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Abstract

Covariance matrix and its inverse, known as the precision matrix, have many applications
in multivariate analysis because their elements can exhibit the variance, correlation,

covariance and conditional independence between variables. The practice of estimating the
precision matrix directly without involving any matrix inversion has obtained significant
attention in the literature. We review the methods that have been implemented in R and

their R packages, particularly when there are more variables than data samples and discuss
ideas behind them. We describe how sparse precision matrix estimation methods can be
used to infer network structure. Finally, we discuss methods that are suitable for gene

co-expression network construction.
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INTRODUCTION1

A covariance matrix is an essential part in several multivariate analysis methods such as pat-2

tern recognition using linear (quadratic) discriminant analysis, principal component analysis3

and cluster analysis to name a few (see e.g Mardia1 and McLachlan2). Because the inverse4

of the covariance matrix plays an essential role in Gaussian graphical models, there is also5

interest in directly estimating the inverse of the covariance matrix, known as the precision6

matrix. The obvious aim of these analyses is to produce reliable and easy to interpret infor-7

mation over the characteristics of interest. It is natural to assume that when the sample size8

increases we gain better and reliable estimates. However, in some research fields, such as9

in biology, the number of observations available may by very limited compared to the num-10

ber of variables of interest. In particular, when there are more variables than data points,11

estimation problem of the precision matrix is ill-posed.12

Let Yi = (Y1i, . . . , Ypi)
> be a vector of length p. The symbol Y >i is used to designate13

the transpose of Yi. The entries in Yi are independent random samples from a multivariate14

Gaussian distribution N(µ,Σ), where µ is the mean vector of length p and Σ is the p × p15

symmetric and positive definite covariance matrix. In some cases it may be more convenient16

to express the Gaussian distribution in the form of N(µ,Θ−1), where Θ is the inverse of the17

covariance matrix Σ (the precision matrix). We can assume that µ is a zero vector.18

A covariance matrix Σ is always symmetric and all of its diagonal elements need to be19

positive. One important property of covariance matrix is that it has to be positive semi-20

definite, which means that there cannot be any linear dependencies between rows or columns21

of the matrix (i.e., it has to be full rank) and for every non-zero vector x of the length p,22

xΣx ≥ 0. When the matrix is positive semi-definite, it is non-singular and it has a unique23

inverse that can be calculated. For a positive definite matrix it holds that xΣx > 0.24

Usually the covariance matrix is estimated with the sample covariance matrix, denoted25

by S, from a sample of the size n26

S =
1

n− 1

n∑
i=1

(Yi − Y )(Yi − Y )>, (1)

where Y is the sample mean vector. Remembering the assumption that the mean vector27
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is a zero vector or that the variables have been centered at zero, Y can be omitted from28

equation (1). The maximum likelihood estimate of the covariance matrix can be calculated29

by replacing n− 1 in the equation (1) (also known as the unbiased estimate) with n.30

Usually in any statistical analysis one assumes to have relatively large number of inde-31

pendent and unbiased random samples from the appropriate distribution. According to the32

law of large numbers, the sample covariance (1) is approximately equal to the real covari-33

ance matrix. It can be shown that when the sample size is large compared to the number34

of variables p, then the sample covariance matrix is actually positive definite and always35

non-singular. In this case one can estimate the precision matrix Θ by inverting S.36

Nevertheless, in many real life data analyses the number of samples is not substantially37

large compared to the number of variables p and sometimes there may be more variables of38

interest than samples to estimate them. When the dimension p is larger (or even much larger)39

than the sample size n, the sample covariance matrix S cannot be inverted. This is due to the40

fact that the number of non-zero eigenvalues of the sample covariance is always min(n, p).41

The number of non-zero eigenvalues of S has to be equal to p for S to be non-singular.42

This case is known as “large p small n” in the literature about high-dimensional covariance43

matrix estimation, usually denoted by p � n. There are covariance matrix estimation44

methods which ensure that the resulting matrix is automatically positive semi-definite but45

some of them require application of ad-hoc adjustments afterwards to obtain positive semi-46

definite estimate. More intuitively, because the sample covariance matrix depends on the47

number of sample values, data with small sample sizes cannot be used to accurately estimate48

the true covariance matrix even if it would not be singular. In the next section, we present49

a selection of methods for more reliable covariance and the precision matrix estimation.50

Alternative estimators for covariance and precision matrix51

We restrict our discussion to estimators that always produce symmetric and positive definite52

estimates, even when the sample size is smaller than the number of variables. This restriction53

rules out some estimators, such as the Stein-type estimator proposed by Stein3 and multiple54

testing procedures of Drton and Perlman4,5 because they do not always produce positive55
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definite estimates. Readers interested in these methods should check the original papers56

and R packages ShrinkCovMat (version 1.1.2) and SIN (version 0.6) respectively. See also a57

recent article of Naul and Taylor6.58

In practice it seems that methods with ready to use software are the ones gaining more59

attention and thus are applied to practical data analyses. Therefore, we review methods60

that are implemented in R (available from CRAN - Comprehensive R Archive Network)61

(Table 1). We also discuss the network estimation methods introduced by Meinshausen and62

Bühlmann7 and Zhang and Horvath8 to give better insight into the diverse world of network63

estimation. In the statistical literature, there is an extensive discussion about regularized64

covariance and precision matrix estimation, which is covered very computation-centric way65

such that the estimation of each likelihood and penalty combination is considered separately66

and very deeply from computational point of view. This creates very scattered literature9–15.67

We emphasize that our review contains purely a selective setting of estimators. In the68

next subsections we briefly describe the methods presented in Table 1. We end the review69

discussing some methods which do not fit in the framework described in Table 1.70

Method Σ̂ Θ̂ Tuning parameter selection methods Package name Package version

LW-estimators Yes No Not needed nlshrink 1.0.1

Glasso Yes Yes eBIC, RIC, StARS glasso and huge 1.8 and 1.2.7

QUIC No Yes Not available QUIC 1.1

BIGQUIC No Yes StARS BigQuic 1.1-7

ROPE No Yes (approximate) leave-one-out CV, k-fold CV rags2ridges 2.0

CLIME No Yes k-fold CV, StARS clime, fastclime and camel 0.4.1, 1.4.1 and 0.2.0

SCIO No Yes CV scio 0.6.1

spcov Yes No Not available spcov 1.01

TIGER No Yes StARS, k-fold CV camel 0.2.0

CondReg-estimator Yes Yes k-fold CV CondReg 0.20

MB-approximation No No RIC, StARS glasso and huge 1.8 and 1.2.7

Table 1: An eclectic collection of different estimators either for the covariance (Σ̂) or for

the precision matrix (Θ̂) and their R packages, what tuning parameter selection methods

are readily available in the package, the package name and the current package version.
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Convex combination estimators71

The easiest way to circumvent the problem that the sample covariance matrix is singular,72

is to add a positive constant to the matrix diagonal: Σ̂α = S + αI, where α is a positive73

coefficient and I is the p×p identity matrix. This estimator is so called ridge estimator (see,74

e.g. Warton16) and it is a special case of estimators of the form75

Σ̂ = α1S + α2T, (2)

where α1, α2 are positive coefficients and T is p× p target matrix. Note that Σ̂ is a convex76

combination of S and T . The valuable property of the estimators in (2) is that they are77

quite robust, in that they do not assume the data to be Gaussian.78

Ledoit and Wolf17,18 examined the convex combination (2) of the form79

Σ̂ = αS + (1− α)T (3)

and referred their estimator as a linear shrinkage estimator. Namely, linear shrinkage es-80

timator shrinks the sample covariance matrix towards a scaled identity matrix. The linear81

shrinkage estimator can be computed from (3) by choosing T = tr(S)/pI, where tr(S) is the82

matrix trace and the coefficient α is determined empirically from the data.83

The starting point of the shrinkage estimator is that the sample covariance matrix seems84

to overestimate the large eigenvalues and underestimate the small eigenvalues compared85

with the true covariance matrix eigenvalues18. The valuable property of the linear shrinkage86

estimator is that it will decrease the large eigenvalues of the sample covariance matrix and87

at the same time increase the small eigenvalues of the sample covariance matrix in a “linear”88

manner.89

Ledoit and Wolf19,20 extended this approach and proposed a nonlinear shrinkage estima-90

tor. Ledoit and Wolf computed this estimator by applying a nonlinear shrinkage formula91

to the sample covariance matrix eigenvalues. The nonlinear shrinkage estimator “corrects”92

the eigenvalues in a more complicated manner than the linear shrinkage estimator; the non-93

linear shrinkage estimator has very convoluted formulation and it is discussed here. The94

practical starting point behind the nonlinear shrinkage estimator is that one can gain more95
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reliable information of the total variation explained by the principal component in princi-96

pal component analysis. Because the large sample covariance matrix eigenvalues are biased97

upwards compared to the true eigenvalues of the covariance matrix Σ, the variances of the98

largest principal components are overestimated. A nonlinear shrinkage estimator will reduce99

this overestimation. Both linear and nonlinear estimators (LW-estimators in Table 1) are100

implemented in the R package nlshrink.101

Graphical lasso and alternative ridge estimator102

The joint distribution function of multivariate Gaussian data Y = (Y1, . . . , Yn)> is103

p(Y |Σ) = (2π)−pn/2|Σ|−n/2 exp

(
−1

2

n∑
i=1

Y >i Σ−1Yi

)
, (4)

where |Σ| is the determinant of the covariance matrix. The log-likelihood function (4) is104

more convenient to express as the function of the n × p data matrix Y and the precision105

matrix Θ up to a constant,106

log p(Y |Θ) ∝ log |Θ| − tr(SΘ). (5)

There is increasing interest in performing precision matrix estimation in a penalized107

likelihood framework. In this framework, evidence of the data measured by the likelihood108

(object function) is combined with the penalty function which can be interpreted as a con-109

straint from optimization theory or as a prior from Bayesian inference viewpoint. This joint110

expression of likelihood and penalty is then optimized together to find pareto-optimum of111

this expression.112

Graphical lasso (Glasso)9 is probably the best known precision matrix estimation method113

(with more than 914 citations to the paper of Friedman et al.9 alone, Web of Science database,114

2 August 2017). Potential solutions to the Glasso problem have been proposed in numerous115

research articles9–13,21–23. The Glasso problem can be expressed as a maximization problem116

of the penalized log-likelihood of the form117

log |Θ| − tr(SΘ)− λ||Θ||1, (6)
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over positive definite matrices Θ. Here ||Θ||1 is the L1-norm of the matrix, computed as118

the sum of the absolute value of the elements of Θ and λ is a positive tuning parameter119

which controls the number of zero entries in the final estimate of the precision matrix10.120

Three valuable properties of the L1-norm as the penalty function in (6) are: (i) it shrinks121

the elements of the precision matrix towards zero (ii) it simultaneously tests if the elements122

of the precision matrix could be set to zero (iii) the final (sparse) estimate will be positive123

definite even in high-dimensional setting.124

Solving the Glasso problem is not straightforward and numerous optimization methods125

are available for the maximization of the L1-penalized log-likelihood (6). Here different126

algorithms are mentioned briefly to clarify the differences between these methods, though127

the original papers provide more detailed descriptions. The first methods to solve the Glasso128

problem were proposed by Banerjee et al.22 and Friedman et al.9. Banerjee et al. and129

Friedman et al. examined the dual form of the Glasso problem130

Σ̂ = max {log |W | : ||W − S||∞ ≤ λ} , (7)

where W is the estimate of the covariance matrix Σ and ||W − S||∞ denotes the maximum131

absolute value element of the symmetric matrix W − S. Banerjee et al.22 uses a block-132

coordinate descent algorithm to solve the dual problem (7) by updating one row and column133

of W at a time; these lower dimensional problems can be written as LASSO problems24.134

Finally, Nesterov’s first order method is used to solve LASSO subproblems22. Friedman et135

al.9 developed Banerjee et al’s algorithm further and proposed the use of the coordinate136

descent method. Witten et al.10 showed that a block diagonal screening rule can reduce137

computational time to determine a sparse precision matrix estimate; this method is imple-138

mented in the original R package glasso (version 1.8). In addition to the aforementioned139

algorithms, Hsieh et al.13 introduced an algorithm which combines quadratic approxima-140

tion, Newton’s method and coordinate descent. This algorithm is implemented in the R141

package QUIC (version 1.1). Furthermore, the algorithm called BIGQUIC is implemented in142

the R package BigQuic (version 1.1-7) which uses Newton’s method, coordinate descent9,143

and METIS clustering25 to approximate a sparse precision matrix with up to one million144

variables12. There are also MATLAB implementations available for QUIC and BIGQUIC145
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(see Hsieh et al.13 and Hsieh et al.12).146

In covariance and precision matrix estimation it is useful to generate a heatmap from147

the computed estimate to gain an insight into the (true) covariance or precision matrix148

structure. We simulated data with 95 samples (p = 100) from a Gaussian distribution149

N(0,Σ) and compared the ground truth with the sample covariance and Glasso estimate150

(Figure 1). The covariance matrix Σ considered in this small example is a sparse matrix151

with a special block-structure; the non-zero off-diagonal elements are set to the value 0.75152

and diagonal elements to the value 1.153
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Figure 1: Heatmaps of the estimated covariance matrix when the ground truth is known. We

have used p = 100 and n = 95 as a representing example. Note that the non-zero elements of

the covariance matrix estimated with Glasso are somewhat smaller than their counterparts

in the sample covariance matrix, due to the shrinkage effect of the L1-penalty.

The inclusion of penalty function to the likelihood expression makes parameter estima-154

tion also possible in oversaturated or ill-posed situations where classic maximum likelihood155

estimate does not exist. By including constraints or prior information to the oversaturated156

or ill-posed problems, we make a specific statement about which solution(s), out of many157

possible ones, we are interested in obtaining.158

Recently, there has been critique that the ridge estimator Σ̂ = S + αI does not resemble159

the original ridge penalty26,27 but is determined from different kind of penalized log-likelihood160

function16. Therefore, a novel alternative ridge estimator, the Ridge Operated Precision161

Matrix Estimator (ROPE), which uses penalty function more consistent with the L2-penalty162

function of the ridge-regression, has been introduced for precision matrix estimation26,27.163
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The proposed estimate maximizes the penalized log-likelihood of the form164

log |Θ| − tr(SΘ)− λ||Θ||2F, (8)

where ||Θ||F is the Frobenius norm of the matrix, computed as the squared root of the sum165

of squared absolute value of the elements of Θ. Using a more consistent “ridge-penalty”166

does not substantially complicate the computation of the final estimate and, moreover, the167

estimate has a simple closed form solution26,27. In addition, one can utilize a special target168

matrix T possibly carrying some prior information. This target matrix makes the estimator169

potentially more adaptable to some special data-analysis problems,170

log |Θ| − tr(SΘ)− λ||Θ− T ||2F. (9)

One difference of (alternative) ridge estimators compared with Glasso is that they only171

shrink the elements of the precision or the covariance matrix, but do not produce a sparse172

estimate; this may be a desired property for some data applications such as linear discrim-173

inant analysis (LDA) and portfolio optimization17. Another difference between ridge-type174

estimators, alternative ridge estimators and Glasso is that the estimators are rotation equiv-175

ariant (when the target matrix T is a diagonal or a zero matrix). The eigenvectors of the176

rotation equivariant estimators are the same as the eigenvectors of the sample covariance177

matrix (see, e.g. Ledoit and Wolf18, Kuismin and Sillanpää28 and Kuismin et al.27).178

Constrained estimators179

Alternative estimators based on constrained optimization, rather than the penalized log-180

likelihood, have been proposed. For example, Cai et al.29 proposed the Constrained L1-181

minimization for Inverse Matrix Estimation (CLIME)182

Minimize ||Θ||1 subject to: ||SΘ− I||∞ ≤ ρ, (10)

where ρ is a positive tuning parameter. The main idea behind CLIME is to estimate each183

column of the precision matrix at a time using a sparse linear regression to reduce the184

dimensionality of the computational problem. Related to the CLIME estimator (10), Liu185
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and Luo14 proposed a novel method called Sparse Column-wise Inverse Operator (SCIO) as186

a fast method suited for large scale (p ≥ 800) precision matrix estimation. In addition, Liu187

and Wang15 proposed another method called TIGER (Tuning-Insensitive Graph Estimation188

and Regression) to solve the same L1-constrained problem. The only difference between189

CLIME and TIGER is how they solve the sparse linear regression problem: CLIME uses the190

Dantzig selector30, SCIO uses an iterative coordinate descent algorithm14 and TIGER uses191

the SQRT-LASSO31. Readers interested in using a method similar to SCIO, CLIME and192

TIGER with MATLAB should refer to Yuan32.193

All constrained estimators produce a sparse estimator which may not be symmetric but194

this can be fixed with a simple symmetrization step14,29. A valuable property of constrained195

estimators among Glasso and ROPE is that one can determine a direct estimate for the196

precision matrix rather than having to first compute an estimate for the covariance matrix197

and then invert it. Direct estimation of the precision matrix lowers the complexity of the198

estimator and reduces potential numerical error induced by the matrix inversion.199

We have illustrated the precision matrices estimated with CLIME, SCIO and TIGER200

in Figure 2 and compared the results with simulated ground truth. The precision matrix201

considered here corresponds to a cluster graph structure produced with the R package huge33.202

For sensible graphical representation, we plotted the heatmaps of the adjacency matrices203

A = (ai,j), where ai,j is equal to one if the corresponding precision matrix element θi,j is204

non-zero, zero if the corresponding θi,j is also zero and all diagonal elements are equal to205

zero.206

10



0

25

50

75

100

0 25 50 75 100

 

 

True precision matrix

0

25

50

75

100

0 25 50 75 100

 
 

CLIME

0

25

50

75

100

0 25 50 75 100

 

 

SCIO

0

25

50

75

100

0 25 50 75 100

 

 

TIGER

Figure 2: Heatmaps of the estimated adjacency matrices for CLIME, SCIO and TIGER

when the ground truth is known. We have used p = 100 and n = 95 as a representive

example. White means zero adjacency matrix (precision matrix) element and black is a

non-zero element.

Other estimators207

In addition to the convex combination, Glasso, alternative ridge and constrained estimators208

there are numerous other estimators available for covariance matrix estimation. For example209

sparse estimator of a covariance matrix is obtained by minimizing penalized log-likelihood210

log |Σ|+ tr(ΘS) + λ||P ◦ Σ||1, (11)

where ◦ denotes elementwise multiplication and P is a symmetric matrix with non-negative211

elements inducing weighted penalty for each element of Σ separately34. An algorithm to212

minimize (11) is available in the R package spcov. Use of a weighted penalties makes a direct213

link to adaptive LASSO in regression context35.214

Deng and Tsui36 considered a special penalized log-likelihood. This method utilizes the215

matrix logarithm transformation A = log(Σ) and minimizes the expression216

l(A) + λ||A2||2F, (12)

where l(A) is an approximation of the negative log-likelihood tr(A) + tr{exp(−A)S}. The217

expression of l(A) is quite complicated and is not presented here. The valuable property of218

the matrix logarithm transformation is that the penalty function will non-linearly regularize219
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both the largest and smallest eigenvalue of the covariance matrix. MATLAB code for this220

method is available in the supplementary materials of Deng and Tsui36.221

Won et al.37 proposed a condition number constrained estimator (CondReg-estimator in222

Table 1) for the covariance matrix by solving223

Maximize l(Σ) subject to: cond(Σ) ≤ κmax, (13)

where l(Σ) is the log-likelihood of (4), cond(Σ) is the condition number of a positive definite224

covariance matrix Σ that is computed by dividing the largest eigenvalue of the matrix with225

the smallest eigenvalue. Threshold parameter κmax which is smaller than the condition226

number of the sample covariance matrix S (κmax < cond(S)) can be chosen by using k-fold227

cross-validation (see the next subsection). A solution to the condition number constrained228

maximization problem (13) is implemented in the R package CondReg (version 0.20)37 and229

it can be used for better conditioned precision and covariance matrix estimation.230

Choosing the tuning parameter231

The obvious problem with penalized likelihood and other regularized optimization problems232

is the choice of proper value for the tuning parameter λ. Tuning parameter is usually selected233

using a so called cross-validation scheme to determine which control parameter value can234

give the best performance for the model to predict future observations (see, e.g. Fang et235

al.38). One can use either some matrix norm as the cross-validation criterion38, use some236

loss function14,29 or use the log-likelihood (5)27,34,36.237

On the other hand, in instances where a sparse model is appropriate, cross-validation can238

be suboptimal because it tends to favor dense models21. An alternative to cross-validation239

is the stability selection scheme to determine which control parameter value can give the240

maximal stability to the model for small changes in the composition of the data39.241

In the statistical literature, several alternative methods have been developed for cross-242

validation, particularly to produce sparse network estimates. The most notable of these are243

extended Bayesian Information Criterion (eBIC)23, Stability Approach to Regularization244

Selection (StARS)21 and Rotation Information Criterion (RIC)33. eBIC, StARS and RIC245
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are implemented in the R package huge and can be used with Glasso, or with Meinshausen246

and Bühlmann approximation, which we discuss in the next section.247

It is important to note that each selection scheme optimizes performance with respect to248

one criterion (e.g., predictive performance or stability of the model) and the apparently best249

parameter value may not be optimal with respect to some other criterion. Cross-validation250

is also very time consuming. Overall, selecting the tuning parameter is a challenging prob-251

lem with no one-size-fits-all solution. In our experience one should consider the special252

characteristics of the application while selecting the tuning parameter value.253

Network structure estimation254

Estimation of a sparse precision matrix can be seen as a subproblem of the selection of255

Gaussian graphical models. The undirected graphical model G is usually defined as a set256

G = (V,E), where V = {1, . . . , p} is the set of nodes and E set of edges (i, j), i, j = 1, . . . , p.257

The pair (i, j) belongs to the set E if, and only if, the corresponding precision matrix258

element (i, j) is nonzero. That the precision matrix element (i, j) is zero implies conditional259

independence between variables i and j, given the rest of the variables. This conditional260

independence follows actually from the relation between the partial correlation matrix Q261

and the precision matrix Θ, Q = −diag(Θ)−1/2Θdiag(Θ)−1/2, where diag(Θ) is a diagonal262

matrix constructed from the diagonal elements of Θ. From the equation of the partial263

correlation matrix one can see, that the connection between the elements of Q = (qi,j)264

and Θ = (θi,j) can be expressed as qi,j = −θi,j(θi,iθj,j)−1/2. If the element qi,j is zero, the265

variable i is conditionally independent from j given the rest of the variables and vice versa.266

Information stored in Q can be changed to the binary conditional independence indicator267

form and arranged into a matrix, which is called the adjacency matrix.268

Inducing sparseness to the precision matrix (network) is usually done in two ways; either269

by using (i) such penalty functions that are able to induce sparseness to the precision matrix270

by shrinking individual precision matrix elements towards zero, or (ii) by hypothesis test-271

ing26,40–42 to decide which non-zero precision matrix elements could be set to zero. If latter272

method is applied, the sparse precision matrix is not guaranteed to be positive semi-definite.273
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Sparse precision matrix estimates computed with Glasso, QUIC, BIGQUIC, TIGER, CLIME274

and SCIO are always positive definite and can be used directly for network estimation.275

With ROPE, the hypothesis testing approach of Wieringen and Peeters26 utilizes the276

local false discovery rate procedure to make the network estimate sparse and the procedure is277

implemented in the R package rags2ridges. Ha and Sun42 used the ridge estimator to compute278

a positive definite estimate for the sample partial correlation matrix. In hypothesis testing,279

Ha and Sun used the Efrons’s central matching method43 to estimate the null distribution280

of the Fisher’s z-statistic 0.5 log (1 + qi,j)/(1− qi,j); their method is implemented in the R281

package GGMRidge (version 1.1).282

Additionally, there is a viable method available for sparse network estimation and it283

can be interpreted as an early approximation of the Glasso problem9,22 which we will dis-284

cuss next. Meinshausen and Bühlmann7 (858 citations, Web of Science database 2 August285

2017) provide an approximate way to estimate network structure by detecting zero entries286

in the precision matrix in column-by-column fashion. The approximation of Meinshausen287

and Bühlmann (hereafter MB-approximation) utilizes the connection between the elements288

of the precision matrix and LASSO-regression although MB-approximation does not pro-289

vide reasonable numerical estimates for the (sparse) precision matrix elements. The same290

column-by-column evaluation method is utilized in CLIME, SCIO and TIGER for more ef-291

ficient estimation of the high dimensional precision matrix. In contrast to CLIME, SCIO292

and TIGER, MB-approximation only provides an estimate for an adjacency matrix. MB-293

approximation can be seen as a way to transfer the network estimation problem to a standard294

problem of variable selection in linear regression, which means that regression-based variable295

selection methods can be used to solve the network topology estimation problem. We have296

computed two gene-expression network estimates using MB-approximation when both RIC297

and StARS are used to select the optimal tuning parameter value (Figure 3). The data con-298

sidered here is a subsample of the riboflavin data set available in the R package hdi (version299

0.1-6)44 which consists of 200 genes with the largest empirical variance (see also Bühlmann300

et al.45).301
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Figure 3: Graphs by Meinshausen and Bühlmann approximation estimated in a subsample

of the riboflavin data set. A The optimal graph when the tuning parameter is chosen with

RIC. B The optimal graph when the tuning parameter is chosen with StARS.

A special application to gene co-expression network estimation302

As mentioned in the Section Choosing the tuning parameter, all previously mentioned esti-303

mators of Gaussian networks and tuning parameter selection methods may have theoretically304

pleasing properties which are not relevant to all data analyses. For example, beneficial prop-305

erties hold for Gaussian data but often fail to account for certain characteristics or the design306

of biological data. One special case of this problem is when the data arise from a covariance307

structure commensurate to scale-free network. A scale-free network is characterized by few308

nodes that are highly connected to other nodes; these highly connected nodes are known309

as hub nodes. Finding hub nodes is very challenging problem (see, e.g. Krzakala et al.46).310

We have faced this challenge in practice while trying to utilize some of the above mentioned311

methods in gene network analysis. A small scale-free network is illustrated in Figure 4 along312

with Glasso and SCIO network estimates computed from a simulated data set.313
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Figure 4: Estimated graph of simulated data set compared to the true graph structure. We

have used n = 100 and p = 200 as a representing example. A The optimal graph. B The

optimal graph estimated with Glasso when the tuning parameter is chosen with RIC. C

The optimal graph estimated with SCIO when the tuning parameter is chosen with cross-

validation.

It is apparent that networks estimated with Glasso and SCIO can have many free floating314

nodes, inconsistent of the underlying scale-free network structure (Figure 4). Examining too315

sparse network is problematic because some of the clusters and hub nodes remain undetected316

if the estimated network is too sparse; hub nodes may possess biologically meaningful in-317

formation, for example, about diseases and disease genes47,48. In addition, many genes are318

co-expressed, meaning that there is always some type of inter-dependency between genes319

(see, e.g. Äijö and Bonneau49). The above mentioned tuning parameter selection methods320

do not take into account these special characteristics and may be ill-suited for gene network321

estimation.322

When paying more attention to the role of scale-free network and co-expression between323

genes, Zhang and Horvath8 proposed to estimate the adjacency matrix using a so called324

scale-free topology criterion. In particular, scale-free topology criterion is based on the325
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assumption that the degree distribution of the scale-free network follows a power law. The326

degree distribution is the probability distribution of the connections of each node.327

Zhang and Horvath did not examine the covariance or precision matrix but the absolute328

values of the correlation matrix R,329

R = (ri,j) = (|cor(i, j)|), (14)

where cor(i, j) is the Pearson correlation between variables i and j. The elements of the330

adjacency matrix A = (ai,j) were determined via so called hard-thresholding,331

ai,j =

1, if ri,j ≥ τ .

0, otherwise,

(15)

where τ is so called hard threshold parameter. As a side-note, similar hard-thresholding can332

be used to compute the solution to the Glasso problem10,11 (see also Bickel and Levina50).333

Figure 5 contains a graphical representation of the network computed with the hard thresh-334

olding when the hard threshold parameter τ is chosen with the scale-free topology criterion.335

See also the tutorial of Zhang and Horvath8.336
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Figure 5: Gene co-expression network estimated with the hard-thresholding in a yeast mi-

croarray data51 with 2001 different genes. Nodes are colored according to the modules

represented in Figure 6.

After computing an adjacency matrix, hierarchical clustering is used to identify different337

modules (clusters) with coherent expression profiles. Hierarchical clustering is done based338

on a dendrogram by choosing a suitable height cutoff. We have illustrated module con-339

struction in Figure 6. Readers more interested in the interpretation of different modules340

should check the original paper of Zhang and Horvath8 and the homepages of the WGCNA341

(https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/).342
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Figure 6: A dendrogram obtained from hierarchical clustering in a yeast microarray data

with 2001 different genes (top). Distinct modules represented here with different colors are

based on a height cutoff of the branches (middle). The bottom panel indicates essential

genes in the data. Essential genes are more likely to be genes with high connectivity in the

graph.

In addition, Zhang and Horvath8 examined two soft-thresholding functions, from which343

the most commonly used one is determined as follows: The non-zero elements of the adja-344

cency matrix A = (ai,j) are computed with exponentiation,345

ai,j = |cor(i, j)|β, (16)

where β is so called soft-threshold parameter. Zhang and Horvath8 discovered that the soft-346

thresholding function (16) will produce networks carrying more biological information over347

the gene co-expression network than the corresponding sparse networks when the parameter348

β is chosen using the scale-free topology criterion. Soft-thresholding method has been used349

widely. For example, Zhang and Horvath8 and Langfelder and Horvath52 have been cited350

1018 and 1341 times respectively (Web of Science, 2 August 2017) and used in diverse351

applications, such as cancer and yeast cell-cycle microarray samples8 and mouse liver gene352
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expression data53. Weighted gene co-expression network analysis method of Horvath et al.353

is implemented in the R package wgcna (version 1.51) for efficient estimation of large gene354

co-expression networks52.355

Taking account of all the aspects mentioned above, methods for Gaussian graphical mod-356

els should be modified to some extent before applying them to gene network analysis. For357

example, one can use some a priori information with Glasso algorithm to make it more358

adaptable for gene network analysis, as discussed by Li and Jackson54. Using external a359

priori knowledge Li and Jackson proposed a weighted graphical lasso (wglasso) method that360

uses different penalty values for different elements of the precision matrix similar to the361

penalty function in (11) and which makes Glasso more adaptable for network analysis in362

systems biology. In their simulation and a real data analysis, the weighted Glasso showed363

improved performance in network estimation compared to Glasso even with inaccurate a pri-364

ori information. Figure 7 contains a network estimated in an Arabidopsis thaliana data set55365

when the optimal value for the wglasso tuning parameter is selected based on the minimum366

value of the corresponding Bayesian information criterion (BIC), defined as367

BIC = −n log p(Y |Θ) + |E| log(n), (17)

where log p(Y |Θ) is defined in (5) and |E| is the number of edges in the estimated network.368
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Figure 7: Gene co-expression network estimated with the weighted Glasso in expression data

from the Arabidopsis thaliana with 739 different genes.

For other alternatives for WGCNA , see, e.g. Shimamura et al.56 method similar to369

MB-approximation using weighted LASSO-regression and a recent article of Jokipii-Lukkari370

et. al.57. Readers interested in the adaptive LASSO procedure35 as a part of a MB-371

approximation, see Krämer et al.58 and R package parcor (version 0.2-6). Readers more372

familiar with the MATLAB, see Ruan et al.59.373

DISCUSSION374

In addition to the frequentist methods presented in this review, there are some fully Bayesian375

methods to compute a posterior estimate for both the precision and covariance matrix and376

undirected Gaussian graphical models.377

Khondker et al.60 and Wang61 both developed a Bayesian method for solving the graph-378

ical LASSO problem (6), where the posterior shrinkage estimate of the precision matrix is379
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computed with a random walk Metropolis-Hastings algorithm and a block Gibbs sampler,380

respectively. Bhadra and Mallick62 introduced a Bayesian hierarchical framework to infer381

an undirected graph. The beauty of the approach of Bhadra and Mallick is in their ad-382

jacency matrix representation which was obtained by the analytic integration of numerical383

values away from the precision matrix. Kubokawa and Srivastava63 proposed an empirical384

Bayesian approach to compute a ridge-type estimators for the precision matrix. Bouriga and385

Féron64 utilized a hierarchical inverse-Wishart priors and used Metropolis-Hastings-within-386

Gibbs sampling scheme to estimate the posterior quantities in the posterior distribution of387

the covariance matrix. Huang and Wand65 introduced also the inverse-Wishart distribu-388

tion for the covariance matrix and examined the noninformative properties of both standard389

deviation and correlation parameters.390

Readers interested in Bayesian tools should check the R package BDgraph (version 2.33)66391

that contains many tools to compute posterior estimates of the precision matrix and undi-392

rected graphs. Readers interested in co-expression networks should check the homepage of393

WGCNA with extensive tutorials and other materials https://labs.genetics.ucla.edu/horvath394

/CoexpressionNetwork/.395

Books and reviews dedicated to covariance and precision matrix estimation and graphical396

models, are presented by Hastie et al.67,68, Pourahmadi69, Tong et al.70, Fan et al.71.397
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