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Abstract

The temporal and spatial data analyzed in e.g. ecology or climatology are often hierarchically
structured, carrying information in different scales. An important goal of data analysis then is to
decompose the observed signal into distinctive hierarchical levels and to determine the size of the
features that each level represents. Using differences of smooths, scale space multiresolution analysis
decomposes a signal into additive components associated with different levels of scales present in the
data. The smoothing levels used to compute the differences are determined by the local minima of the
norm of the so-called scale-derivative of the signal. While this procedure accomplishes the first goal,
the hierarchical decomposition of the signal, it does not achieve the second goal, the determination
of the actual size of the features corresponding to each hierarchical level. Here we show that the
maximum of the scale-derivative norm of an extracted hierarchical component can be used to estimate
its characteristic feature size. The feasibility of the method is demonstrated using an artificial image
and a time series of a drought index, based on climate reconstructions from long tree ring chronologies.

Environmetrics; Image analysis Smoothing; Time series; Visualization

1 Introduction

Questions involving temporal and spatial data are common in ecology, environmental sciences and many
other fields. The signals contained in such data are often hierarchically structured, carrying information
in different temporal or spatial scales (Wu, 2013). For example, climate data often contain oscillations in
several frequencies and satellite images can contain pixel-wise variation, variation at the landscape level
emerging from different human land uses, as well as large scale gradients due to latitudinal variation in
climatic conditions. Importantly, in addition to analyzing these scales and the consequent scale-dependent
variation, knowledge of the actual sizes of the temporal or spatial features associated with each scale may
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offer important information about the patterns themselves and help link the observed patterns to the
underlying physical processes (Delcourt & Delcourt, 1988; Skøien et al., 2003).

We propose a two-step procedure for the analysis of such hierarchical data. First, the signal is decomposed
into components that represent its variation in different levels of hierarchy and second, the characteristic
feature size of each hierarchical level is determined.

In the first step, scale space multiresolution analysis (Holmström et al., 2011), an instance of statistical
scale space methodology, is applied. Conventional scale space analysis considers smooths of a signal,
interpreting each smooth to provide information about the object of interest at a particular scale. The
concept of a scale space has its origin in computer vision literature (Witkin, 1983, 1984; Lindeberg,
1994). The idea was first introduced to statistics by Chaudhuri & Marron (1999) and it has subsequently
developed into a versatile ensemble of techniques with many applications (Holmström & Pasanen, 2017).
In traditional scale space analysis, increasing smoothing progressively suppresses smaller scale data
features, thus revealing increasingly coarse structures in the data. However, according to hierarchy theory
(O’Neill, 1986), hierarchically structured data contains signals at specific, distinguishable scales (see also
the overview of Wu (2013) and the references therein). Hence, if the goal is to analyze the signal in its
different levels of hierarchy, the features underlying the observed data need to be extracted at particular
scales, a task not easily accomplished with traditional scale space analysis. On the other hand, scale space
multiresolution analysis is ideally designed for this task since it extracts the scale-dependent features of
the signal using differences of smooths where a higher level smooth is subtracted from a lower level
smooth, thus isolating the signal components corresponding different hierarchical levels.

A successful discovery of the hierarchical structure in the data naturally requires that the smoothing
levels employed in the multiresolution analysis are chosen appropriately. To facilitate this crucial step,
Pasanen et al. (2013) proposed to consider the so-called scale-derivative of the signal, that is, the
derivative of the smooth of the signal with respect to the logarithm of the smoothing parameter. They
showed that the smoothing level sequence for the multiresolution analysis can usefully be selected as the
local minima of the norm of the scale-derivative.

Scale space multiresolution analysis has been shown to successfully resolve both temporal and spatial
signals into their scale-dependent components (see Pasanen et al., 2017; Aakala et al., 2018; Fang et al.,
2017; Lehmann et al., 2017; Heersink et al., 2013), but it does not provide direct information about the
typical sizes of the signal features in the components. In fact, all one can say is that the hierarchical
component extracted as the difference of two smooths has features that are larger than those smoothed
out by the smaller scale smoother and smaller than those suppressed by the larger scale smoother. Other
statistical scale space methods suffer from similar vagueness when the signal is analyzed with several
smoothing levels and typically for each level simply the effective width of the smoothing kernel is thought
to provide insight about the sizes of the signal features. Here, we complement scale space multiresolution
analysis with an explicit estimate for the characteristic size of features of the extracted components.

The characteristic feature size of a multiresolution component will be determined by its “characteristic
scale”, a quantity for which various definitions have been proposed in the literature, both for temporal
and spatial data. For example, approaches based on wavelets (Keim & Percival, 2015), temporal and
spatial variograms (Skøien et al., 2003) and quadtrees (Rehrauer et al., 1999) have been suggested, and
recently Sangireddy et al. (2017) proposed a scale space based approach specifically designed for the
definition of the characteristic length scale for high-resolution topographic data. However, in computer
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vision oriented scale space research, the idea of a characteristic scale has in fact been of interest already
much earlier. In that context, the characteristic scale of an object in an image is the scale in which
it is most easily perceived by the observer (Lindeberg, 1998; Luo et al., 2007). More formally, it was
proposed that the scale of a “blob”, a region in a digital image which is darker or brighter than its
neighborhood, can be estimated as the scale for which a suitable function, such as the scale-normalized
Laplace operator, attains an extremum over the scales. This idea has been widely used for example for
blob and interest point detection (see e.g. Mikolajczyk & Schmid, 2004, and the references therein) and
also in medical imaging for defining feature sizes for example in clustered microcalcifications in digital
mammograms (Netsch & Peitgen, 1999) and lung nodule size in CT imaging (Diciotti et al., 2010). As the
scale-derivative can be shown to approximate the scale-normalized second derivative (Laplace in a spatial
setting; see Section S1 of the supporting information and also Lindeberg (2015)), we adopt Lindeberg’s
definition for the characteristic scale and estimate it using the maximum of the scale-derivative norm. In
computer vision and medical imaging, the characteristic scale is actually defined for each image feature
separately. A different approach was taken in Luo et al. (2007) where the characteristic scale of a whole
satellite image is determined using the scale-normalized total variation. Since our goal is to estimate the
characteristic scale that represents the hierarchical component viewed over the entire time interval or
spatial area considered in the analysis, and not the scale of each individual feature that comprises the
component, we follow the approach of Luo et al. and maximize the scale-derivative norm of the whole
component.

Lindeberg’s definition of a characteristic scale adopted here depends on the particular smoother used
because, depending on the smoothing method applied, similar smoothing parameter values can produce
very different levels of smoothing. In this article, we consider kernel and roughness penalty smoothers. On
the other hand, characteristic feature size is a property of the data, independent of the smoother used in
the analysis, and therefore the estimated characteristic scale needs to be transformed into a characteristic
feature size. In Netsch & Peitgen (1999) and in Diciotti et al. (2010), the scale is transformed to size
using the size of the Laplacian of the Gaussian smooth at the characteristic scale. On the other hand,
in Luo et al. (2007) the scale is transformed into size using the characteristic scales of signals with a
known period. Such a scale-period approach actually resembles the scale-pseudo-frequency transformation
applied with wavelets (Torrence & Compo, 1998).

In time series analysis, periodicities in the signal are often of interest making the scale-period
transformation a natural approach for estimating the characteristic size. However, for images a more
natural interpretation of a characteristic size might be simply a typical feature size, and hence approaches
that do not rely on periodicity might be more appropriate. Here, we will examine both the scale-period
transformation and transformations based on the size of the smoother at the characteristic scale.

As a real-world example, we analyzed the climatic drought index constructed from climate reconstructions
based on tree ring chronologies (see Aakala et al., 2018, for details). The low-frequency variability in
northern European climate has been documented in a number of studies (e.g. Hurrell & Van Loon, 1997),
and is well shown to be present in tree ring based reconstructions at multiple time scales (Esper et al.,
2002; Sirén & Hari, 1971). Over the long term, this type of climatic variability has been shown to correlate
with solar cycles (Kasatkina et al., 2007) that influence the flux density of galactic cosmic radiation, which
in turn may influence cloudiness and climate patterns, and eventually also influence the properties of tree
rings (Dengel et al., 2009). We will apply the scale space multiresolution analysis with size estimation to
examine the presence of these periods in the data.
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The rest of the article is organized as follows. The scale space multiresolution decomposition is summarized
in Section 2. The estimation of the characteristic scale is introduced in Section 3 and the alternative
approaches for converting characteristic scale to size are considered in Section 4. In Section 5, we
demonstrate the feasibility of our approach for an artificial image and the drought index time series.
Finally, in Section 6, we discuss our findings.

2 The scale space multiresolution decomposition

Let x be a signal, e.g. a time series or a vectorized digital image, and let Sλ denote a smoothing operator (a
matrix) that defines a smooth Sλx of x. The parameter λ > 0 determines the smoothing level, the larger
the value of λ, the smoother the result. We use here Nadaraya-Watson kernel regression (Nadaraya, 1964;
Watson, 1964) (for one dimensional data see also Wand & Jones (1994), and for the general multivariate
case see e.g. Klemelä (2014)) and roughness penalty smoothers (see Appendix A). We seek an expansion
of x into additive hierarchical components that contain features in different temporal or spatial scales.
The components are estimated using differences of smooths of x.

Thus, let us denote S0x := x and consider a sequence of smoothing levels 0 = λ1 < · · · < λL < ∞. The
signal x can then be decomposed as

x =
L−1
∑

i=1

(Sλi
− Sλi+1

)x+ (SλL
x− x̄) + x̄ =

L+1
∑

i=1

zi, (1)

where zL+1 = x̄ is the mean of the signal and z1, . . . , zL are the scale-dependent hierarchical components
we are interested in. The component zi can be interpreted as the detail in x which is smoothed out when
smoothing is increased from λi to λi+1. We therefore refer to the smoothing levels λi also as the scale
breaking points. If x can be viewed as a random vector, Bayesian inference can be used to infer the time
intervals/regions where zi differs credibly from zero (Holmström et al., 2011; Pasanen et al., 2013).

A successful hierarchical decomposition (1) requires that the smoothing levels λi are selected carefully.
To help make the selection, Pasanen et al. (2013) introduced the concept of a scale-derivative,

∂Sλx

∂ log λ
:= Dλx,

that measures the change in the smoothed signal with respect to the logarithmic change in the scale (here
log denotes the natural logarithm). They used the scale-derivative with a one dimensional roughness
penalty smoother, for which a simple analytic expression of the scale-derivative can be derived (see
Pasanen et al., 2013). For other smoothers, a useful analytic expression might not be available, but the
derivative can always be approximated using a difference quotient,

−(Sλ − Sγλ)x

log γ
≈ Dλx,

where γ > 1. In the experiments of this article, we used for γ values between 1.02 and 1.07.

For time series data, Pasanen et al. (2013) introduced also the so-called scale-derivative map to visualize
Dλx. It is a plot with time on the horizontal axis, log10(λ) on the vertical axis, and the color of the pixels
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reflects the value of the scale-derivative. The middle row of Figure 4 displays examples of scale-derivative
maps. The scale-dependent components of the signal x show as oscillating bands of blue and red and
they can be extracted as differences of smooths corresponding to the sequence of smoothing levels defined
by the local minima of the function λ 7→ ||Dλx|| (cf. Pasanen et al., 2013). This method of choosing the
smoothing levels can be applied also to images. More insight into the character of the components zj can
be obtained by examining also the norms of their scale-derivatives.

3 Estimation of the characteristic scale

Let K be the standard Gaussian density function and consider a continuous signal u(t), t ∈ R, and its
convolution smooth L(t, h2), where h2 is the variance of Gaussian kernel,

L(t, h2) =

∫

∞

−∞

u(t− z)
K(z/h)

h
dz.

Smoothing reduces rough small scale features in the signal and hence suppresses derivatives. It follows that
visualization of a derivative of a smooth can be difficult because its magnitude diminishes with increasing
level of smoothing. As a remedy, Lindeberg (1998) used normalized (dimensionless) coordinates ξ = t/h
(cf. Florack et al., 1992) and defined the normalized derivative and second derivative for one dimensional
data as

∂L(t, h2)

∂ξ
= h

∂L(t, h2)

∂t
,

∂2L(t, h2)

∂2ξ
= h2

∂2L(t, h2)

∂t2
.

Similarly, the normalized gradient and Laplace operators for two dimensional data can be defined as h∇
and h2∇2. The smoothing parameter values that maximize a scale-normalized derivative of the Gaussian
convolution of the signal reflect the scales at which spatial or temporal variations take place in the
data (Lindeberg, 1998). In case of digital images, the normalized Laplace operator can be used for scale
determination as the Laplace provides differential entities useful for blob detection (see e.g. Marr, 1982).
For time series, the second normalized derivative can be used.

In Section S1 of the supporting information we show that for the Gaussian convolution smoother the scale-
derivative is actually proportional to the second normalized derivative and for two dimensional signals to
the normalized Laplace operator. Hence, apart from edge effects, an approximate correspondence between
the scale-derivative and the second normalized derivative and the Laplace exists also for Gaussian kernel
smoothers such as the Nadaraya-Watson (NW from now on) smoother. On the other hand, Silverman
(1984) showed that a spline smoothers approximate kernel smoothing with a roughly Gaussian type
kernel and hence also they can be thought to resemble Gaussian convolution. The Gaussian convolution
smoothing parameter h and the spline smoothing parameter λ are related through an approximate
equation that, in the case of an equispaced grid with grid length d and a smoothing spline that uses
a second derivative roughness penalty, is of the form h ∝ d1/4λ1/4 so that λ ∝ d−1h4 (see Silverman,
1984; Green & Silverman, 1993). Reasoning as in Section S1 of the supporting information, the exponent
of λ can be seen to affect the connection between the scale-derivative and the scale-normalized derivative
only through a multiplicative constant. This makes the connection between the scale-derivative and the
second normalized derivative plausible also for the one dimensional spline smoothers. Further, since the
correspondence between the one dimensional spline and kernel smoothers extends to two dimensions
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(Furrer & Nychka, 2007), such a connection can be assumed to hold also for images. The above reasoning
motivates our use of the scale-derivative for both NW and roughness penalty smoothers in defining the
characteristic scales in one and two dimensional data.

While the method we propose for discovering the characteristic scales in hierarchical data bears
resemblance to the approach often taken in computer vision literature, there are two important differences.
First, instead of analyzing the observed signal x as such, we first decompose it into its scale-dependent
components zi (cf. (1)) and then estimate the characteristic scale of each component. Second, we do not
estimate the scale of each individual feature present in a component zi since our goal is to suggest a
characteristic scale that represents the whole component. Therefore, to define the characteristic scale for
the whole component, we maximize the norm of its scale-derivative, defining the characteristic scale of
zi as the value of λ that maximizes the function λ 7→ ‖Dλzi‖.

4 From characteristic scale to characteristic size

In the previous section, we described how to use the scale-derivative to find the characteristic scale of a
signal. Here we establish the relationship between the characteristic scale and characteristic feature size.
We consider first characteristic periods and then more general features.

4.1 Characteristic period

One and two dimensional sine waves with different wavelengths can be used to estimate the relationship
between the characteristic scale and the period of the signal. For each sinusoidal wave, the characteristic
scale is first estimated as the maximum of the scale-derivative norm and then the correspondence between
the scale and the period is inferred using regression. See Section S2 of the supporting information for
further details.

For the NW smoother, the scale and the period turn out to have a linear relationship (See Table 1 and
Figure 1). When the scale-normalized second derivative is used with a Gaussian convolution smoother,
the theoretical relationship between the scale h and the period p of an one dimensional sine wave is
p = (2π/

√
2)h ≈ 4.44h (Lindeberg, 1998). Considering the results reported in Table 1, the relationship

inferred with the scale-derivative norm and the NW smoother, both for one and two dimensional sine
waves, is close to the theoretical one.

For one dimensional sine waves, the standard spline smoother considered e.g. in Green & Silverman (1993)
that uses a second derivative roughness penalty turns out to have an estimated scale-period relationship
of the form p ∝ λ1/4d1/4, where d = ti+i − ti. This is as expected since, as noted in Section 3, in the case
of equispaced one dimensional data, the equivalent kernel smoothing parameter h satisfies h ∝ λ1/4d1/4

and, on the basis of the results obtained for the NW smoother, there is likely to be at least an approximate
linear correspondence between h and p. We however prefer to work with a roughness penalty smoother
for which the smoothness of the result depends only on the value of the smoothing parameter and not
the resolution of the data and for such a smoother, the inferred relationship is of the form h ∝ λ1/4. This
grid length independent smoother is defined in the Appendix A. The estimated scale-period relationship
for the one dimensional roughness penalty smoother is shown in Table 1 (See also Figure 1). For the two
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Figure 1: The correspondence between the characteristic scales and the true periods estimated with linear
regression. Upper panels: the one dimensional sine waves. Lower panels: the two dimensional sine waves.
Left and right: the roughness penalty and the NW smoothers, respectively. For the roughness penalty
smoothers, note the logarithmic scale. For the NW smoothers the intercept in the linear regression was
fixed at 0. See Section S2 in the supporting information for further information.

dimensional sines, the estimated relationship is close to the one obtained in the one dimensional case
(Table 1).

4.2 Characteristic size

The characteristic scale of a two dimensional Gaussian blob can be shown to match its standard deviation
(Lindeberg, 1998). This observation can be interpreted to correspond to the so-called matched filter
theorem (see Rosenfeld & Kak, 1982) which states that a signal corrupted by additive white noise is best
detected by smoothing with a filter whose shape matches that of the noiseless signal (cf. Worsley et al.,
1996). This motivates estimation of the characteristic size directly by using the width of the Gaussian
density corresponding to the characteristic scale.
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Thus, denoting by K the standard Gaussian, for NW kernel regression we estimated the characteristic
size corresponding to characteristic scale h as 2δ where δ is solved from the equation

K(δ/h) = K(0)κ, (2)

and where 0 < κ < 1 is fixed. The solution of (2) is δ =
√

−2 log(κ)h and in our experiments the values
κ = 0.02, 0.05 were used (cf. Table 1). This resembles the approach often used in statistical scale space
methods where the effective kernel width is shown as a space between a pair of whiskers on a map that
summarizes statistical inference (e.g. Chaudhuri & Marron, 1999, 2000).

For a scale-dependent hierarchical component, another plausible definition of a feature is a contiguous
interval (or area) where the value of the signal is consistently positive or negative. Since the overall mean
of a component is close to zero, it is natural to estimate the size of a feature by taking κ = 0.5 in (2) (cf.
Table 1). This approach corresponds to the concept of “full width at half maximum” (FWHM) often used
e.g. in medical imaging to define the width of a feature that has no clear boundaries (e.g. Epstein, 2007).

In the third approach, we mimic the method of Netsch & Peitgen (1999) and use the zero crossings of
the scale-derivative of a Gaussian density. Thus, for a characteristic scale h, we solve δ from the equation

∂K(δ/h)/hr

∂ log h
= 0, (3)

giving δ = 2(r−1)/2h, where r is the dimension of the data. The characteristic feature size is then
2δ = 2(r+1)/2h. The resulting scale-size relationships are shown in the last column of Table 1.

In the case of other smoothing methods, such as the roughness penalty smoother considered here, the
width of the smoother can be approximated using its impulse response. In the one dimensional case,
consider the discrete signal x = [x1, . . . , x2n]

′ observed at times t1 < t2 < · · · < t2n, where xi = 0 if i = n
and xi = 0 otherwise. The impulse response of a smoother Sλ is then defined as Sλx and the size of the
smoother can be defined as the length of the longest interval tn+δ − tn−δ for which (Sλx)n+δ > κ(Sλx)n.
When the signal is sparsely sampled in time, we interpolate the smooth on a denser grid to improve
the accuracy of the size estimate. Table 1 shows the resulting scale-size relationships derived using linear
regression with the characteristic scales found in Section 4.1. Here the approach corresponding to (3) uses
the impulse response of the scale-derivative Dλx. For all methods based on the impulse response, the size
is related to scale through λ1/4 (Table 1). An analogous approach works for image data and produces
similar results (Table 1).

In the estimation of the size of a periodic feature, the transformations obtained using scale-period
regression (Section 4.1) are of course the most accurate. Comparing the formulas in the first column of
Table 1 to the other transformations in that table, in the case of the NW smoother, the FWHM appeared
to be closest to the scale-period transformation. On the other hand, in the case of the roughness penalty
smoother, in one and two dimensional dimensional cases, the smoother kernel thresholds of 0.02 and
0.05 were closest to the scale-period transformation. However, the one based on the scale-derivative does
not seem to be competitive, under and over estimating the period for one and two dimensional data,
respectively.
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scale-period κ = 0.02 κ = 0.05 κ = 0.5 scale-derivative

NW 1-D 4.5h 5.6h 4.9h 2.4h 2.0h
2-D 4.5h 5.6h 4.9h 2.4h 2.8h

Roughness penalty 1-D 6.3λ0.25 6.3λ0.25 5.9λ0.25 2.8λ0.25 2.5λ0.25

2-D 6.0λ0.25 7.2λ0.24 6.4λ0.25 2.4λ0.26 4.1λ0.24

Table 1: The scale-size transformations. 1D: the length of a feature. 2D: the diameter of a feature.

5 Experiments

5.1 Checkerboard image

Here, we re-analyze the checkerboard test image of Holmström et al. (2011). The composite image consists
of Gaussian iid noise, three components of blurred squares of different sizes, and an intensity gradient
(first and second row of Figure 2). We used both a thin plate spline type roughness penalty smoother
corresponding to (A2) and a Gaussian NW smoother. The scale-derivative norms are shown in Figure 3
and in the roughness penalty and NW analyses they have four and three local minima, respectively. For
the roughness penalty smoother, the shape of the scale-derivative norms of the extracted components is
unimodal with no bumps in the tails, suggesting that the components are well extracted. On the other
hand, for the NW smoother, the scale-derivative norms of the components have somewhat bumpy tails,
indicating possible mixing between the individual components.

The scale space multiresolution decompositions are shown in the third and fourth rows of Figure 2. For
both smoothers, the first component contains the noise and the second and third correspond to the two
smallest scale true image components. In the case of the roughness penalty smoother, the largest squares
and the gradient have been divided into two components. As the scale-derivative norms of the components
suggested, there is some mixing between the components in the case of the NW smoother. The smallest
scale components contains traces of the second component, the second component contains traces of the
third and first, and so on. In contrast, the features in the roughness penalty components appear to be
better separated into distinct scale categories.

The side lengths of the black and white squares in the true components are 1, 7, 30, and 100 pixels,
respectively. Of the techniques discussed in Section 4, the goal of both the FWHM method using κ = 0.5
and the scale-derivative method based on (3) is to estimate these sizes directly, while the scale-period and
blob detection approaches based on κ = 0.05, 0.02 estimate the distance between the local maxima, which
for the different size squares are 2, 14, 60, and 200 pixels, respectively. The results are shown in Table 2.
For both smoother types, most of the size estimates appear to be slight underestimates. Still, the size
estimates match the extracted squares relatively well (see the red circles showing the FWHM estimates
in Figure 2). The slight underestimation is perhaps due to the fact that the extracted components appear
to be somewhat smaller than the corresponding truths. The approach based on the scale-derivative filter,
that had difficulties in estimating the period of the sine waves, appears to have a better performance
here.
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Figure 2: The decompositions of the checkerboard test image. Top row: the test image. Second row:
the true components. Third and fourth row: components extracted with roughness penalty and NW
smoothers, respectively. Each component image is individually scaled. FWHM (κ = 0.5) size estimates
are shown as red circles.

10



-4 -2 0 2 4 6 8

log
10
( )

0

200

400

600

800

1000

1200

-0.5 0 0.5 1 1.5 2

log
10
(h)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 3: The scale-derivative norms of the checkerboard test image (dark blue line) and those of the
extracted components (lines with other colors). Left and right: the roughness penalty and NW smoothers,
respectively. The local minima of λ 7→ ‖Dλx‖ are shown with black diamonds and the maxima of
λ 7→ ‖Dλzi‖ are shown with black circles for each zi.

RP NW RP NW RP NW RP NW

True period 2 14 60 200
scale-period 2.8 2.0 9.4 9.5 39 39 117, 277 213
κ = 0.02 3.5 2.5 11 12 44 49 125, 285 264
κ = 0.05 3.0 2.2 10 10 42 43 124, 295 231

True size 1 7 30 100
κ = 0.5 1.1 1.1 3.8 5.0 17 21 52, 129 113
scale-derivative 2.0 1.2 6.3 5.9 25 24 71, 162 132

Table 2: The true and estimated feature sizes of the checkerboard test image, using a roughness penalty
smoother (RP) and a Nadaraya-Watson smoother (NW).

5.2 Drought index

As a real-world example, we analyzed the climatic drought index that was originally used to explain the
variation in the occurrence of forest fires in Finland. The index was constructed as a linear combination
of precipitation and temperature time series, obtained from climate reconstructions based on tree ring
chronologies (see Aakala et al., 2018, for details). The drought index time series has an annual resolution
and it covers the years 1554-1900.

The time series (posterior mean), the roughness penalty and NW based scale-derivative maps and norms
are shown in Figure 4. In the case of the roughness penalty and NW smoothers, the scale-derivative norms
have four and two local minima, respectively. For the roughness penalty smoother, the two smallest
minima appear to be located between oscillating bands of red and blue in the scale-derivative map,
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suggesting scale breaking points between hierarchical levels. However, the largest local minimum appears
to be located on top of an oscillating band, and is therefore omitted from the analysis. In the NW analysis,
both minima are well located between oscillating bands, but the scale-derivative map suggests that an
additional scale break is needed at around 100.5. Both scale-derivative maps indicate that the smallest
scale component could be further decomposed into two components, but that the period and amplitude
of the additional component might change in time. In the roughness penalty analysis, the extra breaking
point is located at the dent in scale-derivative norm at around 100.64 and in the NW analysis at a slope
change in the scale-derivative norm at 100.

The periods of the hierarchical components estimated using the scale-period transformations (Table 1)
are 3.9, 11.9, 26.7, 118.3 and 436 years for the roughness penalty smoother and 2.2, 6.8, 24.2, 147 and
475 years for the NW smoother. Apart from the two shortest periods, the estimated periods are relatively
similar. The difference in the shortest periods is mostly caused by the apparent nonstationarity in the
oscillations at those scales that makes the estimates sensitive to the location of the scale breaking points.

The extracted components are shown in Figure 5. Using Bayesian analysis, we determined the time
intervals where a component is credibly positive or negative. The posterior model used is described in
detail in Aakala et al. (2018). The posterior probability required for credibility was 0.95 and inference
was performed jointly over the whole time interval using the method of Highest Pointwise Probabilities
first proposed by Erästö & Holmström (2005). In both analyses, the first and second components are only
partially credible. For the third component with a roughly 25-year period, especially those features that
appear after the early 1700s tend to be credible. The components with an estimated wavelength of roughly
120 years and 150 years appear credible for most of the time period analyzed. The last components show
the deviations from the mean. According to the roughness penalty analysis, it was less dry than on average
before about 1670 and after about 1870, and it was drier than on average between about 1720 and about
1850. In the NW analysis, it was drier after about 1700 and less dry prior to about 1680. In the largest
scales, the difference between the NW and roughness penalty analyses is mostly due to their different
boundary behavior: the NW smooth tends to the mean whereas the roughness penalty smoother to the
linear regression as the smoothing level increases.

When seeking explanations for these variations, we compare to the solar cycles and the flux density of
galactic cosmic radiation that have shown to occur with principal periodicities of 11-years (Schwabe), 22-
years (Hale), 33-year (Bruckner) and 80-100-year (Gleissberg) where the connection between the 22-year
cycle is observed to be the strongest one and the 11-year cycle is not always present (See Kasatkina et al.,
2007, and the references therein). Also the North Atlantic Oscillation (NAO) can cause periodicity of
period 7.3-8 years (Rogers, 1984) (cf. Helama & Lindholm, 2003). The roughness penalty smoother was
able to detect the Schwabe, Hale and Gleissberg cycles with reasonably accurate period estimates. In
addition, just as documented, also in our results the Hale cycle was more prominent than the Schwabe
cycle. The NW smoother appeared to detect the NAO cycle instead of the Schwabe cycle in addition to
the Hale and Gleissberg cycles.

For comparison, we applied also multitaper spectral analysis to the data (Thomson, 1982). This
method was used also e.g. in Kasatkina et al. (2007). The results are shown in Section S3 of the
supporting information. The multitaper method detects the Hale, Schwave and NAO cycles, as well
as oscillations with shorter periods (e.g. 4.8 and 3.7 years). However, it has difficulties in detecting
Gleissberg cycles. Furthermore, unlike the scale-derivative map, the multitaper method cannot detect
possible nonstationarities in the oscillations.

12



1550 1600 1650 1700 1750 1800 1850 1900

Year

-4

-2

0

2

4

6

D
ro

u
g

h
t 

in
d

e
x

1600 1650 1700 1750 1800 1850 1900

Year

-2

0

2

4

6

8

lo
g

1
0
(

)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1600 1650 1700 1750 1800 1850 1900

Year

-0.5

0

0.5

1

1.5

2

2.5

lo
g

1
0
(h

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4 6 8 10

log
10

( )

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

log
10

(h)

0

2

4

6

8

10

12

14

Figure 4: Multiresolution analysis of the drought index. Top row: the data. Second row: the scale-derivative
maps. The scale breaks obtained from the local minima of the scale-derivative norms are shown with black
horizontal lines and other scale breaks are shown with red lines. Local minimum of the scale-derivative
norm not used in the decomposition is marked with a blue line. Bottom row: the scale-derivative norms
of the signal (dark blue line) and those of the extracted components (lines with other colours). The local
minima are marked with black diamonds. Other scale breaks and local minima not used in the analysis
are marked with red and blue diamonds, respectively. The maxima of the scale-derivative norms of the
components are marked with black circles. Left and right: the roughness penalty and NW smoothers,
respectively. 13
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6 Discussion

The focus of this manuscript was on the estimation of feature sizes in hierarchical signals. In the proposed
approach, an observed signal is first decomposed into scale-dependent components that correspond to the
hierarchy levels in the signal. In the second step, the characteristic size is estimated using the connection
between the scale-derivative and normalized second derivative, ergo by merging concepts from statistical
and computer vision oriented scale space literature. Finally, the characteristic scales were transformed
into characteristic sizes either by using the scale-period relation of periodic signals or size of the smoother
at a characteristic scale.

We used both kernel smoothers and roughness penalty smoothers. While the kernel method was
exemplified by the Nadaraya-Watson smoother, other smoothers such as local-linear regression could
be used as well. The scale-derivative norms of the extracted components revealed that the components
extracted using the NW smoother often contained traces of larger and smaller scales. This was the case
in particular for the checkerboard test image. Interestingly, this phenomenon did not appear with the
roughness penalty smoothers.

The scale-size relation was estimated both assuming that the data contain a periodicity, and also directly
from the width of the smoother at the characteristic scale. We observed that all the proposed approaches
produced relatively similar results. Importantly, with all size estimation approaches, the characteristic
size was obtained simply by scaling the characteristic scale. In the case of roughness penalty smoothers,
the scaling was for the fourth root of the characteristic scale.

There are, of course, many alternative approaches for decomposing a signal into its constituent
components, such as wavelets (see e.g. Torrence & Compo, 1998, and the references therein), and singular
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spectrum analysis (SSA) (Elsner & Tsonis, 1996). However, compared to such methods, the strength of
scale space multiresolution analysis is in its highly intuitive and transparent way of dealing with the
hierarchical structures in the data.

In our experiments with the drought index time series, spectral analysis (exemplified here by the
multitaper method) appeared more sensitive in the detection of high frequency oscillations, whereas
the proposed method might be more sensitive in the detection of low frequency components in the data.
The drought index also highlighted the major strength of the scale-derivative approach when compared
with spectral methods, namely its ability to discover temporal changes in the periodicities and amplitudes
of the hierarchical components in a time series.

We wish also to point out that size estimation using the combination of scale-derivative map and the
maxima of the scale-derivative norm is not merely an accessory for the scale space multiresolution
analysis, but it can be applied in data analysis more generally. As an example, in SSA analysis a signal
is decomposed into components that are not strictly periodic. In that context, Holmström & Launonen
(2013) estimated the period of the components using the Lomb-Scargle periodogram, but scale-derivative
analysis might provide an alternative approach.

In our examples, we demonstrated the power of the proposed approach to reveal hierarchical structures in
the data and to estimate their characteristic sizes. The focus was on time series and while we demonstrated
the method with two-dimensional signals only using a simulated example, we believe that scale space
multiresolution analysis and feature size estimation would make up a powerful toolkit also for analyzing
spatial data. An example of a field where this would be particularly useful is landscape ecology, where
the landscapes are assumed to consist of hierarchical structures that form patch mosaics, and where
the aim is often to extract the hierarchical variation and inspect the characteristic sizes of the features
(Wu, 2013, 1999; Dungan et al., 2002). Our experiments in analyzing canopy cover in forest matrices
using the methods proposed here show strong promise also in a real-world two dimensional data setting
(Kulha et al., 2018).
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A Roughness penalty smoothers

Let x = [x1, . . . , xn]
′ be a signal such as a time series or a vectorized digital image. In this article we

consider the roughness penalty smoother defined as

Sλx = argmin
u

{‖x− u‖2 + λuTQu} = (I+ λQ)−1x, (A1)

where xTQx in some sense measures the roughness of x and I is the n× n identity matrix.

For time series data, we assume that the values xi are observed at equispaced times ti with ti+1 − ti = d for
all i = 1, . . . , n− 1. We take Q = CTC where C ∈ R

(n−2)×n is the matrix of second forward differences,

15



that is, Cu = w with wj = (uj+2 − 2uj+1 + uj)/d
2, j = 1, . . . , n− 2. As λ → ∞, Sλx converges to the

linear regression line.

Next, suppose x is an image or, more generally, a planar random field on a regular equispaced grid with
n grid points. For two grid point locations (pixels) s and t, write s ∼ t, if they are neighbors. The matrix
Q we use in this case is defined by

xTQx =
∑

t

(

∑

s∼t

xs − 4xt

)2

, (A2)

where the inner summation is over all unordered pairs of neighboring locations. In order to have four
neighbors also at a boundary location t, the boundary values of x are actually extended beyond the
original grid. This Neumann boundary condition modifies Q accordingly. As λ → ∞, Sλx converges to
the mean of x. For details, see Holmström et al. (2011).
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S1 Scale-derivative vs. scale-normalized derivative

The convolution L(t, h2) of the function u(t), t ∈ R and the Gaussian kernel is the solution of the heat
equation

∂L(t, h2)

∂h2
∝ ∂2L(t, h2)

∂t2
, (S1)

with initial condition L(t, 0) = u(t) (see e.g. Serov, 2017). It follows that

∂L(t, h2)

∂ log h2
∝ h2

∂2L(t, h2)

∂t2
. (S2)

Note, that equation (S2) holds also if, instead of log h2, the derivative is taken with respect to log h, since
by (S1),

∂L(t, h2)

∂h
∝ 2h

∂2L(t, h2)

∂t2

and therefore the exponent of h only adds a multiplicative constant to the equation,

∂L(t, h2)

∂ log h
∝ 2h2

∂2L(t, h2)

∂t2
.

This establishes the connection between the scale-derivative and the second normalized derivative with
respect to time.

Similarly, in the two dimensional case, we consider a continuous signal u(t), t ∈ R
2 and its smooth

L(t, h2). Again, using the heat equation,

∂L(t, h2)

∂ log h
∝ h2∇2L(t, h2),

showing the relationship between the scale-derivative and the normalized Laplace of the smooth.
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S2 Characteristic period

Here we describe how the scale-period relationship was estimated using one and two dimensional sine
waves.

In the one dimensional case, we considered 100 sinusoidal waves of the form

x = sin(2πt/p),

where t is an equispaced n-point grid of [0, b] and where both b and n were uniformly sampled from the
intervals [1, 250] and [120, 1000], respectively. The period p was randomly generated on the condition that
the number of complete cycles within each wave was between 8 and 30 and that each wave had at least
15 grid points.

In the two dimensional case, we considered 100× 100 images x of spatial sine waves

x(i, j) = sin(2πi/p) + sin(2πj/p),

where i = 1, . . . , 100 and j = 1, . . . , 100, and p = 4, . . . 30.

For the NW smoother, there appeared to be a linear dependence between the scale h and the true period
p (cf. Figure 1 in main article). Since p = 0 should correspond to h = 0, we used linear regression without
an intercept term and concluded that

p ≈ 4.47h and p ≈ 4.45h,

for the one and two dimensional sines, respectively.

For the roughness penalty smoothers ( (A1) in the main article), the estimated relationships between the
true period p and the smoothing parameter λ were found to be

p ≈ 6.3λ0.25 and p ≈ 6.0λ0.25,

for the one and two dimensional sines, respectively.

S3 Analyzing the drought index with the multitaper method

The multitaper method is a nonparametric spectral density estimation technique that aims to reduce both
the bias and variance in the estimate (Thomson, 1982). See e.g. the review article Babadi and Brown
(2014) for further information. To estimate the spectral density of the drought index time series, we
applied multitaper analysis with Slepian tapers as implemented in the Matlab function pmtm (MATLAB,
2017). Experimenting with different numbers of tapering functions, the value of 7 seemed to work best,
detecting oscillations with periods of 512, 22.3, 12.8 and 7.2 years, as well shorter periods, such as 4.8
and 3.7 years (the left panel of Figure S1). These include the Schwabe, Hale and NAO oscillations but
not a periodicity with a roughly century cycle that could be connected to the Gleissberg oscillation (See
Section 5.2 in the main article for further information). Reducing the number of tapers to 2 produces a
peak in the spectral estimate at 171 years but such a spectral estimate is clearly too noisy for making
reliable inferences (Figure S1).
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Figure S1.Multitaper spectral analysis of the drought index based on 7 (left) and 2 (right) Slepian tapers. The most
prominent peaks in the power spectrum estimates are marked with black dots, together with their associated periods.
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