
This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/srin.201900177 

This article is protected by copyright. All rights reserved 

Direct Measurement of the Direction, Size and Velocity of Droplets Generated by Top-
blowing 
 
Tim Haas*, Aron Ringel, Ville-Valtteri Visuri, Moritz Eickhoff and Herbert Pfeifer 
 
 
Tim Haas, Aron Ringel, Moritz Eickhoff, Prof. Dr. Herbert Pfeifer  
Department for Industrial Furnaces and Heat Engineering, RWTH Aachen University, 
Kopernikusstraße 10, D-52074 Aachen, Germany 
E-mail: haas@iob.rwth-aachen.de 
 
Dr. Ville-Valtteri Visuri  
Process Metallurgy Research Unit, University of Oulu, PO Box 4300, FI-90014 University of 
Oulu, Finland 
 
 
Keywords: Droplet diameter, droplet velocity, splashing angle, top-blowing, image processing 
 
 
Abstract: Problems associated with top-blowing are present in most steel plants. While it 

promotes high reaction rates, it can cause loss of yield, working hazards and increased 

maintenance cost by spitting, skulling or lid sticking. Although the basic physics of the 

splashing phenomenon have already been established, earlier studies have not addressed the 

velocities of splashing droplets. Furthermore, existing information on the size and 

impingement angle of the droplets is based on indirect measurements. In this work, a direct 

measurement method for splashing droplets is developed that obtain the number of droplets, 

the splashing angle, the droplet velocity and diameter simultaneously. It is found that existing 

correlations overestimate the droplet diameter because they are biased by the indirect method 

and overfit results obtained with raw iron. Grid measurements indicate that all droplet 

properties strongly depend upon the sampling position. Finally, the splashing angle was found 

to become steeper while the lance height decrease. However, the effect is less correlated with 

the cavity mode than assumed in the literature. Further measurements are proposed, using the 

methodology developed in this work, to derive more comprehensive droplet property 

correlations. By that, lance designs and blowing practices can be optimized.  
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1. Introduction 

The basic oxygen furnace (BOF) process and the argon oxygen decarburization (AOD) are the 

most common processes for the refining of steel and stainless steel, respectively. Both account 

for over 70% of the annual production in their sectors. The processes are characterized by 

high metallurgical reaction rates that are achieved by an extensive mixing and by equipping 

the vessel with an oxygen top lance. Typically, the top lance is fitted with a de Laval nozzle, 

which produces a supersonic jet that impinges on the melt with a high momentum, penetrates 

the surface and forms a cavity, while extensively oxidizing impurities, iron and alloying 

elements. Inside the cavity, the jet is redirected, causing high shear forces at the surface. In 

case the shear force outweighs the restoring surface tension and inertia forces, liquid sheets 

constrict and form dispersed metal or slag droplets that impinge with a high momentum[1]. 

The droplets collide with the furnace lining and shorten the lifetime of the refractory above 

the bath level. By this, the refractory costs are significantly increased while the operational 

time of the furnace is reduced. A crucial problem are splashing droplets in processes where 

the lid of the vessel can be moved. They can cause a sticking of the lid and long standstills. In 

case the droplets are impinged out of the converter mouth, the phenomenon is known as 

spitting, causing working hazards and yield loss. Another significant problem arises from 

skulling, which is caused by droplets that attach on the lance itself.  

In order to overcome these problems, experimental as well as numerical studies were carried 

out. The most comprehensive studies have been published by Koria and Lange[2-4] in lab-scale 

experiments with liquid metal and by Brooks and coworkers[5-11] based on physical and 

numerical studies. Koria and Lange[3] proposed a dimensionless momentum number, which 

can be used to estimate the cavity depth, cavity diameter, droplet generation rate and droplet 

size: 
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𝑁�� =
�.���� ∙������ �����.����

��
���

�����           (1) 

where dn is the nozzle diameter, N is the number of nozzles, pa is the ambient pressure (given 

in unit bar), p0 is the supply pressure (in bar), ρl is the liquid density and H is the lance height. 

Koria and Lange[3] indirectly measured the droplet size in a lab-scale experiment by analyzing 

all raw iron droplets that fell out of the crucible on a sampling sheet. They proposed a Rosin-

Rammler-Sperling (RRS) distribution to describe the resulting range of droplet diameters: 

𝑌(𝑑) = 100 ∙ 𝑒𝑥𝑝 �− � �
���

�
�         (2) 

where Y(d) denotes the cumulative weight-percentage of droplets larger than d, d’ is a 

measure of fineness that is defined as the diameter larger than the smallest 36.8 % of droplets, 

n is a distribution parameter in the range of 1 to 1.828. For raw iron they proposed a n value 

of 1.26. For the measure of fineness d’ they proposed[4]: 

𝑑� = � �
��� (�)�

��
� ∙ 5.513 ∙ 10�� ∙ �10 ∙ ���

�� ∙ 𝑝� �1.27 ��
��

− 1� 𝑐𝑜𝑠(𝜃)�
�.���

   (3) 

where θ denotes the nozzle inclination angle and 𝑝� is given in unit bar.  

In addition, Ji et al.[12] showed in a subsequent study that d’ is a function of the sampling 

position. A benefit of the correlations derived by Koria and Lange is that all parameters are 

directly accessible in a steel plant. A major problem of these correlations is though, that they 

were derived based on a few measurements and cannot be applied to every vessel. 

Based on the works of Block et al.[13], He and Standish[14], Li and Harris[15] and own 

measurements, Subagyo et al.[5] proposed the more generalized blowing number: 

𝑁� = ����
�

������
            (4) 

where ρg is the density of the gas jet, ut is the tangential velocity of the gas jet at the 

impingement zone, σ is the surface tension of the liquid and ρl is the density of the liquid. The 
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tangential velocity at the impingement zone can be estimated by the empirical correlation by 

Deo and Boom[16] and Li and Harris[15]: 

𝑢� = 𝜂𝑢�            (5) 

where η is a constant with the value 0.4472 for straight nozzles and ui is the axial velocity of 

the jet. The blowing number can be used to predict the onset of splashing, the droplet rate and 

the droplet diameter. The droplet diameter was measured by analyzing droplets that stick to 

the lid of the vessel[5]. Droplet diameters between 0.3 to 90 mm were measured with a Sauter 

mean diameter of 9.5 to 21 mm. Combining their data with the existing data of Koria and 

Lange[4, 17], a Rosin-Rammler-Sperling distribution was proposed where d’ can be estimated 

by: 

𝑑� = 12.0 ∙ (𝑁�)�.��          (6) 

It was reported that, while the limiting droplet diameter strongly depend upon the blowing 

number, the spreading parameter n was almost independent of it. In comparison to the 

momentum number, the blowing number has the advantage that it is based on the physical 

background of the Kelvin-Helmholtz-Instability. As discussed in the literature[9, 18], the 

original form of the blowing number theory proposed by Subagyo et al.[5] does not scale 

properly to conditions in a real converter. Consequently, later studies have suggested 

modifications to enable better upscaling. Alam et al.[8] suggested that the value of 𝜂 depends 

on the inclination angle of the gas jets, while Sabah et al.[9] found that 𝜂 is constant only for a 

given cavity mode. Rout et al.[11] suggested that the gas flow rate used for calculating the 

droplet generation rate should be scaled to conditions of the bath surface. Despite its 

shortcomings the blowing number theory has been employed in reaction models for different 

metallurgical processes involving top-blowing[19-21].  

There are multiple other studies aiming at a general physical understanding of splashing[18, 22-

25]. For instance, it has been found that combined-blowing increases the droplet generation 

rate significantly[26, 27], while a slag layer decreases it[27]. 
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Another important work was carried out by Molloy[28] who defined three different cavity 

modes, namely the dimpling, the splashing and the penetrating mode which are characterized 

by different cavity shapes, cavity oscillations and splashing behaviors. In dimpling mode, the 

gas jet disturbs the bath surface weakly. Its role in industrial applications is negligible. By 

exceeding a critical cavity depth, the splashing mode becomes active. The shear force is 

sufficiently high to create droplets that impinge mainly radially outwards of the cavity. A 

further increment of the momentum causes a deeper cavity. In the penetration mode, 

generated droplets remain in the cavity or they are hurled upwards rather than sideward. 

Owing to that, the overall droplet generation rate is decreased[26].  

 

The aforementioned studies have created a fundamental basis for the understanding of the 

splashing phenomenon as well as for an improvement of the blowing practice. However, there 

are also some limitations, such as the fact that the droplet size and the splashing angle were 

only measured indirectly and correlations are based on very few experiments. The droplet 

velocity has not yet been measured. However, an understanding of these quantities is crucial 

for reaction models and the improvement of the top lance design. Thus, direct measurement of 

the droplet diameter, velocity and splashing angle are made in this work. Preliminary 

measurements of the gas jet velocity and the cavity depth are made to correlate the results 

with both, the lance height as well as the blowing number. 

 

2. Experimental setup  

In three different experiments, the gas jet momentum, the cavity depth and the number, size, 

velocity and direction of the impinging droplets are determined. The first two measurements 

are important to derive the dimensionless blowing number. By that, the droplet properties can 

be compared with literature data. 
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2.1 Jet momentum 
 
The jet momentum for different lance pressures and at different positions along the axial 

direction is obtained by measuring the jets dynamic pressure with a pitot tube. For that, the 

lance is attached to a rail underneath which a pitot tube is placed. For gauge pressures of 

0.5 bar and 1 bar, the height is shifted from 5 cm to 40 cm by increments of 5 cm towards the 

pitot tube. Taking the pressure dependency of the density into account, the axial gas velocity 

ui was calculated by: 

𝑢� = � �����
�������

𝑅�𝑇          (7) 

where pdyn is the dynamic pressure in Pa, RL is the specific gas constant of air and T is the 

temperature.  

The cavity depth and splashing experiments are carried out in an acrylic glass cuboid, filled 

with tap water. The dimensions of the tank are 300 x 300 x 250 mm and the filling height is 

220 mm. Above the center of the tank, a lance is placed. The lance orifice has a diameter of 

3.6 mm. A pressure regulator allows controlling and varying the lance pressure. 

2.2 Cavity depth 
 
To measure the cavity depth, a camera (Canon EOS 5DS, resolution: 50.6 megapixels) is 

placed such that it records the cavity depth from the side. The cavity depth is measured 

manually using the MATLAB imaging toolbox. For each setting, fifty images are used to 

calculate the time-averaged depth of the oscillating cavity. 

2.3 Droplet property measurements 
 
2.3.1. Setup 

The droplet size, velocity, direction and number are evaluated simultaneously by digital 

image processing. Since the droplets are very small and fast, the measurement setup 

comprises a double frame camera (LaVision Imager Pro X 4M), a mounted microscope lens 

and a high intensity backlight diffusor. The measurement setup can be seen in Figure 1. The 
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diffusor produces a homogenous backlight that simplify the subsequent image processing. 

The backlighting is pulsed synchronous with the camera, so that no frame of a double frame is 

overexposed. The camera’s resolution is 2048 x 2048 pixels and the delay time between two 

frames is 400 µs. The microscope lens narrows the focal plane to an area of about 15 x 15 mm. 

By that, droplets on a micrometer scale can be detected with a high resolution. The size of the 

focal area is a tradeoff between the ability to detect small or large droplets. In case the focal 

area is too large, small droplets and image noise are difficult to distinguish. In case it is too 

small, large droplets do not fit on the image and cannot be detected. However, by a visual 

verification, no frame could be found that was covered by a single droplet by more than 50 

percent. The position of the focal area is chosen in a way so that the velocity component 

perpendicular to the camera is negligible. Another novelty of this study is that the 

measurement quantities are not only obtained at a fixed position, but on a measurement plane.  

For that, the camera and the diffusor were shifted so that a measurement grid was covered. 

The vertical position was varied in increments of 15.5 mm from 86.5 mm to 164.0 mm, there 

the jet axis was defined as the point of origin. The horizontal position was varied from 7.0 

mm to 177.5 mm in 15.5 mm steps there the bath surface was defined as the point of origin. 

Four different lance heights of 50 mm, 100 mm, 200 mm and 300 mm were investigated with 

a lance gauge pressure of 1 bar. For the droplet analysis it was assumed that the splashing 

profile has an axial symmetry. This assumption is more appropriate in case of longer sampling. 

Thus, for each combination of lance height and measurement position, 50 double frames were 

taken with a recording rate of 5 Hz. A
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Figure 1: Experimental setup 

2.3.1. Image processing 

An image processing procedure is developed to derive the droplet quantities from the double 

frames. It needs to solve two different challenges. First, it has to identify individual droplets 

as objects on both frames. Subsequently, a droplet detected on the first frame need to be 

assigned to the same droplet found on the second frame. Only those droplets detected in both 

frames are considered for statistical analysis. 

A representative frame is shown in Figure 2 a. For detection, all double frames are 

preprocessed by Wiener filter to reduce the impact of image noise. Then, gradients in the 

grayscale level of the frames are computed by applying a Sobel filter: 

𝐺� = �
1 0 −1
2 0 −2
1 0 −1

� °𝐹      𝐺� = �
1 2 1
0 0 0

−1 −2 −1
� °𝐹       (8) 

where ° denotes a convolution operation, Gx and Gy represents the grayscale gradient in x, 

respectively in y-direction and F is the receptive field. The receptive field is a matrix of the 

same dimension than the filter that contains the gray level of the pixel of the image for that 

the gradient is computed and all neighboring ones. It is slide through all rows and columns of 

the image so that the gradient is computed for every pixel. The gradient magnitude is 

computed by: 
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𝐺 = �𝐺�� + 𝐺��           (9) 

The result of the Sobel operation can be seen in Figure 2 b. After computing the gradients, 

thresholding is applied to binarize the image (Figure 2 c). Those gradients that exceed this 

threshold are kept and assigned to a positive. In case objects are too far from the focal plane, 

its outlines appear blurry and its gradients are below the threshold. Objects that are only 

partially in the frame are not further considered to avoid distortion of the diameter estimation. 

In addition, strong gradients extending over a small area are considered image noise and are 

not processed further. Finally, an object detection algorithm is applied that identify clusters of 

connected positive pixels in the binarized image, shown in Figure 2 d. 

 
      a           b    c   d 
Figure 2: Steps of image processing: a)original image b) Sobel filtering c) thresholding d) 
object detection  

The second task of the image processing procedure is to identify detected objects which are 

visible in both frames. These objects are combined to one track. The assignment is made by 

computing an empirical cost function J for all possible combinations of detected objects in a 

double frame: 

𝐽 = �(�������)��(�������)�

� + �∙��� (���,���)
��� (���,���)         (10) 

where x and y are the coordinates of an object and d is its diameter while F1 and F2 denotes 

the frame in which the object is in. The pair that yield the lowest cost function is assigned to 

each other and considered as the same droplet found in subsequent frames.  

In case all cost functions are above a specified threshold, the detection remains unassigned 

and is not further considered. For assigned droplets, the diameter is computed by: 
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𝑑 = ����,�������,�������,�������,��
� °𝐶�������        (11) 

where Cspatial is the conversion factor between pixels and meter that is obtained from a 

calibration image. The droplet velocity is obtained from the shift of the droplets center 

multiplied by the spatial and temporal scale factor. The splashing direction is the angle 

between the velocity vector w and the positive x-axis computed by: 

cos(𝜃) = �∙�
|�|∙|�|          (12) 

Since only those droplets that are completely visible in both frames are taken into account, 

smaller and slower droplets are more likely be detected that larger or faster ones. The 

detection probability as a function of size and velocity is shown in Figure 3. The detection 

probabilities are based on synthetically generated spherical droplets. For the computation of 

average droplet velocity and diameter, these probabilities are taken into account as described 

later. 

 

Figure 3: Detection probability as a function of droplet diameter and velocity 

To enable comparison with the observations by Subagyo et al.[5] and Koria and Lange[4], the 

Sauter mean diameter was computed by: 
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3. Results 

A characteristic scatter plot of all detected droplets for a lance height of 100 mm is shown in 

Figure 4. It can be seen that most detected droplets are in a diameter range between 0 and 

3000 μm. For those droplet diameters, the droplet velocity is distributed between 0 and 9 m s-

 1, though most droplets velocities are in the range of 0 to 4 m s-1. Larger droplets were only 

detected in case their velocity was low. However, considering the detection probabilities, it is 

likely that some large and fast droplets exist that could not have been detected in both frames. 

Thus, they are not further processed and are not shown in the scatterplot. To take account for 

that bias, the detection probability is used to compute adjusted means. In the subsequent 

analysis, this is made by sorting all detections to a finite number of diameter and velocity 

ranges. The adjusted number and diameter are computed by dividing the number of droplets 

in each range by the detection probability for the range shown in Figure 3. The number of 

droplets in each range is thereafter divided by the detection probability for that range that is 

shown in Figure 3. With that adjusted number, the adjusted diameter, respectively velocity, is 

computed. 

 

Figure 4: Scatter plot of all detected droplets for a lance height of 100 mm (NB=5.92) 
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3.1 Averaged data 

The total number of detected droplets in dependence of the lance height is given in Figure 5. 

In addition, the according blowing numbers are given. The blowing numbers are based on the 

preliminary measurements of the cavity depth and the gas jet velocity and are computed using 

Equation 4 and 5. In case of a high lance height, the number of detections is very low. It 

increases in case the lance height is lowered to 200 mm, respectively 100 mm. The slope 

seems to follow linear patterns though the number of data points is too low for a valid 

conclusion. A further decrease of the lance height reduces the number of detections 

significantly. This phenomenon is probably attributed to the change of cavity mode.  
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Figure 5: Dependence of the number of droplets on the lance height and the blowing number, 
respectively 

In Figure 6, the droplet diameter is shown for different lance heights, blowing numbers 

respectively, as a boxplot. The average mean value is given by diamond shaped markers, 

connected with a dotted line. To take account for the measurement bias, the average mean 

value is computed considering the detection probabilities. Its values are highlighted by a 
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white background. For a better comparison with the observations by Subagyo et al. [5], the 

Sauter mean diameter is also computed using Equation 13. The values are shown by a star-

shaped marker. Again, its value is given, highlighted by underlining it. Like for the mean 

diameter, the values consider the detection probabilities. The experiments indicate that both 

average droplet diameters increase while the lance height decrease, respectively the blowing 

number increase. In addition, the maximum diameter as well as the diameter range were 

found to increase.  

 
Figure 6: Boxplot of detected droplet diameters for different lance heights, including the 
average mean (diamond-shaped) and Sauter mean (star-shaped) diameter. 

The different droplet diameter distributions, adjusted by considering the detection 

probabilities, were correlated with the Rosin-Rammler distribution (Equation 2). The 

distribution parameters and their correlation values are summarized in Table 1. In addition, 

the theoretical values computed with Equation 3 and 6 are given. It can be seen that both 

correlations significantly overestimate the droplet diameter for the given conditions. The 

effect is most pronounced for the correlation of Subagyo et al. [5] for a low lance height. 

Furthermore, it can be seen that the distribution parameter n is not constant as reported by 

Subagyo et al.[5]. In contrast, it shows a strong dependency on the blowing number, the lance 

height respectively. This indicates that the existing equations overfit the results obtained in 

experiments made with raw iron and that they are inaccurate in case they are applied to 
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different fluids. This is a particular problem because blowing is applied in different processes 

and the fluid properties can differ significantly, even in different stages of the same process. 

Owing to that, a more comprehensive correlation is necessary. However, the number of data 

points in this work is far too small to derive such an equation that covers the whole 

complexity of the problem. 

 
Table 1: Measured Rosin-Rammler-Sperling distribution parameters and comparision with 
literature data 

Lance Height Blowing number Rosin Rammler parameters 
Sugagyo et 

al.[5] 
Koria and Lange 

[4] 
H [7] [-] d’ [μm] n R d’[μm]  d’ [μm] 
50 7.76 580 1.18 0.98 64400 54500 

100 5.92 548 1.33 0.99 51600 12300 
200 2.61 520 1.43 0.99 26300 2600 
300 1.37 376 2.34 0.99 15500 1600 

 
The measured droplet velocities are shown as boxplots in Figure 7. The mean droplet 

velocities, considering the detection probability, increase very slightly with decreasing lance 

height in a range from 1.42 m s-1 to 1.46 m s-1. However, the velocity decreases significantly 

in case the lance height is reduced from 100 mm to 50 mm to 1.05 m s-1. Interestingly, this is 

identical with the change of the cavity mode. The results show that the droplet velocity differs 

significantly from the tangential velocity of the gas jet computed by Equation 5 that is in a 

range between 7 and 18 m s-1. In addition, there is no linear relation between those values. 

Instead, the cavity mode seems to have an important effect on the droplet velocity.  
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Figure 7: Boxplot of detected droplet velocites for different lance heights, including the 
average mean (diamond-shaped) diameter 

 
 
3.2 Grid measurements 

Indirect measurements have indicated that the measured droplet quantities might depend upon 

the sampling position [12]. Thus, direct grid measurements were made in this study to 

investigate this dependency. For a better visualization, an interpolation between the recorded 

data points were made. Figure 8 (a) to (d) show the number of detected droplets in 

dependency of the lance height and the measurement position. The position of the lance is 

indicated on the left. In addition, the mean splashing direction is given by vectors. For lance 

heights of 50 mm and 100 mm, the highest number of detected droplets were found at the 

sampling positions closest to the lance. The number of detections declines strongly with 

increasing radial distance to the lance. The vector fields for both lance heights looks similar. 

On average, the droplet seems to impinge with a steep angle out of the cavity and fall in a 

relatively small radial distance back into the bath. As was already known from the averaged 

data, the overall number of detections is significantly higher in case of a lance height of 

100 mm. 

For a lance height of 200 mm, the maximum number of detected droplets can be found at the 

lower center of the measurement area. The vector field indicate that the averaged splashing 
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angle is shallower compared to smaller lance heights. Owing to that, the droplet velocity at 

the measuring positions furthest away from the lance still have a radial component while it 

just had a negative axial one in case of smaller lance heights. The number of detections at 

these positions exceeds those of a lance height of 100 mm, even though the total number of 

detections in this case in higher by far. For the maximum lance height of 300 mm, the number 

of detections is small for all sampling positions. The maximum number can be found at the 

lower right corner of the measurement field, furthest from the lance. This indicates that the 

averaged splashing angle has become shallower. The vector field do not indicate cohesive 

mean trajectories in this case. This can be explained by the low numbers of detected droplets 

at each measurement position. Due to that, the mean angle is clearly distorted by single 

detections.  

The results suggest a relationship between the splashing angle and the blowing number, the 

lance height respectively. The higher the blowing number, the steeper the mean splashing 

angle becomes. However, since the first two cases have almost indistinguishable vector fields, 

it seems that a maximum splashing angle is reached with a lance height of 100 mm. In 

contrast to existing theories, the maximum is reached before the change of the cavity mode. 

This indicates that splashing angle and cavity mode are not that strongly correlated than 

suggested. In addition, the grid measurements showed that measurements of the droplet 

generation rate depend on the sampling position. It is likely that the droplet generation rate for 

a lance height of 300 mm is higher than suggested in Figure 5, but that the splashing angle is 

so shallow that the majority of droplet trajectories are below the measurement plane.  A
cc
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      (a)               (b) 

 

      (c)                  (d) 
Figure 8: Number of detected droplet and mean splashing angle in dependency of the 
measurement position for lance heights of (a) 50 mm (NB=7.76, penetration mode), (b) 
100 mm (NB=5.92, splashing mode), (c) 200 mm (NB=2.61, splashing mode), and (d) 300 mm 
(NB=1.37, splashing mode) 

In Figure 9 a and b the mean droplet diameter and the maximum droplet diameter are shown 

in dependence of the measurement position for a lance height of 100 mm (NB=5.92). The 

mean droplet diameter differs significantly with the sampling position. While it exceeds 

650 μm close to the lance, it decreases almost linear to about 450 μm furthest away from the 

lance. The maximum droplet diameters dependency of the sampling position is less smooth 

because the value depends on a single droplet. Interestingly, it shows a strong drop from about 

5000 to 2000 μm in the upper right corner of the measurement field. The results can be 

explained by two different phenomena. First is the disintegration of larger droplets into 
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smaller ones along its trajectories. By that, the number of larger droplets would become 

smaller with increasing distance to the lance and so would the mean values. This explanation 

is supported by the measured maximum droplet diameters. Another, less intuitive explanation 

is that the trajectories of individual droplets depend upon the droplet size. Thus, larger 

droplets might fall in a radial distance from the lance that exceeds the measurement area. The 

sampling positions at the distant edge of the area might have a higher likelihood to be crossed 

my intermediate sized droplets. A further expansion of the measurement grid could prove to 

what extent both explanations contribute to the observations. 

 
      (a)                  (b) 
Figure 9: Mean droplet diameter (a) and maximum droplet diameter (b) in dependency of the 
measurement position for a lance height of 100 mm (NB=5.92, splashing mode) 

 
The mean droplet velocity in dependency of the sampling position is shown in Figure 10 for a 

lance height of 100 mm. Close to the lance, the mean droplet velocity is about 1.9 m s-1. 

Along the trajectories, the mean velocity gradually declines to a value of about 0.6 m s-1 in the 

lower right corner. The droplet velocity profile matches the mean droplet trajectories very 

well. It is therefore concluded that the reduction of velocity is due to the decelerating effect of 

the drag force. 
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Figure 10: Mean droplet velocity in dependency of the measurement position for a lance 
height of 100 mm (NB=5.92, splashing mode) 

 
The grid measurements indicate that all measured quantities strongly depend upon its 

sampling position. Therefore, realistic averaged quantities can only be obtained if a large 

measuring grid is covered. 

 
4. Discussion 

The efficiency of steel refining in secondary metallurgy processes is often enhanced by 

equipping the vessel with a top lance. However, accompanied with many benefits, high shear 

forces in the cavity, caused by the impinging gas jet, induce a splashing of metal or slag 

droplets. Related problems like spitting, skulling or lid sticking are commonplace in many 

steel plants. This study was the first to measure droplet quantities directly by imaging. By that, 

a deepened understanding of the splashing phenomenon was intended. 

For direct droplet measurements, an experimental setup comprising of a double frame camera 

equipped with a microscopic lens was build. This allowed the detection of a broad range of 

droplet diameters and velocities including very small droplets. Even though the quantities 

were directly measured, the averaged results were slightly biased by the chosen focal area and 

the shift between the frames. Both was a compromise between accuracy on the one hand and 

the maximum detectable value on the other. The bias was partly outbalanced by computing 
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and considering the detection probabilities of droplets with different diameters and velocities. 

In addition, the chosen hyperparameters of the subsequent image analysis, for instance the 

gradient threshold, had a small impact on the results. 

For four different lance heights, measurements were conducted at 72 different sampling 

positions. Thus, the experiments yielded averaged data for the droplet diameter and velocity 

as well as area measurements that showed the droplet properties in dependency of the 

measurement position. It has been found that the sampling position had a very large influence 

on the measured droplet diameter and velocity as well as number of detected droplets and the 

splashing angle. It is therefore very important that in all further measurements a large range of 

measurement positions is covered so that the data obtained is not biased by the sampling 

position. In addition, the area measurement gave quantitative evidence that the splashing 

angle depend upon the blowing number, the lance height respectively. Interestingly, it was 

found that the transition from splashing to penetration mode had a smaller impact on the 

splashing angle than expected. While it was shown that high lance heights resulted in a 

shallow splashing angle, a lance height of 100 mm, at which the cavity was still in splashing 

mode, already yielded in a very steep angle. A further decrease of the lance height, that was 

associated with a change of cavity mode, almost did not change the angle any more. The 

splashing angle is an important factor for the prediction of droplet trajectories and its 

understanding is crucial for the improvement of lance head designs. Thus, further studies are 

proposed including different nozzle inclination angles, different fluid properties and 

additional lance heights. 

The averaged diameter revealed some drawback of existing correlations. In correspondence 

with Subagyo et al.[5], it was found that the averaged droplet diameter increased with 

increasing blowing number. However, the functional relation seemed to be slightly different 

from those derived by Subagyo. While the droplet diameter increased with the power of 0.82 

in their correlation, the exponent in this work was smaller. Koria and Lange [4] found that the 
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droplet diameter is related to the lance height by the power of -2.412. In this study, the 

exponent seemed to be larger, in the range between -0.5 and -1. The most notably difference 

for all blowing numbers was that the mean droplet diameter was considerably smaller than 

found by Subagyo et al.[5] and Koria and Lange[4]. A possible explanation is a relation 

between the droplet size and the fluid properties that has not been identified yet. Both studies 

were made with raw iron, while water was used in this study. Especially the much higher 

surface tension of steel might be underrepresented in the existing correlations. Some of the 

deviation can be explained by the indirect measurement method used in the existing studies. 

Only those droplets were sampled that could be found on a sampling sheet outside the 

crucible. To illustrate the bias of these studies, the trajectories for different droplet diameters 

are shown in Figure 11. For the calculations, the average droplet velocity (1.8 m s-1) and the 

average angle (50 degree) at the lower left measurement position for a lance height of 100 

mm was used. The drag force was computed by using the drag coefficient correlation derived 

by Clift et al.[29] for rigid, spherical droplets, using the assumption of quiescent air:  

𝐶� = ��
���

(1 + 0.1935 ∙ 𝑅𝑒�.����)        (14) 

 

Figure 11: Computed droplet trajectories for different droplet diameters 

The computed trajectories show that small droplets fly a small radial distance. Thus, it is 

likely that most small droplets fell into the crucible rather than being collected on the 
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sampling sheets. In addition, Figure 11 helps to explain the observations by Ji et al.[12] who 

found that the mean diameter of sampled droplets increased with increasing height of the 

sampling position. In this work, it was found that the majority of droplets were in a range of a 

few hundred microns meaning that they would not have been sampled. Nevertheless, the bias 

alone cannot explain the difference since it was reported by Subagyo et al.[5] that droplets of a 

diameter between 0.3 to 90 mm were observed. In this study, the maximum diameter was 

roughly 10 mm. By a visual verification, no droplets that exceeds the focal area could have 

been detected. Another evidence for a relation between the droplet size and the fluid 

properties can be derived from the critical Weber number at which droplets disintegrate into 

smaller ones. Koria and Lange[30] found critical Weber numbers in the range between 81 and 

150 for raw iron. Using this value and the averaged droplet velocities of this study, the critical 

diameter at which water droplets are stable is about 3 mm. Using the same conditions, the 

critical diameter for raw iron is roughly three times from those of water. In fact, some larger 

droplets found in this study showed strong constriction in the middle of the major axis 

indicating the onset of disintegration as shown in Figure 12. 

 

Figure 12: Disintegrating droplets  

Since the depth of the focal area is not exactly known, it is not possible to derive a droplet 

generation rate from the sampled data. However, the number of detected droplets is directly 

correlated to the generation rate. The results of this study are very similar to those by Standish 

und He[26]. In accordance with this work, they found that the droplet generation rate increases 

with decreasing lance height up to a maximum at about 100 mm. Thereafter, the droplet 
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generation rate decrease, which was explained by the cavity transition from splashing to 

penetrating mode. This exact transition point, that might be of crucial important for 

prevention of splashing problems could not be determined experimentally due the coarse 

height adjustment of the top lance in this study, and remains a potential topic for further 

research.  

The individual droplet properties measured directly in this study can be used to reconstruct 

individual droplet trajectories. Figure 13 shows 100 exemplary droplets, recorded at the 

measurement position closest to the lance at a lance height of 100mm. The trajectories are 

computed using Eq. 14 to calculate the drag coefficient. Individual diameters, velocities and 

splashing angles were used for all trajectories. This data can be used to validate computational 

fluid dynamic models or to estimate the residual time of droplets, for example. 

 

Figure 13: Reconstruction of individual trajectories for a lance height of 100 mm (NB=5.92) 

 

5. Conclusion 

The experiments showed that existing diameter correlations are biased towards larger droplets 

and that they overfit the results yielded with molten metal. A more comprehensive correction 
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0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

D
is

ta
nc

e 
to

 b
at

h 
su

rfa
ce

 [m
]

Radial Distance [m] A
cc

ep
te

d 
A

rti
cl

e
The individual droplet properties measured directly in this study can be used to reconstruct 

A
cc

ep
te

d 
A

rti
cl

e
The individual droplet properties measured directly in this study can be used to reconstruct 

individual droplet trajectories. 

A
cc

ep
te

d 
A

rti
cl

e
individual droplet trajectories. 

measurement posit

A
cc

ep
te

d 
A

rti
cl

e
measurement positi

A
cc

ep
te

d 
A

rti
cl

e
ion clos

A
cc

ep
te

d 
A

rti
cl

e
on clos

computed using 

A
cc

ep
te

d 
A

rti
cl

e

computed using Eq. 

A
cc

ep
te

d 
A

rti
cl

e

Eq. 14 to calculate the drag coefficient. 

A
cc

ep
te

d 
A

rti
cl

e

14 to calculate the drag coefficient. 

splashing angles were used for all trajectories. 

A
cc

ep
te

d 
A

rti
cl

e

splashing angles were used for all trajectories. 

uid dynamic models or to estimate the residual time of droplets, for example.

A
cc

ep
te

d 
A

rti
cl

e

uid dynamic models or to estimate the residual time of droplets, for example.

13 A
cc

ep
te

d 
A

rti
cl

e

13: Reconstruction of individual trajectories for a lance height of 100A
cc

ep
te

d 
A

rti
cl

e

: Reconstruction of individual trajectories for a lance height of 100

0.00

A
cc

ep
te

d 
A

rti
cl

e

0.00

0.25

A
cc

ep
te

d 
A

rti
cl

e

0.25

0.50

A
cc

ep
te

d 
A

rti
cl

e

0.50

0.75

A
cc

ep
te

d 
A

rti
cl

e

0.75

1.00

A
cc

ep
te

d 
A

rti
cl

e

1.00

1.25

A
cc

ep
te

d 
A

rti
cl

e

1.25

1.50

A
cc

ep
te

d 
A

rti
cl

e

1.50

D
is

ta
nc

e 
to

 b
at

h 
su

rfa
ce

 [m
]

A
cc

ep
te

d 
A

rti
cl

e
D

is
ta

nc
e 

to
 b

at
h 

su
rfa

ce
 [m

]



  

24 
This article is protected by copyright. All rights reserved 

viscosities and surface tensions. By that, different processes or process stages with altering 

fluid properties can be modeled more accurate. This measurement should cover a broad range 

of measurement positions, as it was found that the droplet quantities strongly depend upon the 

sampling position. In addition, it was found that the relation between splashing angle and 

cavity mode is weaker than assumed in the literature. Further measurements with different 

nozzle inclination angles, nozzle diameters, fluid properties and additional lance heights are 

suggested to correlate average droplet trajectories with the blowing number. These studies 

should also yield a more comprehensive understanding about the splashing phenomenon and 

the exact point of cavity mode transition. As the droplet generation rate drops significantly at 

that point, it might be of crucial important for the optimization of lance head designs and 

blowing practices.  
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