(y)

}n
. (4.6)

As the formula holds for an arbitrary set of test functions ψa(x), it fully determines

the path integral over the various contributions arising in the perturbative expansion.

The reasons for the simplicity of the measure in dimensional regularization are that

this method (i) preserves the symmetries of the theory and (ii) avoids the occurrence

of power divergences (regularization dependent terms which grow with a power of

the cutoff). For other cutoff procedures, the expression for the measure involves

contributions proportional to δ(0) ∼ Λd or to a derivative thereof. In dimensional

regularization, such terms vanish ab initio, δ(0) = ∂µδ(0) = ∂µνδ(0) = . . . = 0.

In the present context, the crucial property of the measure is gauge invariance:

if the action functional Seff{π, f} =
∫

ddxLeff [π, f ] is invariant under a simultaneous

gauge transformation of the fields π, f , then the corresponding path integral is a

gauge invariant functional of the external fields. In contrast to the chiral symmetries
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of fermionic theories, which only hold at the classical level and do not represent sym-

metries of the measure, the quantum fluctuations of the effective fields do maintain

gauge invariance.

5 Invariance theorem

Chiral perturbation theory is based on the assumption that the effective Lagrangian

is invariant under a simultaneous gauge transformation of the fields f i
µ(x) and πa(x).

While the transformation law of the external fields is specified in equation (2.5), the

pion field transforms with a nonlinear representation of G. One usually replaces the

variables πa(x) by a matrix field U(x) with linear transformation properties. In the

context of QCD, e.g., one may work with the unitary matrix U = exp(iπaλa/Fπ),

for which the transformation law reads U
g
→ VRUV

†
L . Invariance of the effective La-

grangian Leff(U, ∂U, . . . ; f, ∂f, . . .) under a simultaneous gauge transformation of the

fields U(x) and f i
µ(x) is sufficient to insure a gauge invariant path integral, but is it

necessary? In the following it is shown that this question can be answered affirma-

tively: For Lorentz invariant theories in four dimensions, the effective Lagrangian is

gauge invariant to all orders of the derivative expansion. I refer to this assertion as

an invariance theorem. The proof makes essential use of Lorentz invariance. In non-

relativistic theories, the time components of the currents may develop an expectation

value. If this happens, the corresponding effective Lagrangian is gauge invariant only

up to a total derivative [8]. Also, for Lorentz invariant theories in three dimensions,

the assertion requires a slight modification, related to the occurrence of Chern-Simons

terms.

For the following general discussion, it is more convenient not to work with a

matrix field, but to view the pion field variables as coordinates of the quotient space

G/H [2]. The elements of this space are the equivalence classes of the group G

under rightmultiplication with the subgroup H: the elements g1, g2 ∈ G belong to

the same class if g−1
1 g2 ∈ H. Picking a representative element n ∈ G in each one

of the equivalence classes, every element of the group may uniquely be decomposed
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as g = nh, with h ∈ H. The group acts on G/H through leftmultiplication: the

image of the class belonging to n is the equivalence class of gn. The corresponding

representative element n′ is obtained from the decomposition gn = n′h.

The space G/H is of dimension dG − dH = NGB. One thus needs as many co-

ordinates to label the elements of G/H as there are Goldstone bosons. Identifying

the variables πa with the coordinates on G/H, the pion field πa(x) may be viewed

as a mapping from Minkowski space into G/H. The representative elements are in

one-to-one correspondence with the field variables, n = nπ. The action of the group

on G/H thus induces a map in the space of the field variables:

π
g
→ ϕ(g, π) . (5.1)

I refer to this map as the canonical transformation law of the pion field. In terms

of the corresponding representative elements, the canonical map is defined by gnπ =

nϕ(g,π)h. The canonical transformation law is equivalent to the one mentioned above,

involving a matrix representation of the pion field, and readily extends to gauge trans-

formations; it suffices to allow the group element which enters the transformation to

depend on x: π(x)
g(x)
→ ϕ (g(x), π(x)).

The effective Lagrangian is a function of the fields πa(x), f i
µ(x) and their deriva-

tives at one and the same point of space-time, Leff = Leff(π, ∂π, . . . ; f, ∂f . . .). In

the following, local functions of this type repeatedly occur. I simplify the notation,

using square brackets to indicate arguments which also enter through their deriva-

tives. In this notation, the Lagrangian is written as Leff [π, f ]. Note the difference

between these local functions and nonlocal functionals such as the classical action of

the effective field theory,

Seff{π, f} ≡
∫

ddxLeff [π, f ] , (5.2)

which depends on the values of the fields π, f throughout space-time. I use curly

brackets for the arguments of such functionals.

The invariance theorem is based on the following assertions, which will be estab-

lished one after the other:
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A. There exists a mapping of the pion field, π
g
→ φ[g, π, f ], such that, together

with the standard gauge transformation of the external fields, the action functional

remains invariant,

Seff{φ[g, π, f ], T (g)f} = Seff{π, f} . (5.3)

The function φ[g, π, f ] is of the same structure as the effective Lagrangian: a sequence

of local terms involving an increasing number of derivatives of the fields g, π, f at the

same point of space-time.

B. The map φ[g, π, f ] represents a nonlinear realization of the group G, i.e., obeys

the composition law

φ[g2g1, π, f ] = φ[g2, φ[g1, π, f ], T (g1)f ] . (5.4)

C. With a suitable change πa → ψa[π, f ] of the field variables, the map may be

brought to the canonical form specified above. In these coordinates, the transforma-

tion law of the pion field is fully determined by the geometry of the groups G and H

and is independent of the interaction. Gauge invariance then takes the form

Seff{ϕ(g, π), T (g)f} = Seff{π, f} . (5.5)

D. In four dimensions, the effective Lagrangian itself is gauge invariant,

Leff [ϕ(g, π), T (g)f ] = Leff [π, f ] . (5.6)

In three dimensions, this is true only up to the possible occurrence of a Cherns-Simons

term of order O(p3),

Leff [π, f ] = L̄eff [π, f ] + LCS[f ]

LCS[f ] = cǫλµνtr{fλ∂µfν −
2
3
ifλfµfν} , (5.7)

where L̄eff [π, f ] is gauge invariant. The Chern-Simons term only involves the external

fields. The integral
∫

d3xLCS[f ] is gauge invariant, but the integrand is not.

In the next two sections, these assertions are shown to hold true at the leading

order of the low energy expansion. The extension of the proof to all orders is discussed

in section 8.
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6 Leading order

Consider first the leading order of the low energy expansion. As discussed in section

4, the expansion starts with the tree graph contributions generated by L
(2)
eff . The

general Lorentz invariant expression for this part of the Lagrangian is of the form

L
(2)
eff = 1

2
gab(π) ∂µπ

a∂µπb − hai(π)f i
µ∂

µπa + 1
2
kik(π)f i

µf
k µ + la(π) πa +mi(π) ∂µf i

µ .

(6.1)

The conservation of energy and momentum implies that total derivatives do not

contribute. Hence one may integrate the last two terms by parts and absorb them

in the first two: without loss of generality, one may set la(π) = mi(π) = 0.

The tree graphs describe the theory in the classical limit. More precisely, the

sum of all tree graph contributions to the path integral (4.5) is given by the classical

action, evaluated at the extremum,

Γ{f} = extremum
π

S
(2)
eff {π, f} +O(p3) (6.2)

Accordingly, the issue boils down to a problem of classical field theory: what are

the conditions to be satisfied by the Lagrangian, in order for the classical action,

evaluated at the extremum, to be gauge invariant?

At the extremum, the pion field obeys the classical equation of motion,

δS
(2)
eff {π, f}

δπa(x)
=
∂L

(2)
eff

∂πa
− ∂µ





∂L
(2)
eff

∂(∂µπa)



 = 0 . (6.3)

As the value of the action at the extremum is stable against variations of the pion field,

the change in the classical solution generated by an infinitesimal gauge transformation

of the external fields does not contribute. Gauge invariance thus requires

Dµ

δS
(2)
eff {π, f}

δf i
µ(x)

= Dµ





∂L
(2)
eff

∂f i
µ



 = 0 . (6.4)

Hence, the pion field simultaneously obeys two differential equations,

gab πb + (∂cgab −
1
2
∂agbc)∂µπ

b∂µπc + (∂ahbi − ∂bhai)f
i
µ∂

µπb
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− hai∂
µf i

µ − 1
2
∂akikf

i
µf

kµ = 0 (6.5)

hai πa + ∂ahbi∂µπ
a∂µπb − ∂akikf

i
µ∂

µπa − kik∂
µfk

µ

+ f l
ikf

k
µ (hal∂

µπa − klmf
mµ) = 0 . (6.6)

The partial derivatives of the functions gab(π), hai(π), kik(π) occuring here represent

derivatives with respect to the pion variables, ∂a = ∂/∂πa.

In analyzing these relations, it is useful to interpret the matrix gab(π) as a metric

on the manifold G/H. Since the expansion in powers of πa starts with the contribution

from the kinetic term, gab(π) = δab + . . . , the metric possesses an inverse gab(π), at

least in the vicinity of the origin. I make use of the standard bookkeeping, converting

covariant indices into contravariant ones and vice versa by means of the metric (e.g.,

ha
i = gabhbi), and also make use of the affine connection induced by the metric,

Γ c
ab = 1

2
gcd(∂agbd + ∂bgad − ∂dgab) . (6.7)

Eliminating πa between the two relations (6.5) and (6.6), one obtains a con-

straint on the pion field and the first derivatives thereof. At a given point x, these

quantities are, however, independent from one another. (At a fixed time, the field πa

and its first time derivative, π̇a, represent initial values, which determine the solu-

tion of the equation of motion and are not constrained by it. In the present context,

where the classical solution of interest is the one selected by Feynman boundary

conditions at x0 → ±∞, these functions depend on the behaviour of the external

field in the past and in the future, while the constraint only involves the external

field and its first derivatives at the point under consideration.) Hence the constraint

is consistent with the equation of motion only if the coefficients occurring therein

vanish identically. This requires

(a) dih
a
k − dkh

a
i = f l

ikh
a
l

(b) ∇ahbi + ∇bhai = 0

(c) kik = gabhaihbk , (6.8)
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where the differential operators di stand for

di = ha
i(π)∂a (6.9)

and ∇a is the covariant derivative with respect to the metric

∇ahbi = ∂ahbi − Γ c
abhci . (6.10)

Relation (c) implies that the functions kik(π) are determined by gab(π) and ha
i(π).

The effective Lagrangian may thus be written in the form

L
(2)
eff = 1

2
gab(π)Dµπ

aDµπb (6.11)

Dµπ
a ≡ ∂µπ

a − ha
i(π) f i

µ . (6.12)

The purely pionic vertices are described by the metric gab(π); the coupling to the

external field in addition involves the functions ha
i(π). In particular, the vacuum-

to-pion matrix elements of the currents are given by F a
i = hai(0). The tree graphs

generated by L
(2)
eff satisfy the Ward identities if and only if gab(π) and ha

i(π) obey the

first order differential equations (a) and (b).

These relations insure gauge invariance of the Lagrangian L
(2)
eff . Indeed, consider

the infinitesimal gauge transformation of the external field specified in (2.6) and

subject the pion field to the change

δπa(x) = gi(x) ha
i (π(x)) . (6.13)

The relation (a) then implies that the quantity Dµπ
a defined in (6.12) transforms

covariantly,

δ {Dµπ
a} = (gi ∂ bh

a
i)Dµπ

b . (6.14)

The deformation in the metric is given by δgab = ∂cgabδπ
c. Collecting terms, the

change in the effective Lagrangian may be expressed in terms of the covariant deriva-

tive defined in (6.10),

δL
(2)
eff = gi ∇ahbiDµπ

aDµπb . (6.15)

Finally, since only the symmetric part of the derivative contributes, the relation (b)

entails the invariance property claimed above, δL
(2)
eff = 0.
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This verifies the invariance theorem at leading order of the low energy expansion,

except for the claim that the transformation law of the pion field takes the canonical

form specified in section 5.

7 Differential geometry of the Goldstone bosons

Condition (b) states that the vectors ha
i(π) represent Killing vectors of the differential

geometry characterized by the metric gab(π). This geometry thus admits a group of

isometries. Moreover, relation (a) shows that the structure constants of the isometry

group are those of G: the metric gab(π) describes a symmetric space.

The relation (a) implies that the differential operators di obey the commutation

rule [di, dj] = fk
ijdk, i.e., the operators idi form a representation of the Lie algebra

of G. Any representation of the Lie algebra may be integrated to a representation

of the group, at least in a finite neighbourhood of the unit element. The resulting

representation O(g) of G obeys the composition law O(g2)O(g1) = O(g2g1), provided

all of the elements are in the neighbourhood of unity. If the group is multiply

connected, there are inequivalent paths connecting the unit element with g, such

that the composition law may fail to hold globally. In the context of the low energy

expansion, the global properties are, however, not relevant. The evaluation of the

path integral to any given order of the low energy expansion only involves vertices

with a limited number of pion fields. These vertices are the Taylor coefficients of the

functions gab(π), ha
i(π), kik(π). The entire analysis thus only concerns the vicinity

of the unit element, where the composition law holds as it stands. I refrain from

repeatedly mentioning this proviso and simply speak of the group when referring to

elements contained in a finite neighbourhood of unity.

Since O(g) is a representation of the group, the function ϕ̄a(g, π) ≡ O(g−1)πa

obeys the composition rule

ϕ̄(g2, ϕ̄(g1, π)) = ϕ̄(g2g1, π) (7.1)

Remarkably, this property determines the function ϕ̄(g, π) essentially uniquely [2].
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Consider the image of the origin, ϕ̄(g, 0). The infinitesimal form (6.13) of the map

shows that the origin is invariant under H: the quantity hai(0) = F a
i vanishes if

the index i belongs to the subalgebra H. Accordingly, ϕ̄(h, 0) = 0, ∀ h ∈ H. The

composition law (7.1) then implies ϕ̄(gh, 0) = ϕ̄(g, 0), i.e., the value of the function

only depends on the equivalence class. Hence, ϕ̄(g, 0) maps the elements of G/H into

the space of pion field variables. The mapping is unique, except for the freedom in

the choice of coordinates on G/H and in the space of field variables. Without loss

of generality, one may choose variables such that the function ϕ̄(g, 0) coincides with

the canonical map ϕ(g, 0) (which, of course, also depends on the parametrization).

The composition law then implies that the two maps coincide everywhere on G/H,

ϕ̄(g, π) = ϕ(g, π). This verifies the claim that the transformation law of the pion

field may be brought to canonical form.

The argument just given shows that the functions ha
i(π), which collect the vertices

associated with the coupling of the Goldstone bosons to the currents, are purely

geometrical quantities, determined by the structure of the groups G and H: these

functions represent the infinitesimal form of the map ϕ(g, π).

Next, consider the metric. The Killing condition (b) represents the infinitesimal

form of the relation

∂aϕ
c(g, π)∂ bϕ

d(g, π)gcd (ϕ(g, π)) = gab(π) , (7.2)

which states that the line element ds2 = gab(π)dπadπb is invariant under the mapping

π
g
→ ϕ(g, π). Every point in the neighbourhood may be reached from the origin with a

suitable choice of g, such that the above relation fixes the form of the metic in terms

of the matrix gab(0). The standard normalization of the pion field, gab(0) = δab,

suggests that the metric is fully determined by group geometry. This impression

is misleading, however, because the freedom in the choice of variables is in effect

exploited twice: first, it was argued that the form of the Killing vectors ha
i(π) only

depends on the choice of coordinates on G/H and, now, the same freedom is used to

identify the metric at the origin with the euclidean metric of the tangent space. The

scalar product of the Killing vectors is independent of the choice of coordinates and
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is determined by the decay constants,

gab(0)ha
i(0)hb

k(0) = δikF
2
(i) . (7.3)

If one exploits the freedom in the choice of coordinates by setting gab(0) = δab, then

the Killing vectors do carry information which goes beyond group geometry — the

decay constants are then given by the components of the Killing vectors at the origin.

The main point here is that, up to parametrization, the leading term in the deriva-

tive expansion of the effective Lagrangian is fully determined by the decay constants,

which play the role of effective coupling constants. The number of independent ef-

fective couplings is determined by the transformation properties of the Goldstone

bosons under H: every irreducible multiplet requires its own decay constant [10].

The parametrization used is irrelevant — the generating functional is given by the

extremum of the classical action, which is invariant under a change of variables.

I briefly comment on the geometric significance of the result. The intrinsic geo-

metry of a compact Lie group is invariant under both, right- and lefttranslations.

For simple groups, this geometry is fixed up to an overall normalization constant,

which may be chosen such that the inner product of the Killing vectors agrees with

the Cartan metric of the Lie algebra. By projection, the geometry of the group also

induces an intrinsic metric on the quotient space G/H, which I denote by ḡab(π).

If the pions transform irreducibly under H, the metric occurring in the effective

Lagrangian indeed coincides with the intrinsic geometry of G/H, except for an overall

factor: gab(π) = F 2ḡab(π). In the general case, however, the induced metric is not

the one which matters. For the extreme situation of a totally broken symmetry, e.g.,

where H only contains the unit element, the quotient space G/H is the group itself and

the induced metric coincides with the intrinsic geometry of the group. In that case,

the metric of the effective Lagrangian, however, involves as many independent decay

constants as there are pions, indicating that the relevant geometry is less symmetric

than the intrinsic one. In the general case, the geometry relevant for the Goldstone

bosons is the one induced on the quotient space G/H by the general metric on the

group which is leftinvariant under G, but rightinvariant only under H. The metric rel-
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evant for the Lagrangian is obtained by decomposing the intrinsic geometry of G/H

into a sum of contributions ḡab(π) =
∑

i g
(i)
ab (π) (at the origin, the decomposition

corresponds to the various orthogonal subspaces of K, which transform irreducibly

under H). The decay constants stretch the different components of the intrinsic line

element by different factors, replacing the above sum by gab(π) =
∑

i F
2
(i)g

(i)
ab (π). The

geometry of the manifold G/H thus resembles an ellipsoid, the decay constants play-

ing the role of the semi-axes. The analogy is not perfect, however: the metric gab(π)

still possesses G as a group of isometries, which acts transitively on the manifold,

such that the geometry in the vicinity of any given point is the same as around the

origin.

8 Higher orders

In the present section, the above analysis of the leading term L
(2)
eff is extended to

all orders of the derivative expansion, using induction. The induction hypothesis

is that the invariance theorem holds up to and including L
(n)
eff . For the low energy

representation of the generating functional to order pn+1, the action entering the path

integral (4.5) may be truncated at

Seff{π, f}n+1 = S
(2)
eff {π, f} + . . .+ S

(n+1)
eff {π, f}

S
(m)
eff {π, f} ≡

∫

ddxL
(m)
eff [π, f ] . (8.1)

Moreover, the term S
(n+1)
eff {π, f} exclusively enters through tree graph contributions.

Loop graphs only involve vertices from those parts of the action, which, by the

induction hypothesis, are gauge invariant. Hence the path integral is gauge invariant

to order pn+1 if and only if the tree graphs are. Accordingly, the issue again reduces to

a problem of classical field theory: determine the general solution of the simultaneous

differential equations

δSeff{π, f}n+1

δπa(x)
= 0 , Dµ

δSeff{π, f}n+1

δf i
µ(x)

= 0 . (8.2)
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The core of the proof consists of an analysis of these two equations, which proceeds

along the list of assertions made in section 5. I briefly outline the essence of the

argument, referring to the appendix for the details.

A. The first step is the construction of the map φ[g, π, f ] (appendix A). The

construction merely extends the discussion given in section 6: for the two differen-

tial equations to be consistent with one another, they must be linearly dependent.

Roughly speaking, the function φ[g, π, f ] is the coefficient occurring in the relation

which expresses this linear dependence. As compared to the situation encountered

in the preceding section, the only complication brought about by the occurrence of

higher derivatives is that the transformation law of the pion field is modified and

now involves derivatives of the fields gi(x), πa(x), as well as the external fields f i
µ(x).

B. The next step concerns the assertion that the mapping π
g
→ φ[g, π, f ] yields a

representation of the group. Denote the solution of the equation of motion by πf (x).

The invariance of the action implies that the transformed solution, φ[g, πf , f ] obeys

the equation of motion belonging to the transformed external fields, T (g)f . Since the

solution is unique, this implies φ[g, πf , f ] = πT (g)f . Now, the transformation law of

the external fields does satisfy the composition law, T (g2)T (g1)f = T (g2g1)f . Hence

φ[g2, φ[g1, πf , f ], T (g1)f ] = φ[g2g1, πf , f ] — on the solution of the equation of motion,

the composition rule is valid. The argument is extended to arbitrary configurations

of the pion field in appendix B.

C. The proof of the third assertion is more involved. It exploits the fact that

the composition law strongly constrains the form of the local function φ[g, π, f ]. The

general solution of this constraint shows that the map differs from the canonical

one only by a change of variables (appendix C). This then completes the inductive

argument, demonstrating that the assertions A,B,C hold to all orders: the functional

Seff{π, f} is invariant under the canonical transformation of the fields π and f .

D. The consequences for the effective Lagrangian may then be derived as follows.

Since the element g = n−1
π takes the pion field into the origin, the invariance property

(5.5) implies that the action functional may be expressed in terms of its values at
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zero field,

Seff{π, f} = Seff{0, fπ} , fπ = T (n−1
π )f . (8.3)

The relation shows that the difference Leff [π, f ] − Leff [0, fπ] is a total derivative,

∂µω
µ[π, f ], which disappears if the pion field is turned off, ∂µω

µ[0, f ] = 0. Since one

may add a total derivative to the Lagrangian without changing the content of the

theory, it is legitimate to replace Leff [π, f ] by Leff [π, f ] − ∂µω
µ[π, f ], such that

Leff [π, f ] = Leff [0, fπ] . (8.4)

The configuration π = 0 is invariant under the subgroup H; gauge invariance thus

requires

Seff{0, T (h)f} = Seff{0, f} ∀h ∈ H . (8.5)

Conversely, this property insures that the corresponding full action, specified in equa-

tion (8.3), is gauge invariant under the full group. So, what remains to be done is to

analyze the implications of gauge invariance with respect to H at zero pion field.

Under the action of the subgroup, the external vector field fµ associated with

the currents of G does not transform irreducibly. Decompose the field according to

fµ = vµ + aµ, where the first part contains those components which belong to the

subspace H of the Lie algebra, vµ =
∑

i∈H ti f
i
µ, while aµ =

∑

i∈K ti f
i
µ represents the

remainder (in QCD, vµ and aµ are the vector and axial vector fields, respectively).

The field vµ transforms like a gauge field of H, while aµ transforms homogeneously,

according to the same representation as the pions,

T (h)vµ = D(h)vµD(h)−1 − i∂µD(h)D(h)−1 , T (h)aµ = D(h)aµD(h)−1 . (8.6)

Consider first the dependence of the Lagrangian on aµ. The relation (8.5) implies

that the variational derivative

Aµ[v, a] =
δSeff{0, v, a}

δaµ(x)
(8.7)

transforms according to

Aµ[T (h)v, T (h)a] = D(h)Aµ[v, a]D(h)−1 . (8.8)
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The difference between the full action and the one for aµ = 0 is given by the integral

over the derivative d
dt
Seff{0, v, ta} from t = 0 to t = 1,

Seff{0, v, a} = Seff{0, v, 0}+
∫

ddx
∫ 1

0
dt tr(aµA

µ[v, ta]) . (8.9)

The action determines the Lagrangian only up to a total derivative. One may exploit

this freedom and set

Leff [0, v, a] = Leff [0, v, 0] +
∫ 1

0
dt tr(aµA

µ[v, ta]) . (8.10)

The virtue of this choice is that, by construction, the part of the Lagrangian which

involves the field aµ is gauge invariant.

This reduces the matter to an elementary problem of gauge field theory: the

remainder of the action, Seff{0, v, 0}, exclusively involves a gauge field, vµ(x), with

gauge group H. The action is gauge invariant. What are the implications for the

Lagrangian?

The example of the Chern-Simons Lagrangian in d = 3 shows that gauge invari-

ance of the action does not in general imply gauge invariance of the Lagrangian. In

appendix D, it is shown that this example is the exception: the effective Lagrangian

is gauge invariant, up to a Chern-Simons term, which may only occur for d = 3. The

proof relies on a general property of local differential forms, which is established in

appendix E.

Note that gauge invariance does not fix the form of the effective Lagrangian

completely: gauge invariant total derivatives may be added and there are point

transformations which preserve the canonical transformation law of the pion field.

Only the leading term of the derivative expansion is fully determined by the geometry

of the groups G and H. The remaining freedom in the choice of the field variables is

equivalent to the well-known fact that one is free to modify the higher order terms

by adding gauge invariant multiples of the equation of motion.
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9 Anomalies

The generating functional is gauge invariant only if the Ward identities do not contain

anomalies. I briefly discuss the modification of the preceding analysis required by

the occurrence of anomalies. For definiteness, I use the nomenclature of QCD.

If there are Nf massless quark flavours, the Hamiltonian is invariant under the

group G = SU(Nf )R × SU(Nf)L of global chiral rotations,

T (g)q(x)R = VR q(x)R , T (g)q(x)L = VL q(x)L (9.1)

and the corresponding currents Jµ
i R = q̄Rγµ

1
2
λiqR, Jµ

i L = q̄Lγµ
1
2
λiqL are strictly con-

served.4 The generating functional of massless QCD thus involves two sets of external

fields, fµ = (fµ(x)R, fµ(x)L). In view of the anomalous terms occurring in the Ward

identities for the Green functions formed with the currents, the generating functional,

however, fails to be gauge invariant. Under an infinitesimal chiral rotation,

VR = 1 + iα(x) + iβ(x) VL = 1 + iα(x) − iβ(x) , (9.2)

the generating functional undergoes the change

δΓ{f} = −
∫

d4xtr{β(x) Ω[f(x)]} , (9.3)

where Ω[f ] is a local function of O(p4), formed exclusively with the external fields

— the explicit expression is not needed here [13].

The main point is that anomalies do not destroy the symmetry of the theory with

respect to gauge transformations of the external fields — they merely modify the

transformation law of the generating functional, replacing the condition δΓ{f} = 0

by the constraint (9.3), which is equally strong.

In the low energy expansion, anomalies only start showing up at first nonleading

order — the differential geometry of L
(2)
eff , discussed in section 7, is not affected. The

4Note that the discussion does not include the singlet currents — the axial U(1)-current fails to

be conserved, also on account of an anomaly. The effective Lagrangian analysis may be extended

to the Green functions of these currents by treating the vacuum angle as an external field [15].

26



condition (9.3) does, however, manifest itself in the form of L
(4)
eff : in the presence of

anomalies, this term is not gauge invariant. Wess and Zumino [14] have explicitly

constructed an effective Lagrangian for which the action transforms according to

(9.3). The difference L̄
(4)
eff = L

(4)
eff − LWZ, therefore, yields a gauge invariant action.

The invariance theorem thus insures that, for a suitable choice of the field variables,

the quantity L̄
(4)
eff = L̄

(4)
eff [π, f ] is invariant under the canonical transformation of the

fields π, f .

At higher orders of the expansion, the Wess-Zumino term also occurs in loop

graphs. The corresponding contributions to the path integral are analyzed in detail

in the literature [16]. It turns out that the Wess-Zumino term produces a noninvari-

ant contribution to the generating functional exclusively through the tree graphs of

order O(p4) — the loops yield gauge invariant contributions. This implies that the

Lagrangian

Leff [π, f ] = L̄eff [π, f ] + LWZ[π, f ] (9.4)

yields a generating functional obeying (9.3) if and only if the contribution to the

action from L̄eff [π, f ] is gauge invariant. It thus suffices to equip the effective La-

grangian with the appropriate Wess-Zumino term — the remainder has the same

properties as if the theory were anomaly free. Accordingly, the invariance theorem

implies gauge invariance of L̄eff [π, f ] to all orders of the derivative expansion.

10 Approximate symmetries

In the case of an approximate symmetry, the Lagrangian of the underlying theory

contains terms which explicitly break gauge invariance. In the low energy domain,

the consequences of the symmetry breaking are determined by the transformation

properties of the corresponding terms in the Lagrangian,

L = L0 +mαO
α . (10.1)

The first term is invariant, while the operators Oα transform with a nontrivial repre-

sentation D̂α
β(g) of G and the constants mα determine the strength of the symmetry
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breaking. In the case of QCD, e.g., the breaking is bilinear in the quark fields,

Oα = ( q̄ i
R q

j
L , q̄

i
L q

j
R ), and the elements of the quark mass matrix play the role of the

symmetry breaking parameters mα.

Since the currents are not conserved, the generating functional considered in the

preceding sections fails to be invariant under gauge transformations of the exter-

nal fields — the Ward identities contain additional contributions, generated by the

symmetry breaking part of the Lagrangian. These contributions involve Green func-

tions which not only contain the currents, but in addition involve the operators Oα.

It is useful to extend the generating functional accordingly, treating the symmetry

breaking parameters also as external fields, on the same footing as the vector fields

associated with the currents. The extended generating functional then contains two

arguments, Γ = Γ{f,m}. The Green functions of the operators Jµ
i , O

α are obtained

by expanding this object in terms of the external fields f i
µ(x) andmα(x). Note that, if

the field mα(x) is turned off, one is dealing with the symmetric theory, characterized

by L0. To obtain the Green functions in the presence of explicit symmetry breaking,

the expansion is to be performed around the nonzero, constant value of mα which

occurs in L.

In the absence of anomalies, the Ward identities are again equivalent to gauge

invariance of the extended generating functional. The only modification brought

about by the symmetry breaking terms is that the corresponding external fields

also transform under the action of the group. The transformation law involves the

representation carried by the operators Oα:

T (g)mα = D̂β
α(g−1)mβ (10.2)

The generating functional is invariant under a simultaneous transformation of the

two arguments,

Γ{T (g)f, T (g)m} = Γ{f,m} . (10.3)

(If anomalies occur, this relation is to be replaced by equation (9.3) — the form of

the anomalous contributions is not affected by the symmetry breaking, provided the

dimension of the operators Oα is smaller than the dimension of space-time.)
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The analysis of the condition (10.3) proceeds along the same lines as before.

The effective Lagrangian now involves two sets of external fields rather than one,

Leff = Leff [π, f,m] and the derivative expansion now also involves powers of the field

mα. The leading term is of the form mαe
α(π) — it is linear in mα and does not

contain derivatives of the pion field. As it is the case with the analogous quantities

gab(π), ha
i(π), which specify the leading contribution in the symmetric part of the

effective Lagrangian, gauge invariance fixes the form of the function eα(π) in terms

of its values at π = 0. The effective coupling constants eα(0) are related to the

vacuum expectation values of the operators Oα, which represent order parameters of

the spontaneously broken symmetry. The number of independent coupling constants

permitted by the continous part of the symmetry is equal to the number of one-

dimensional invariant subspaces of Dα
β(h), h ∈ H; discrete symmetries may impose

additional constraints.

The Taylor expansion of the term mαe
α(π) in general contains a contribution

which is quadratic in the pion fields, i.e., a pion mass term, with M2
π ∝ mα. It is

convenient to order the derivative expansion accordingly, treating mα as a quantity

of order p2. Needless to say that an analysis in terms of effective fields is useful only if

the symmetry breaking parameters are sufficiently small, such that the pions remain

light and the pion pole dominance hypothesis still makes sense.

The inductive argument given in section 8 goes through without significant mod-

ifications, because the specific transformation properties of the external fields do not

play an important role in this context. With a suitable change of variables, the action

of the effective theory may again be brought to a form where it is invariant under a

canonical gauge transformation of the arguments,

Seff{ϕ(g, π), T (g)f, T (g)m} = Seff{π, f,m} . (10.4)

This condition implies that the variational derivative

Mα[π, f,m] =
δSeff{π, f,m}

δmα(x)
(10.5)
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transforms covariantly,

Mα[ϕ(g, π), T (g)f, T (g)m] = Dα
β(g)Mβ[π, f,m] . (10.6)

Integrating the quantity d
dt
Seff{π, f, tm} from t = 0 to t = 1, this yields

Seff{π, f,m} = Seff{π, f, 0} +
∫

ddx
∫ 1

0
dtmαM

α[π, f, tm] , (10.7)

such that the Lagrangian may be identified with

Leff [π, f,m] = Leff [π, f, 0] +
∫ 1

0
dtmαM

α[π, f, tm] . (10.8)

In view of (10.6), this convention insures that the part of the Lagrangian which

depends on the field mα(x) is manifestly gauge invariant. The remainder is the

Lagrangian of the symmetric theory, where the preceding analysis applies as it stands.

This shows that the invariance theorem also holds if the Lagrangian of the un-

derlying theory contains symmetry breaking terms. In the framework of the effective

theory, the symmetry breaking parameters mα act like spurions, transforming con-

tragrediently to the operators Oα which generate the asymmetries.

11 Summary and conclusion

According to the Goldstone theorem, the spontaneous breakdown of a continuous

symmetry gives rise to massless particles, pions. The pion pole dominance hypothe-

sis implies that the poles generated by the exchange of these particles dominate the

low energy structure of the theory. Clustering then requires that multipion exchange

necessarily also occurs, generating cuts. As pointed out in the early work on the

subject, the poles and cuts due to the Goldstone bosons may be described in terms

of an effective field theory, involving pion fields as dynamical variables.

The path integral formula (4.5) provides the link between the underlying and

effective theories; it represents the generating functional Γ{f} of the Green functions

formed with the current operators in terms of an effective Lagrangian. The derivation

of this formula is based on general kinematics and does not involve assumptions
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beyond the pion pole dominance hypothesis. The underlying theory does not fully

determine the effective Lagrangian, however:

1. The operation Leff → Leff + ∂µω
µ does not change the content of the effective

theory.

2. The pion fields represent mere variables of integration. The effective theory

remains the same if the pion field is subject to a point transformation.

In view of these ambiguities, which are inherent in the notion of an effective La-

grangian, it is not evident that the symmetries of the underlying theory insure a

symmetric effective Lagrangian. For the invariance of the path integral, it suffices

that the action is invariant — the Lagrangian may pick up a total derivative.

Previous work on chiral perturbation theory is based on the assumption that the

effective Lagrangian does inherit the symmetry properties of the underlying theory.

The assumption plays a crucial role in the applications, because the symmetry is used

to determine the explicit form of the effective Lagrangian. The essence of the present

paper is the statement that the assumption is justified. The proof is rather involved,

precisely because, on account of the above ambiguities, the effective Lagrangian is

partly a matter of choice.

The proof exploits the fact that, in the absence of anomalies, the Ward identities

obeyed by the Green functions of the currents are equivalent to gauge invariance of

the generating functional, i.e., to a local form of the symmetry. The consequences for

the effective Lagrangian are then worked out by analyzing the perturbative expan-

sion of the path integral. The result is formulated as an invariance theorem, which

states that, in the absence of anomalies, the freedom of adding total derivatives and

performing a change of field variables may be used to bring the effective Lagrangian

to manifestly gauge invariant form. If the underlying theory contains anomalies, the

effective Lagrangian contains a corresponding Wess-Zumino term — the remainder

is gauge invariant.

The theorem establishes the relevant properties of the effective Lagrangian as a

consequence of the Ward identities and thus puts chiral perturbation theory on a firm
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basis. Note that the proof makes essential use of Lorentz invariance; the theorem

does not hold for nonrelativistic theories. The relevant generalization is described

elsewhere [8].
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Appendix

A Construction of the map φ[g, π, f ]

To establish the first one of the four assertions, consider the difference

∆i[π, f ] ≡ Dµ

δSeff{π, f}n+1

δf i
µ(x)

− ha
i(π)

δSeff{π, f}n+1

δπa(x)
, (A.1)

formed with the Killing vectors ha
i(π), which specify the infinitesimal form of the

canonical transformation law. Since all of the terms except S
(n+1)
eff {π, f} are invariant

under the canonical transformation of the fields π and f , the function ∆i[π, f ] only

receives a contribution from this term, such that ∆i[π, f ] = O(pn+1).

At the extremum of the classical action, ∆i[π, f ] vanishes. There, the pion field

is not an independent variable, but is subject to the equation of motion, (8.2). In

the present context, this equation is needed only to leading order, where it specifies

the second derivative of the pion field, π̈, in terms of π, π̇ and spacial derivatives

thereof. The higher order time derivatives may also be expressed in terms of these

quantities. At the extremum, the function ∆i[π, f ] thus reduces to an expression

which exclusively contains π, π̇ and spacial derivatives thereof. As discussed in section

6, these are independent of one another — for the expression to vanish, it must vanish

identically.

Next, dismiss the constraint on the pion field and consider the function ∆i[π, f ]

away from the extremum. The higher order time derivatives may be eliminated in

favour of the variables π, π̇ and their spacial derivatives, except that, instead of a

zero for the right hand side of the equation of motion, the quantity δS/δπ and the

derivatives thereof must now be retained. Since the part which does not contain

these extra terms vanishes identically, the result is of the form

∆i[π, f ] =
n−1
∑

k=0

ηa µ1...µk

i [π, f ]∂µ1
. . . ∂µk

δSeff{π, f}n+1

δπa(x)
. (A.2)

This equation states that ∆i[π, f ] is the change occurring in Seff{π, f}n+1 under the
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shift

δπa = η̄a[g, π, f ] ≡
n−1
∑

k=0

(−1)k∂µ1
. . . ∂µk

(

gi ηa µ1...µk

i [π, f ]
)

. (A.3)

of the pion field. Hence Seff{π, f}n+1 is invariant under an infinitesimal gauge trans-

formation of the external fields, provided the pion field is subject to the transforma-

tion

δπa = giha
i(π) + η̄a[g, π, f ] . (A.4)

The statement holds for the action functional as such, not only at the extremum. The

local functions ηa µ1...µk

i [π, f ] represent a generalization of the Killing vectors ha
i(π).

Since ∆i[π, f ] and δS/δπ are of order n+1 and 2, repectively, the function η̄a[g, π, f ],

which specifies the modification of the transformation law, is a local expression of

order n−1.

Any finite element gi(x) may be reached by a sequence of infinitesimal steps, e.g.,

along the path gi(x)t = tgi(x), 0 ≤ t ≤ 1. The transformation law (A.3) thus induces

a mapping of the pion field also for finite gauge transformations, which I denote by

πa g
→ φ[g, π, f ]. This verifies the first one of the four properties listed in section 5:

the transformation of the pion field just constructed insures

Seff{φ[g, π, f ], T (g)f}n+1 = S{π, f}n+1 +O(pn+2) . (A.5)

The map φ[g, π, f ] deviates from the canonical transformation ϕa(g, π) only through

the contributions of order n−1, generated by η̄a[g, π, f ],

φa[g, π, f ] = ϕa(g, π) + ηa[g, π, f ] . (A.6)

The local function ηa[g, π, f ] defined by this relation generalizes the quantity η̄a[g, π, f ]

to group elements which are not in the infinitesimal neighbourhood of unity.

B Composition law

To establish the composition law (5.4), it is advantageous to express the higher order

time derivatives occurring in S
(n+1)
eff {π, f} in terms of π, π̇, δS/δπ and the space
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derivatives thereof, in the manner discussed in appendix A. Note that the quantity

δS/δπ is needed only to leading order — the operation is exclusively applied to the

highest order term of the truncated action. Integrating by parts, the result may be

written in the form

S
(n+1)
eff {π, f} = Ŝ

(n+1)
eff {π, f} −

∫

ddxψa[π, f ]
δS

δπa(x)
. (B.1)

where Ŝ
(n+1)
eff {π, f} only involves π and π̇, while ψa[π, f ] is a local function of order

pn−1. The extra term is equivalent to a shift in the pion field, i.e. to a change of

variables,

π̂a = πa + ψa[π, f ] . (B.2)

Indeed, the change of variables L̂eff [π̂, f ] ≡ Leff [π, f ] leaves the terms L
(2)
eff , . . . ,L

(n)
eff

unaffected and modifies the contribution of order pn+1 in accordance with (B.1).

This demonstrates that, with a suitable change of field variables, S
(n+1)
eff {π, f} may

be brought to a form where it involves the pion field only through π, π̇ and their

space derivatives.

Adopting this choice of variables, the quantity ∆i[π, f ] now contains at most two

time derivatives of the pion field; moreover, the expression is linear in π̈. In view of

(A.2), this immediately implies that the coefficients ηa µ1...µk

i [π, f ] only contain π and

π̇ and, moreover, vanish if one of the indices µ1, . . . , µk is equal to zero. Accordingly,

the function η[g, π, f ], which specifies the transformation law of the pion field, only

involves π and π̇ and the space derivatives thereof. The same then holds true for

the difference φ[g2, φ[g1, π, f ], T (g1)f ]−φ[g2g1, π, f ]. In other words, the difference is

the same, irrespective of whether or not the pion field obeys the equation of motion.

Since the difference disappears when this equation is satisfied, it vanishes identically.

As the change of variables used above singles out the time coordinate, it does not

preserve Lorentz invariance. It suffices, however, to transform back to the original

coordinates — the composition law holds for all parametrizations of the pion field if

it holds in one. This verifies that the mapping π
g
→ φ[g, π, f ] constructed in appendix

A is a representation of the group.
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C Canonical form of the transformation law

The representation property of the map π
g
→ φ[g, π, f ] amounts to a linear relation

for the function η[g, π, f ],

ηa[g2g1, π, f ] = ηa[g2, π1, T (g1)f ] +
∂ϕa(g2, π1)

∂πb
1

ηb[g1, π, f ] , (C.1)

with π1 = ϕ(g1, π). I first determine the general solution of this relation and then

show that the solution differs from the trivial one, η[g, π, f ] = 0, only by a change of

variables.

The relation (C.1), in particular, determines the dependence of the function

η[g, π, f ] on the pion field and its derivatives: evaluation at π = 0 yields a represen-

tation in terms of the values at zero field. The expression involves the representative

group element nπ introduced in section 5,

ηa[g, π, f ] = ηa[gnπ, 0, T (n−1
π )f ] −

∂ϕa(g, π)

∂πb
ηb[nπ, 0, T (n−1

π )f ] (C.2)

Furthermore, since the configuration π = 0 is invariant under H, the relation (C.1)

constrains the values of the function at zero field,

ηa[gh, 0, f ] = ηa[g, 0, T (h)f ] + ϕa
b(g)η

b[h, 0, f ] g ∈ G, h ∈ H (C.3)

where ϕa
b(g) is the derivative of the canonical map at the origin,

ϕa
b(g) ≡

∂ϕa(g, π)

∂πb
π=0

. (C.4)

Differentiation of the composition law ϕ(g2, ϕ(g1, π)) = ϕ(g2g1, π) shows that the

derivative of ϕ(g, π) may be expressed in terms of the matrix ϕa
b(g), also for π 6= 0,

∂ϕa(g, π)

∂πb
= ϕa

c(gnπ)ϕ
c
b(nπ)−1 . (C.5)

Moreover, the matrix ϕa
b(g) obeys the product rule ϕa

b(gh) = ϕa
c(g)ϕ

c
b(h), valid for

g ∈ G, h ∈ H. In particular, ϕa
b(h) is a representation of the subgroup H.

The element gnπ, which occurs in the first term on the right hand side of equation

(C.2), may be decomposed as gnπ = nπ1
h1. In view of (C.3), the function η[g, π, f ]
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is thus fixed by its values on the two subspaces g = n, π = 0 and g = h, π = 0:

ηa[g, π, f ] = ηa[nπ1
, 0, T (n−1

π1
g)f ] −

∂ϕa(g, π)

∂πb
ηb[nπ, 0, T (n−1

π )f ]

+ ϕa
b(nπ1

)ηb[h1, 0, T (n−1
π )f ] . (C.6)

This representation satisfies the composition law (C.1), provided the function η[h, 0, f ]

obeys the condition (h, h′ ∈ H)

ηa[h, 0, f ] = ηa[hh′, 0, T (h′−1)f ] − ϕa
b(h)η

b[h′, 0, T (h′−1)f ]) . (C.7)

Note that, on the other subspace, the values are arbitrary — the function η[n, 0, f ]

is not subject to constraints. This is related to the freedom in performing a trans-

formation of the field variables (see below).

The general solution of equation (C.7) may be obtained as follows. The relation

connects external fields which only differ by a gauge transformation of the subgroup

H. One may thus impose a gauge condition on the external fields and use the relation

to calculate the values of the function η[h, 0, f ] for an arbitrary configuration in terms

of those on the subspace chosen by the gauge condition.

A suitable gauge condition is the following. Consider those components of the

vector field f i
µ(x) which correspond to the currents of the subgroup H. At a given

point of space-time, there exists a gauge, in which these components of the field

vanish, together with the totally symmetric part of all of its derivatives,

∂(µ1...µk
f i

µk+1)
(x) = 0 k = 0, 1, 2, . . . (C.8)

The condition fixes the gauge uniquely, up to space-time independent transforma-

tions.

Constant gauge transformations may be disposed of as follows. Consider equation

(C.7) with h′ = h0 = const. and take the average, integrating over h0 ∈ H. This

leads to the representation

ηa[h, 0, f ] = αa[h, f ] − ϕa
b(h)α

b[e, f ]

αa[h, f ] ≡
∫

H
dµ(h0)η

a[hh0, 0, T (h−1
0 )f ] . (C.9)
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The volume of integration is the Haar measure dµ(h0), normalized to
∫

H dµ = 1, and

e stands for the unit element of the group. Inserting the above representation in

(C.7), one obtains

αa[h, T (h′)f ] = αa[hh′, f ] − ϕa
b(h)α

b[h′, f ] + ϕa
b(h)α

b[e, T (h′)f ] . (C.10)

The point is that, in view of the invariance of the measure, the function αa[h, f ]

is invariant under constant gauge transformations, α[hh0, T (h−1
0 )f ] = α[h, f ] — the

equation to be solved is brought to a form where constant gauge transformations are

under control.

Suppose now that f is an arbitrary configuration of the external field. A suitable

gauge transformation T (h) takes it into the gauge (C.8). Denote the field in this

gauge by f̄ , such that f = T (h)f̄ . It is essential that the transformation T (h) is

local. The discussion concerns a fixed point of space-time and the gauge condition

is imposed only there. The transformation is determined by the values of the gauge

field and its derivatives at that point, up to a constant.

Next, consider the quantity β ≡ α[h, f̄ ]. In view of the invariance of α[h, f ] under

constant gauge transformations, β only depends on the combination f = T (h)f̄ ,

αa[h, f̄ ] = βa[T (h)f̄ ] . (C.11)

The relation (C.10) then immediately implies the more general representation

αa[h, f ] = βa[T (h)f ] − ϕa
b(h)β

b[f ] + ϕa
b(h)α

b[e, f ]) , (C.12)

which also holds if f does not obey the above gauge condition. The corresponding

representation for η[h, 0, f ] takes the simple form

ηa[h, 0, f ] = βa[T (h)f ] − ϕa
b(h)β

b[f ] . (C.13)

Indeed, one readily checks that this representation satisfies the constraint (C.7),

irrespective of the form of β[f ].

The general solution of the representation property (C.1) is, therefore, of the form

ηa[g, π, f ] = γa[π1, T (g)f ]−
∂ϕa(g, π)

∂πb
γb[π, f ] , (C.14)

38



where the function γ[π, f ] receives a contribution, both from η[n, 0, f ] and from

η[h, 0, f ]:

γa[π, f ] = ηa[nπ, 0, T (n−1
π )f ] + ϕa

b(nπ)βb[T (n−1
π )f ] . (C.15)

The result admits a very simple interpretation. Consider a change of variables

of the type π̂ = π + ψ[π, f ]. The corresponding change in the coordinates of the

transformed field φ[g, π, f ] is given by φ̂ = φ + ψ[φ, T (g)f ]. The operation thus

modifies the form of the transformation function according to:

η̂a[g, π, f ] = ηa[g, π, f ] + ψa[π1, T (g)f ]−
∂ϕa(g, π)

∂πb
ψb[π, f ] . (C.16)

This is precisely of the form found from the solution of the representation property.

It thus suffices to perform the change of variables

ψa[π, f ] = −γa[π, f ] . (C.17)

In the new coordinates, the transformation law of the pion field takes the canonical

form π
g
→ ϕ(g, π), such that the action functional obeys (5.5) up to and including

O(pn+1).

D Gauge invariance of the Lagrangian

In this appendix, I determine the general form of the Lagrangian of a gauge field

theory, denoting the field and the group by vµ(x) and H, respectively. The Lagrangian

L[v] is assumed to admit an expansion in powers of the gauge field and its derivatives.

The essential ingredient of the analysis is the requirement that the action functional

S{v} =
∫

ddxL[v] is gauge invariant.

Although the result to be established is very simple, my derivation, unfortunately,

is rather clumsy. I work with the variational derivative

V µ[v] =
δS{v}

δvµ(x)
. (D.1)

Gauge invariance of the action implies that this quantity transforms covariantly,

V µ[T (h)v] = D(h)V µ[v]D(h−1) (D.2)
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and obeys

DµV
µ[v] ≡ ∂µV

µ[v] − i[vµ, V
µ[v]] = 0 . (D.3)

In the following, I solve these conditions and then study the implications for the

structure of the Lagrangian. The derivative expansion may be ordered in the standard

manner, counting the field vµ(x) and the derivative ∂µ as quantities of the same

order. Since the transformation law (8.6) of the gauge field preserves the order,

one may analyze the expansion term by term, i.e., assume that the Lagrangian under

consideration represents a polynomial formed with the gauge field and its derivatives.

D.1 Abelian gauge fields in d = 3

As a first step, consider the case of an abelian group, denoting the components of

the gauge field by vi
µ(x), i = 1, . . . , dH. The transformation law (D.2) then states

that the local function V µ
i [v] is gauge invariant, V µ

i [v + ∂h] = V µ
i [v]. In this case,

the constraint (D.3) is readily solved:

V µ
i [v] = ∂νK

µν
i [v] , Kµν

i [v] = −Kνµ
i [v] . (D.4)

It is important here that the ”potential” Kµν
i is a local function, i.e. only depends

on the gauge field and its derivatives at one and the same point of space-time. Indeed,

a more general version of this statement is needed, valid for differential forms

ω = ωµ1µ2...µn
(x) dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn ,

whose coefficients are local functions of the gauge field and its derivatives,

ωµ1µ2...µn
(x) = ωµ1µ2...µn

(v(x), ∂v(x), . . . ).

I refer to these as local differential forms and indicate the argument in the same

manner as for ordinary fields: ω = ω[v]. The relevant statement reads (0<n<d): If

ω[v] is a local n – form which obeys d ∧ ω[v] = 0, then there exists a local (n − 1)

– form Ω[v], such that ω[v] = d ∧ Ω[v]. Since this property is essential, an explicit

demonstration is given in appendix E.
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The result immediately applies to the abelian form of the conservation law (D.3):

the divergence of a vector field may be viewed as the exterior derivative of a (d−1)

– form. Hence the current V µ
i [v] is the exterior derivative of a local (d−2) – form, as

claimed in (D.4).

Next, consider the transformation properties of the potential under a gauge trans-

formation. Since the current is gauge invariant, the potential Kµν
i [v + ∂h] gives rise

to the same current as Kµν
i [v], such that ∂µ(Kµν

i [v + ∂h] − Kµν
i [v]) = 0. One is

thus again dealing with a closed local differential form. According to appendix E,

the difference may be represented as exterior derivative of a local potential. In three

dimensions, this yields

Kµν
i [v + ∂h] −Kµν

i [v] = ǫµνρ∂ρLi[v, h] , (D.5)

The relation implies that the combination

Li[v, h1 + h2] − Li[v + ∂h1, h2] − Li[v, h1] = Mi (D.6)

is a constant. Since only the derivative of Li[v, h] matters, this function may be

replaced by Li[v, h] + Mi. The above combination then vanishes, so that, without

loss of generality, one may set Mi = 0.

In view of (D.5) the gradient of Li[v, h] does not depend on the value of h, but only

on the derivatives thereof. Hence the expression itself contains h at most linearly,

Li[v, h] = cikh
k + L̄i, where the coefficients cik and L̄i are local functions of v and ∂h.

Actually, for the quantity h to disappear upon taking the gradient, the coefficient cik

must be a constant, such that

Li[v, h] = cikh
k + L̄i[v, ∂h] . (D.7)

The corresponding decompositions of the function Kµν
i [v] and of the Lagrangian take

the form

Kµν
i [v] = cikǫ

µνρvk
ρ + K̄µν

i [v] , L[v] = LCS[v] + L̄[v] , (D.8)

where LCS[v] is the abelian version of the Chern-Simons Lagrangian,

LCS[v] = 1
2
cikǫ

µνρvi
µ∂νv

k
ρ . (D.9)
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Although this expression fails to be gauge invariant, the corresponding action is

invariant under gauge transformations (recall that only ”small” external fields are

relevant, which may be taken to vanish outside some finite region of space-time).

Next, consider the function L̄i[v, ∂h]. Since the quantity Mi vanishes, this func-

tion obeys the condition

L̄i[v, ∂h1 + ∂h2] − L̄i[v + ∂h1, ∂h2] − L̄i[v, ∂h1] = 0 , (D.10)

which may be solved with the technique used in appendix C. The gauge field admits

the unique decomposition vi
µ = v̄i

µ + ∂µh
i, where v̄i

µ obeys the gauge condition (C.8).

Accordingly, there is a local function Ni[v] such that

Ni[v] = L̄i[v̄, ∂h] . (D.11)

The composition law (D.10) then entails the representation

L̄i[v, ∂h] = Ni[v + ∂h] −Ni[v] , (D.12)

valid ∀ v, h. Finally, the relation (D.5) shows that the quantity

K̃µν
i [v] = K̄µν

i [v] − ǫµνρ∂ρNi[v]

is gauge invariant. Now, K̄µν
i [v] may be replaced by K̃µν

i [v], without changing the

current V µ
i [v]. Once the Chern-Simons term is removed, the variational derivative

of the action may, therefore, be represented in terms of a gauge invariant poten-

tial, V̄ µ
i [v] = ∂νK̃

µν
i [v]. The corresponding expression for the action is obtained by

integrating along the path tvi
µ from t = 0 to t = 1,

S̄{v} =
∫

d3x
∫ 1

0
dtvi

µ∂νK̃
µν
i [tv] . (D.13)

An integration by parts in the second term leads to a gauge invariant expression for

the corresponding contribution to the Lagrangian,

L̄[v] =
∫ 1

0
dt∂µv

i
νK̃

µν
i [tv] . (D.14)
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D.2 Abelian gauge fields in d = 4

The calculation proceeds along the same lines also in four dimensions. The relation

(D.5) now takes the form

Kµν
i [v + ∂h] −Kµν

i [v] = ǫµνρσ∂ρLiσ[v, h] , (D.15)

where Liσ[v, h] is a local function of its arguments, determined by this equation up

to a gradient. The left hand side only involves the derivatives of h. I first show

that, without loss of generality, the function Liσ[v, h] may be taken to have the same

property.

As mentioned above, the discussion may be restricted to Lagrangians of polyno-

mial form. Accordingly, it suffices to analyze the properties of the function Kµν
i [v]

under the assumption that one is dealing with a polynomial of the gauge field and

its derivatives. The left hand side of (D.15) then represents a polynomial in the vari-

ables v and ∂h. Since the divergence of the expression vanishes identically, one may

collect terms with a given degree of homogeneity in h and represent each of these as

a rotation, such that Liσ[v, h] takes the form of a polynomial in the variable h and its

derivatives. Extracting those factors which do not contain derivatives, the expression

takes the form Liσ[v, h] =
∑

liσ,i1,...ikh
i1 . . . hik , where the coefficients only involve v

and ∂h. According to (D.15), the rotation thereof does not contain any such factors.

This implies, in particular, that the coefficients of the terms with the largest value

of k are rotation free and may thus be written as a gradient. Removing a suitable

gradient from Liσ[v, h], the largest value of k is reduced by one unit. Proceeding

in this way until no factors of h are left, one arrives at an expression of the form

Liσ = Liσ[v, ∂h], thus verifying the above claim.

The relation (D.15) implies

Liσ[v, ∂h1 + ∂h2] − Liσ[v + ∂h1, ∂h2] − Liσ[v, ∂h1] = ∂σMi[v, h1, h2] . (D.16)

This relation, in turn, requires the combination

Mi[v, h1 + h2, h3] −Mi[v, h1, h2 + h3] −Mi[v + ∂h1, h2, h3] +Mi[v, h1, h2] (D.17)
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to be a constant. As a local quantity, the expression only depends on the values of the

fields and their derivatives at the point under consideration. It can only be constant,

if it is independent of these fields. Since the combination vanishes for hi = 0, it

vanishes altogether.

According to (D.16), the gradient of Mi[v, h1, h2] only involves the derivatives of

h1 and h2. Hence, the variables themselves enter at most linearly,

Mi[v, h1, h2] = c1ikh
k
1 + c2ikh

k
2 + M̄i[v, ∂h1, ∂h2] , (D.18)

where c1ik and c2ik are constants. So, the combination (D.17) contains at most a

term linear in h, viz. c1ikh
k
1 − c2ikh

k
3. This term, however, only vanishes ∀ h1, h3 if

c1ik = c2ik = 0. Hence the function Mi[v, h1, h2] exclusively involves the derivatives of

the arguments h1, h2.

Invoking the decomposition vi
µ = v̄i

µ + ∂µh
i, this property allows the construction

of a local quantity Ni[v, ∂h], with

Ni[v, ∂h1] = M̄i[v̄, ∂h, ∂h1] . (D.19)

The composition rule (D.17) then yields

Mi[v, h1, h2] = −Ni[v, ∂h1 + ∂h2] +Ni[v + ∂h1, ∂h2] +Ni[v, ∂h1] (D.20)

∀ v, h1, h2. Hence the function Ni[v, ∂h] may be absorbed in Liσ[v, ∂h] — without

loss of generality, one may set Mi[v, h1, h2] = 0. Applying the same argument once

more to the composition rule (D.16), one verifies that the function Liσ[v, ∂h] admits

a representation of the form

Liσ[v, ∂h] = Piσ[v + ∂h] − Piσ[v] . (D.21)

The relation (D.15) then shows that the function Piσ[v] may be absorbed in Kµν
i [v].

In this convention, the quantity Liσ[v, ∂h] vanishes, such that the potential Kµν
i [v]

becomes gauge invariant. An analogue of the Chern-Simons Lagrangian does, there-

fore, not occur in d = 4. In the abelian case under discussion here, the Lagrangian

may always be brought to the manifestly gauge invariant form

L[v] =
∫ 1

0
dt∂µv

i
νK

µν
i [tv] . (D.22)
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D.3 Nonabelian gauge fields

The extension of the above calculation to the nonabelian case runs as follows. The

Lagrangian consists of a series of vertices of the type ∂DvE, where D counts the

overall number of derivatives and E is the number of gauge fields entering the term

in question. For the present purpose, it is convenient to order the vertices according to

the number E of gauge fields and to use induction in the value of E. For definiteness,

I consider the three-dimensional case — the extension to d = 4 is trivial.

Consider those vertices which contain the minimal number of gauge fields, E = 2

and denote the corresponding contribution to the effective Lagrangian by L[v]2. The

variational derivative of
∫

d3xL[v]2 yields a current of O(v1), which I call V µ
i [v]1. Since

the conservation law (D.3) holds term by term in the above counting of powers, it

implies

∂µV
µ
i [v]1 = 0 . (D.23)

All other contributions involve at least two gauge fields.

Under an infinitesimal gauge transformation, δvµ = ∂µh−i[vµ, h], the generic term

of order ∂DvE−1, which occurs in the expansion of the current, yields contributions

of order ∂D+1vE−2h as well as terms of order ∂DvE−1h. The former are produced

by the abelian gauge transformation vµ → vµ + ∂µh, while the latter arise from the

operation vµ → vµ − i[vµ, h]. Comparing terms of order ∂Dv0h on the two sides of

the transformation law (D.2), one obtains

V µ
i [v + ∂h]1 = V µ

i [v]1 . (D.24)

In other words, the part of the Lagrangian which contains the smallest number of

gauge fields is symmetric under a group of abelian transformations, i.e., obeys the

same equations as the full current in the abelian case. In L[v]2, the nonabelian

character of the group only manifests itself through a supplementary condition: for

space-time independent transformations, the transformation law (D.2) implies that

the quantity V µ[v]1 =
∑

i tiV
µ
i [v]1 contains the various abelian fields in such a com-
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bination that the result transforms covariantly,

V µ[T (h0)v]1 = D(h0)V
µ[v]1D(h−1

0 ) . (D.25)

The condition amounts to a constraint on the form of the possible couplings — it

selects a subset of the Lagrangians permitted by abelian symmetry.

The results of the preceding analysis may now be taken over as they are. The

Lagrangian in general contains a Chern-Simons term, L[v]2 = LCS[v] + L̄[v]2. The

remainder, L̄[v]2, is invariant under abelian gauge transformations. The Chern-

Simons term illustrates the constraint mentioned above: Suppose that the group H

is simple. The relation (D.25) then requires that the coefficients cik, which enter the

expression for LCS[v], are determined by a single coupling constant: 1
2
cik = ctr(titk),

while, for an abelian theory, the symmetry does not constrain the values of these

couplings. Similar relations among the various independent coupling constants of the

abelian theory, naturally, also arise for the gauge invariant part of the Lagrangian

(note that L̄[v]2 collects an infinity of vertices, containing an arbitrary number of

derivatives).

Since the term L[v]2 only represents the part of the Lagrangian with the smallest

number of gauge fields, the corresponding action
∫

d3xL[v]2 is invariant only under

abelian transformations. One may, however, add suitable higher order terms to arrive

at a fully gauge invariant result. In the case of the Chern-Simons term, it suffices to

add the familiar contribution of order v3,

LCS[v] = cǫλµνtr{vλ∂µvν −
2
3
ivλvµvν} . (D.26)

The remainder, L̄[v]2, is invariant under abelian gauge transformations and may,

therefore, be expressed in terms of the abelian field strength ∂µvν − ∂νvµ and the

derivatives thereof. To render the expression gauge invariant with respect to H, it

suffices to augment the abelian field strength by the standard contribution involving

the commutator [vµ, vν ] and to replace the derivatives of the field strength by covari-

ant ones. In view of the fact that the expression is invariant under constant gauge

transformations, it is automatically invariant under the full gauge group — the field
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strength and its covariant derivatives transform homogeneously. This results in a

representation for the Lagrangian which correctly describes the vertices of order v2

and, moreover, yields a gauge invariant action.

Finally, consider the higher order terms. Removing the part of the action just

constructed, one remains with an expression which is gauge invariant under H and

only contains vertices of order v3 or higher. Collect the vertices of O(v3) in L[v]3 and

repeat the above analysis. There is a simplification in so far as an abelian Chern-

Simons term only occurs at O(v2). So, from the second iteration on, the quantity

L[v]n is invariant under abelian gauge transformations.

The net result is an expression for the effective Lagrangian which is gauge invari-

ant under H, except for the term LCS specified above,

L[v] = LCS[v] + L̄[v] , L̄[T (h)v] = L̄[v] . (D.27)

The same representation also holds for d = 4, except that the term LCS[v] is then

absent. This completes the derivation of the result stated at the beginning of the

present appendix.

The application to the effective Lagrangian is straightforward. According to sec-

tion 8, the quantity Seff{0, v, 0} is gauge invariant under H. The above result implies

that the corresponding part of the effective Lagrangian, Leff [0, v, 0], is gauge invari-

ant, up to a possible Chern-Simons term. Putting things together, one concludes

that the full effective Lagrangian is gauge invariant, except for the contribution from

LCS[v]. Note, however, that the field vµ occurring therein does not coincide with

the original external field, but differs from it through a gauge transformation, which

depends on the pion field: according to (8.4), the quantity to be inserted in the

Chern-Simons Lagrangian is the vector component of fπ µ = T (n−1
π )fµ = vµ + aµ.

To see how the pion field enters the result, consider the Chern-Simons Lagrangian

built with the whole field fπ,

L̄CS[fπ] = cǫλµνtr{fπ λ∂µfπ ν −
2
3
ifπ λfπ µfπ ν} . (D.28)
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Inserting the decomposition fπ µ = vµ + aµ, this gives

L̄CS[fπ] = LCS[v] + cǫλµνtr{aλDµaν} −
2
3
icǫλµνtr{aλaµaν} , (D.29)

with Dµaν = ∂µaν − i[vµ, aν ]. The point is that the extra terms represent tensorial

contributions which are gauge invariant under H. One may thus replace LCS[v] by

L̄CS[fπ], compensating for the difference in the remaining, gauge invariant part of

the Lagrangian.

The dependence of L̄CS[fπ] on the pion field is readily worked out. The field enters

through the gauge transformation fπ µ = D−1fµD + iD−1∂µD, with D = D(nπ).

Using the abbreviation ωµ ≡ (−i)∂µDD
−1, this gives

L̄CS[fπ] = L̄CS[f ] + cǫλµν∂λtr{ωµfν} − i1
3
cǫλµνtr{ωλωµων} . (D.30)

Both the second and the third term represent total derivatives, and may thus be

discarded (for the third term, this can be shown, e.g., by calculating the change

produced by a variation of the pion field). Hence the field fπ may be replaced by the

external field f — the action generated by L̄CS[fπ] is independent of the pion field,

as claimed in assertion D of section 5.

E Closed local differential forms

The proof given in appendix D makes essential use of the fact that closed local forms

may be expressed as derivatives of a potential which is itself local. The derivation of

this statement relies on an elementary property of differential forms: if the closed n

– form f (0<n<d) vanishes outside a ball V ,

d ∧ f(x) = 0 and f(x) = 0 ∀x 6∈ V ,

then it is the exterior derivative of an (n−1) – form, which also vanishes outside V :

f(x) = d ∧ F (x) and F (x) = 0 ∀x 6∈ V .

Presumably, this is a special case of a more general statement, valid, e.g., for simply

connected regions. As I did not find this mentioned in the standard textbooks, I
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present an explicit demonstration for the case of a ball — this suffices for the present

purposes.

If f(x) is a one-form, f(x) = fµ(x) dxµ, the statement immediately follows from

the explicit representation F (x) =
∫ x
a dy

µfµ(y): it suffices to choose the starting

point a of the path of integration outside of V . Since d ∧ f vanishes, the integral is

independent of the path chosen to reach the point x. Hence, if x is outside V , one

may take a path which does not enter V at all, such that F (x) = 0, as claimed. For

higher forms, the property may be established by means of induction. Assume that it

holds for (n−1) – forms. Isolating one of the coordinates, say t ≡ xd, any n – form f

defined on a d – dimensional manifold Md gives rise to two forms gt and ht which live

on the (d−1) – dimensional manifold Md−1 with coordinates x̂ = (x1, x2, . . . , xd−1),

while the remaining variable, t, only enters parametrically,

f(x) = dt ∧ gt(x̂) + ht(x̂) ;

gt(x̂) is an (n−1) – form, while ht(x̂) is an n – form. The vanishing of d∧f(x) entails

two separate conditions on gt(x̂) and ht(x̂):

d̂ ∧ gt(x̂) = ḣt(x̂) , d̂ ∧ ht(x̂) = 0 ,

where d̂ is the exterior derivative on Md−1 and the dot indicates a derivative with

respect to the parameter t. The integral

Gt(x̂) =
∫ t

−∞
dt′ gt′(x̂)

obeys Ġt(x̂) = gt(x̂), d̂ ∧ Gt(x̂) = ht(x̂) and hence represents a potential for f ,

d ∧Gt(x̂) = f(x). It does not quite solve the problem, however, because Gt(x̂) does

not necessarily vanish in the shadow V + cast by the ball under illumination along the

t – axis from below. There, the integral is independent of t, Gt(x̂) = Ḡ(x̂) and obeys

d̂ ∧ Ḡ(x̂) = 0. Since Ḡ(x̂) is an (n−1) – form which vanishes outside the projection

of the ball onto Md−1, the induction hypothesis implies that there is a form H̄(x̂),

which also vanishes there and obeys d̂∧ H̄(x̂) = Ḡ(x̂). Now, take a smooth function

χ(x̂, t), which interpolates between the value 1 on V + and the value 0 on the opposite

49



side, V −, but is otherwise arbitrary (strictly speaking, to avoid singular behaviour

at the intersection of V + with V −, one must enlarge the ball slightly, cutting out

a small shell from V + and V −, such that the intersection disappears; accordingly

the construction only insures the vanishing of the potential outside a region which is

somewhat larger than V ). The form Ht(x̂) = χ(x̂, t)H̄(x̂) obeys d̂∧Ht = Gt, Ḣt = 0

everywhere outside V . Hence the quantity

F (x) ≡ Gt(x̂) − d ∧Ht(x̂)

vanishes outside V and obeys d ∧ F (x) = f(x); this verifies the claim.

Next, consider a differential form ω[v], whose coefficents only involve a set of fields

v and their derivatives at the given point of the manifold (in the terminology used in

appendix D: a local differential form). Suppose that the form is closed, d∧ω[v] = 0.

The claim is that there is a local differential form Ω[v], such that d∧Ω[v] = ω[v]. To

verify this, consider a deformation δv of the fields. The corresponding change in ω[v]

is of the form δω[v] = ϑ[v] ·δv, where ϑ[v] is a differential operator, whose coefficients

are local functions of the fields. The operator obeys d ∧ ϑ[v] = 0. Application

of the above construction shows that there is a kernel Kv(x, y) which (i) satisfies

d ∧ Kv(x, y) = ϑ[v] · δ(x, y) and (ii) vanishes outside the region where ϑ[v] · δ(x, y)

is different from zero. In other words, the support of the kernel is the point x = y,

such that Kv(x, y) may be represented in terms of a local differential operator θ[v]

acting on the δ-function, Kv(x, y) = θ[v] · δ(x, y). The operator obeys d∧θ[v] = ϑ[v].

Accordingly, the form δω[v] admits a local potential, δΩ =
∫

ddyKv(x, y)δv(y) =

θ[v] · δv. Finally, this expression may be integrated along the path tv(x) , 0 ≤ t ≤ 1,

which corresponds to a sequence of deformations, δv(x) = dt v(x). The quantity

Ω[v] =
∫ 1
0 dt θ[tv] · v is a local form which obeys d ∧ Ω[v] = ω[v]. This verifies the

statement used in appendix D.
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