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ABSTRACT 

Sulfur is considered as one of the main impurities in hot metal and hot metal desulfurization is 

often carried out using injection of fine-grade desulphurization powder. The selection of 

variables used for predicting the course of hot metal desulphurization requires expert 

knowledge. However, it is difficult to model the complex interactions in the process and to 

evaluate a high number of possible variable subsets with manual variable selection techniques. 

As the amount of data gathered from the process increases, manual variable selection becomes 

too time-consuming and might lead to a suboptimal prediction model. The objective of this 

work is to execute an automatic variable selection procedure for prediction of hot metal 

desulfurization based on an industrial scale data set. The variable selection problem is 

formulated as a constrained optimization problem, in which the objective function is formulated 

based on repeated leave-multiple-out cross-validation. The implemented solution strategy is a 

binary-coded Genetic Algorithm (GA).  By making use of the developed model, the effect of 

the main production variables on the rate and efficiency of primary hot metal desulfurization 

was quantified. The variables related to properties of the reagent and the injection parameters 

were found to be of great importance.  
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1. Introduction 

 

Sulfur is considered as one of the main impurities in hot metal and hot metal desulfurization is 

often carried out using injection of fine-grade desulfurization powder. Hot metal desulfurization 

with powder injection consists of two main reactions: 

i) Transitory contact reaction (reagent-metal) 

ii) Permanent contact reaction (slag-metal)  

In the case of hot metal desulfurization with a lime-based reagent, the following reaction is 

considered: 

< CaO >  +[S] →< CaS > +[O] 

 

[1] 

In literature, the sulfur content in the hot metal has been observed to follow 1st order kinetics, 

for which the mass balance of sulfur can be written as follows: [1] 

 

d[S]

d𝑡
=  −𝑘tot([S] − [S]eq), 

 

[2] 

The total rate of hot metal desulfurization reaction with lime-based reagents has been suggested 

to be dependent on the following parameters: [1-14] 

 active solid surface area in contact with the metal phase, 

 feed rate of the particles, 

 mass of the metal bath, 

 total flow rate of the gaseous compounds,  

 mass transfer coefficient in the metal-reagent diffusion boundary layer, 

 mass-transfer coefficient in the metal-slag diffusion boundary layer, 

 rate of solid-state diffusion in the product phase, 

 average residence time of the reagent particles in the metal bath, and 

 sulfide capacity of the slag phase.  

 

Predicting the evolution and end content of sulfur for powder injection based hot metal 

desulfurization has been under extensive research. Regardless of the wide variety of modeling 

approaches [1-14], the prediction of the end sulfur content in particular has been suggestive. Often, 

the mathematical descriptions of the physico-chemical phenomena occurring in the system are 
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not accurate enough for process control purposes. Furthermore, the complexity of such models 

often leads to relatively long computational times and difficulties in online implementation. 

Because they are based on true causalities, phenomena-based mathematical models are well-

suited for process development and decision support, but cannot account for all sources of 

process variation, for example irregular wear of processing equipment. This being so, the 

mathematical modeling approaches must be tuned by identifying the appropriate model 

variables and parameters. As was established by in our previous work [14], the reasoning behind 

the inaccurate predictions could be an inadequate data set applied for predictions and 

uncertainties related to system identification. As suggested by the authors, the data-driven 

techniques could provide a feasible alternative for less accurate mechanistic models. [14] To 

illustrate the division in the literature of the modeling approaches presented, some of the 

previous modeling approaches for hot metal desulfurization are given in Table 1.  

 

Table 1. Previous modeling approaches for hot metal desulfurization with powder injection.  

Authors Modeling approach Reagent Variable selection Ref. 

Oeters et al. MR CaO Manual [1] 

Ohguchi et al. MR CaO Manual [2] 

Oeters  MR CaO Manual [3] 

Datta et al.  ANN CaC2 Manual [4] 

Rastogi et al. PMR CaC2 Manual [5] 

Deo et al. ANN CaC2 Manual [6] 

Deo and Boom et al. ANN CaC2 Manual [7] 

Visser and Boom MR CaO + Mg Manual [8] 

Seshadri et al. MR CaO Manual [9] 

Rodriguez et al. MR CaC2 Manual [10] 

Ma et al. MR CaO + Mg Manual [11] 

Barron et al. MR CaO, CaC2 and Mg Manual [12] 

Vargas-Ramirez  et al. MR CaO, Na2CO3 Manual [13] 

Vuolio et al.  PMR CaO + CaCO3 Manual [14] 

     

This work PMR CaO + CaCO3 Evolutionary – 

Notes: (MR = Mechanistic reaction model; PMR = Parameterized mechanistic reaction model; 

ANN = Artificial neural network model 
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Appropriate system identification is mandatory for building an effective prediction model. A 

key step in prediction model identification is the variable selection phase. The variable selection 

can be carried out either manually or by applying a search algorithm. However, as the amount 

of data and combinations of possible explanatory variables increase, the manual variable 

selection techniques do not often lead to an optimal subset, not to mention the adequate 

prediction accuracy and generalizability of the modeling approach. For this reason, the variable 

selection often needs automatic and more sophisticated methods.  

 

In previous studies concerning the metallurgical field, the variable selection algorithms have 

been used mainly for identification of the blast furnace (BF) or basic oxygen furnace (BOF) 

processes. Saxén and Petterson[15] carried out a simultaneous input variable selection and 

structural optimization of the neural network that was designed for the prediction of silicon 

content of the hot metal in a blast furnace. By applying a pruning algorithm that was based on 

the importance of the connective weights in the network model, the authors succeeded in 

explaining major changes in the silicon content. The relevant variables for the predictive model 

were the ones associated with a non-zero weight connection.[15] However, using a neural 

network as the basis for a prediction model needs an extensive amount of data that covers the 

operational area of the process. Unfortunately, this is rarely available in the case of batch 

processes like hot metal desulfurization. Similar to Saxén et al. [15], Mahanta et al. [16] applied 

an evolutionary neural network and bi-objective genetic algorithm in the optimization of model 

structure for predicting several operational parameters in a blast furnace. They presented a 

pareto-optimal set of input variables, i.e. the model structure with a reasonable computational 

complexity and modeling error. In a study by Wang et al. [17], the Random Forest (RF) algorithm 

was used for prediction of the silicon content in a blast furnace. In their study, the measure of 

variable importance was related to classification accuracy of the model candidate when applied 

to an external data set. The algorithm selected the relevant input variables amongst 28 variable 

candidates.  Wang et al.[18] presented a variable selection algorithm for a Support Vector 

Machine (SVM) model designed for the end-point prediction of the of BOF blow. The 

importance of a predictor variable candidate was measured with mutual information and 

selected if a threshold value of the quantity was exceeded.  

 

This study presents a method to build a multivariable parametrized prediction model for hot 

metal desulfurization. The models considered in this study are identified by applying a repeated  
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leave-multiple-out cross-validation as the objective function, while the proposed objective 

function is minimized with a binary-coded genetic algorithm. The main objective of the study 

is to automatically identify a reliable and parsimonious prediction model that is well-suited for 

process control and optimization purposes.  

 

2. Methodology 

 

2.1. Objective function for variable selection 

 

The objective of the variable selection problem is to find a best possible subset of variables or 

variables that explains most of the variance in the output vector. [19] Furthermore, this can be 

formulated as a combinatory optimization problem, in which the prediction error is minimized 

with respect to the explanatory variables and model parameters.  The usual criteria for data-

driven problems is either Sum of Squared Errors (SSE) or Mean Squared Error (MSE). In the 

case of the given rate constant, the linear multivariable model is given as:  

 

𝑘𝑡𝑜𝑡 =   𝑏0 +  𝑏1𝑥1 + ⋯ 𝑏𝑗𝑥𝑗 +  𝜀 =  𝑏0 +  ∑ 𝑏𝑗 𝑥𝑗 +  𝜀

𝑘

𝑗=1

 

 

 

[4] 

Owing to the non-linear nature of desulphurization kinetics, the interactions between the 

dependent and independent variables are assumedly non-linear. For this reason, a log-linear 

form of the prediction equation is considered: 

ln 𝑘𝑡𝑜𝑡 =  𝑏0ln 𝑒1 +  𝑏1 ln 𝑥1 + ⋯ 𝑏𝑛 ln 𝑥𝑛 + 𝜀 = 𝑏0ln 𝑒1 +  ∑ 𝑏𝑗 ln 𝑥𝑗 

𝑘

𝑗=1

+ 𝜀  

 

 

[5] 

In the light of the reasoning above, the conditioned least-squares objective function can be 

written as follows: 
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min ∑ (𝑦𝑖 − [𝑏0 + ∑ 𝑔𝑗𝑏𝑗

𝑘

𝑗=1
ln 𝑥𝑖,𝑗])

2

 

𝑀

𝑖=0

 

s. t. ∑ 𝑔𝑗
𝑘
𝑗=1 ≤  𝑘𝑚𝑎𝑥;  

 𝑏𝑚𝑖𝑛 ≤ 𝑏𝑗 ≤  𝑏𝑚𝑎𝑥   where  

 𝑔̂ = [𝑔1 𝑔2 … 𝑔𝑘]𝑇 ;  𝑔𝑗  ϵ {0,1}; 

𝑏̂ = [𝑏1 𝑏2 … 𝑏𝑘]; 𝑏𝑗  ϵ  ℝ 

 

[6] 

 

 

 

 

In this case 𝑔𝑗 marks whether the corresponding variable j is selected for inclusion in the model, 

such that if 𝑔𝑗 = 1, the variable is selected. In the case of data set with noise and collinearities, 

the objective function is multimodal with usually several local minima. For this reason, the 

model estimate with n variable candidates should be the global optimum of the training set with 

respect to the regression parameters. It can be shown that the global optimum for the parameter 

vector b is obtained with the Moore-Penrose inverse of the data matrix X (m × n): 

 

𝑏̂ = (X𝑇X)−1X𝑇𝑦. 

 

[7] 

As the parameter identification phase is out of the scope of this study, for the sake of simplicity 

the constraints set to the model parameters are ignored. In case of a regression model, the 

minimum of the least squares cost-function approaches zero when the number of predictor 

variables (n) approaches infinity. For this reason, the model with an excessively high number 

of predictor variables reaches very low values of the objective function for the training set, but 

fails to predict the changes in the validation set. This phenomenon is referred to as overfitting 

[19].  As was experimentally proven by Baumann [20], in variable subset selection there often lies 

a possibility for a chance correlation and overfitting [21]. Consequently, it was suggested that 

chance correlation and overfitting can be avoided by combining cross-validation with the 

efficient use of data.[19] With this, it is necessary to employ a cross-validation-based objective 

function.[19] The proposed methods are LOO (Leave One Out) and LMO (Leave Multiple Out) 

cross-validation techniques. However, the performance of LMO was superior to the 

performance of LOO since LOO gave highly over-fitted results compared to LMO when 

applying a Tabu Search for subset selection. In case of a BCGA, the conditioned cost-function 

applying a LMO cross-validation can be written as:  [20] 
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min
1

4𝑁
∑ ∑(𝑦𝑖,𝐶𝑉𝑙

− [𝑏0,𝑗 + ∑ 𝑔𝑏𝑖,𝑗

𝑘

𝑗=1
ln 𝑥𝑖,𝑗,𝐶𝑉𝑙

])2

𝑛

𝑗=1

4𝑁

𝑙=1

, 

s. t. ∑ 𝑔𝑗
𝑘
𝑗=1 ≤  𝑘𝑚𝑎𝑥;  

 𝑏𝑚𝑖𝑛 ≤ 𝑏𝑗 ≤  𝑏𝑚𝑎𝑥   

 where  

 𝑔̂ = [𝑔1 𝑔2 … 𝑔𝑘]𝑇 ;  𝑔𝑗  ϵ {0,1} 

𝑏̂ = [𝑏1 𝑏2 … 𝑏𝑘];  𝑏𝑗  ϵ  ℝ   

 

 

[8] 

where CVl stands for internal validation set in cross-validation, n is the number of data points 

in the testing set and N is the number of data points in the fitting set. The value of the objective 

function used in the ranking of the model candidate is the mean value of the internally cross-

validated modeling result. The split of the data is repeated 4N times, where N represents the 

number of data-points used in the fitting of the model. As shown by Baumann [21] a search 

algorithm defined in this way converges towards a variable subset with a high prediction 

performance and generalizability, and sufficiently excludes irrelevant variables from the set. 

[21]  

 

The covariance of independent variables, i.e.  multicollinearity, can be treated by applying 

penalty factors. Collinearity between the selected independent variables is a typical problem in 

selecting a multiple linear regression model and can lead to weak prediction performance and 

poorly interpretable model structure.[22] To avoid the existence of collinearity in the selected 

variable subset, the correlation between the independent variables is analyzed and a penalty 

term is added to the objective function. For this purpose, the concept of a variance inflation 

factor (VIF)  matrix is introduced. In the VIF matrix, a single element is defined with the 

correlation matrix of X. The expression for an element in the VIF matrix is: 

  

𝑉𝐼𝐹𝑖,𝑗 =  
1

1 − corr(𝑋𝑖,𝑗)2
. 

 

 

[9] 

The value used in the penalty function is: 
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𝑉𝐼𝐹max =  𝜆𝑖max (
1

1 − corr(𝑋)2
), 

 

[10] 

where 𝜆𝑖 is a corresponding penalty constant. 

 

2.2. Binary-Coded Genetic Algorithm for Variable Selection 

 

The applicability of genetic algorithms in combinatory optimization problems, of which 

variable selection is a good example, has been proven in various studies, [23-30] in which a 

binary-coded genetic algorithm (BCGA) is used for the optimal subset selection for either a 

principal component regression, partial least-squares regression or multiple linear regression 

models. As an example, Kepplinger et al.[29] and Sorsa et al.[24] got realistic and reliable results 

by applying  BCGA with repeated leave-multiple-out cross-validation as the objective function 

for model selection, [24,29] whereas in the approach of Barycki et al.[30] the objective function in 

variable selection was based on the training set only, and the validation of the models was 

carried out with leave-one-out cross-validation. [30]  

 

Metaheuristic optimization algorithms, like the Genetic Algorithm, are feasible alternatives in 

situations where exhaustive search is too time-consuming.  This is often true especially when 

using repeated objective function evaluations for a single iteration round. It can be deduced that 

the success of the GA in variable selection is based on the coding of the chromosome and on 

the capability of the algorithm to operate in a wide search area. Unlike in the parameter 

identification task, where the binary coding is converted into the decimal form, in a variable 

selection problem each of the binary coded chromosomes represents the variable subset 

candidate. In addition, the constraints for the objective function can be implemented with 

simple scaling factors[31], which has been proven useful along the repeated cross-validation for 

restricting the number of predictors in the final model. [24]  

 

The steps of the GA can be roughly divided into four steps: 1) initialization, 2) ranking, 3) 

selection and 4) recombination. [31] The initialization of the population is carried out randomly 

by tossing a biased coin, and to yield more parsimonious models, 20% of the genes are 

initialized as ones and 80% as zeros. The ranking of each of the variable subset candidates is 

based on the relative fitness value of each individual in the population. The formulated 
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minimization problem is converted into a maximization problem by using the inverse of the 

objective function. Thus, the fitness of the variable subset candidate using repeated cross-

validation as the objective function can be given as:  

 

fitness =
1

1
4𝑁

∑ ∑ (𝑦𝑖,𝐶𝑉𝑙
− [𝑏0,𝑗 + ∑ 𝑔𝑏𝑖,𝑗

𝑘
𝑖=1 ln 𝑥𝑖,𝑗,𝐶𝑉𝑙

])2𝑛
𝑗=1

4𝑁
𝑙=1

 −  𝜆1𝑉𝐼𝐹max 

 

[11] 

In the selection phase, roulette wheel selection is applied. In roulette wheel selection, the 

probability of an individual to be selected is proportional to its fitness. To enhance the rate of 

convergence, Kepplinger et al. [29] suggested an exponential transformation of the fitness 

function to increase the selection probability of the best individuals. Similar as in [32], the 

number of parents selected for the next population is npop/2.  

 

The recombination of the selected individuals is typically carried out with crossover and 

mutation. In crossover, pre-selected parts of two individual chromosomes are swapped. The 

crossover point is selected randomly. In this work, a single-point crossover was used. The 

crossover rate can be regulated with the crossover probability. The crossover between two 

individuals occurs if the generated random number is below the pre-selected crossover 

probability. [31] Nowadays due to the increased computational capacity, the crossover 

probability is usually well above 0.6.  

 

Trapping at a local minimum can be avoided by allowing a random mutation to occur during 

the recombination. [31] In this work, a single-bit mutation was used, but the main factor for 

convergence is associated with crossover. The mutation probability (PM), i.e. the probability at 

which the mutation occurs, is a crucial computational parameter in a GA. In the literature, there 

is no strict consensus for a proper value for PM. In this work, the mutation probability was 

chosen to evolve deterministically during the iterations, as was presented by Bäck and 

Schultz[33]. However, the equation is slightly modified as presented in the second term of the 

product such that 𝑃M → 0 when k→T.  Thus, the mutation probability of a chromosome is given 

as[33] 

 

𝑃M = 𝑃C [(2 +  
𝑙 − 2

𝑇 − 1
𝑘)

−1

− 𝑙−1], 

 

[12] 
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where l is the length of the chromosome, PC is the crossover probability, PM is the mutation 

probability, k is the iteration and T is the maximum number of iterations.  The solution presented 

yields a convergence that preserves the information within the population, and has a high 

probability of improving a single solution candidate. To preserve the current best solution in 

the population, the population is treated with the elitism at each of the iterations. The structure 

of the proposed variable selection algorithm is presented in Figure 1. The outer loop of the 

algorithm consists of selection, ranking and recombination. In the inner loop of the algorithm, 

the conditioned data-matrix is constructed and the least-squares solution for each of the model 

candidates is accessed, after which the fitness of each individual in the population is evaluated 

4N times based on the repeated cross-validation. The fitness value of an individual is defined 

as the mean of 4N split repetitions. 

 

 

 

Figure 1. Cross-validation as an objective function when applying Genetic Algorithm for 

variable subset selection. 

 

 

 

3. Experimental data and evaluation of the fit 
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The experimental data in this study was adopted from Vuolio et al.[14] and is collected from the 

primary hot metal desulfurization process at SSAB Raahe, Finland. The considered data matrix 

consists of 23 variable candidates, so the number of possible variable subset combinations is 2n 

- 1 = 223 - 1 = 8388607, which practically rules out the exhaustive search as the selection strategy. 

The most important variables that are included in the data set are the injection parameters, 

reagent properties, temperature of the hot metal and chemical compositions of slag and metal 

phases before injection. The selected dependent variable is the rate constant for the 

desulfurization. Prior to variable selection, the data was pre-treated with outlier removal. After 

outlier-removal procedure, the full data set consists of 40 rows of data overall.  

 

The hot metal samples were taken instantly before and after desulfurization treatments to obtain 

a representable set of samples, and to minimize the effect of sulfur resulfurization via the 

permanent phase contact. During the injections, the carrier-gas flow rate and immersion-depth 

of the injection lance were held constant, which is why the value of Qtot can be considered as a 

pure function of temperature and injection rate of limestone at constant pressure. The 

production data from the hot metal desulfurization plant was expanded by measuring the 

particle size distributions of the reagent prior to injection.  The particle size distributions for the 

reagents were determined by laser-diffraction analysis prior to injection. The analysis of the hot 

metal samples was carried out by the C-S-combustion method and by X-Ray Fluorescence 

(XRF). The analysis of the slag phase was carried out for S with the C-S-combustion method 

and for the rest of the compounds with X-Ray Diffraction (XRD) and XRF. The existing oxide 

phases in the slag were qualitatively evaluated with XRD, whereas the oxide phases were 

calculated based on the chemical composition measured with XRF. The hot metal samples were 

taken instantly before and after desulfurization treatment to obtain a representative set of 

samples, and to minimize the effect of sulfur resulfurization via the permanent phase contact. 

During the injections, the carrier-gas flow rate and immersion-depth of the injection lance were 

held constant. 

 

 

 

 

4. Results and discussion 
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The variable selection algorithm was employed for different combinations of computational 

parameters in order to evaluate their significance. During the simulations it was observed that 

the most reliable results were obtained with population size of npop = 200 individuals and with 

a crossover probability of PC = 0.9. It was also noticed that the selection algorithm was not 

sensitive to crossover probability. This property was associated with a relatively high mutation 

probability. For this reason, the implementation strategy for reproduction can be considered 

sufficiently robust. The maximum number of iterations was not pre-defined as the homogeneity 

of the population was chosen as the convergence criterion. The mutation probability evolved 

deterministically during the iterations of the GA phase. It was observed that realistic prediction 

results were obtained when data was split in the validation loop such that 56% was used for 

training, 31% for internal validation and 13% for external validation. The interdependence of 

the computational parameters of the GA and repeated cross-validation were evaluated by 

analyzing the performance of the prediction models.  The quantitative figures of merit for model 

performance were the coefficient determination R2, mean absolute error for prediction (MAE) 

and sum of squared error (SSE). The selection probability of a variable was associated with its 

importance. 

 

4.1. Model selection and performance evaluation  

 

The convergence of the variable selection algorithm is illustrated in Figure 2. It is seen that the 

algorithm converges towards a low value of the objective function presented in Eq. 8, and the 

average of the population approaches the stationary point after 10 iterations. It should be noted 

that as at the beginning of the search, the population is very far from the optima, Figure 2 is 

scaled such that it illustrates the convergence rate of the whole population properly. From the 

shape of the line with triangular markers it can be observed that the deterministic mutation 

schedule increases the diversity of the population, as the rate of change in the population 

average has a decreasing trend.  For these reasons it can be said that the algorithm often not 

only converges to a feasible minimum, but is capable of going through various subset 

candidates and excluding the irrelevant ones.  
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Figure 2. Convergence of the variable selection algorithm and the evolution of the 

deterministic mutation probability. 

 

Figure 3 shows the prediction result for the logarithmic case. It is seen that the selected subset 

can explain the changes in the rate constant, even though the model contains only linear 

interactions between the independent and dependent variables. The quantitative measures of fit 

can be considered very good, as the coefficient of determination for the full data set is high R2 

= 0.85 and mean absolute error defined for the rate constant is relatively low MAE = 0.0145 

(1/min). The corresponding quantities for the end sulfur content by applying the proposed 

model for the rate constant are R2 = 0.87 and MAE = 0.0012 (wt-%), which are consistent with 

the values reported in our previous work [14]. The quantitative measures of fit can be considered 

highly sufficient, as the prediction model form, as well as the parameters, cannot be considered 

optimum because of the non-optimal model structure and the linear objective function.  

However, the modeling results can be considered very promising. 

 

The average performance of the internal validation data set can be considered as good as for 

the external data set, as the coefficient of determination and the squared error are very sensitive 

to the deviation, which results in slightly smaller R2 and SSE values for the internal data set. 

However, as the variable selection algorithm reduced the dimensionality of the original data set 

significantly and the suggested model has very high figures of merit, the algorithm can be 

considered efficient. The best selected subset with the corresponding data splits and quantitative 

measures of the model for each of the data set splits are given in Table 2. 
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Figure 3. Predicted values for the rate constant for different data sets with the variables given 

in Table 2. 

 

Table 3. The best subset of variables and the prediction performance of the model for the 1st 

order rate constant and end sulfur content using different datasets. The selected variables were  

d80, Qtot, ṁ, mFe and P. 

y    Data-set R2 MAE  SSE    (%) of full data 

ktot (1/min)   Training 0.87 0.0145 (1/min) 0.0073 
 

56 

   Internal validation 0.81 0.0182 (1/min) 0.0067 
 

31 

   External validation 0.95 0.0053 (1/min) 0.0002 
 

13 

    Full data 0.85 0.0145 (1/min) 0.0142   100  

         

[S]t (wt-%)   Training 0.85 0.0014 (wt-%) 7.21∙10-5  56 

   Internal validation 0.88 0.0013 (wt-%) 3.93∙10-5  31 

   External validation 0.98 0.0004 (wt-%) 1.23∙10-6  13 

   Full data 0.87 0.0012 (wt-%) 1.13∙10-4  100 

 

 

4.2. Analysis of the selected variables 

 

The parameters for the best selected subset are presented in Table 4. As the objective function 

used is different from the one that was used in our previous work[14], the parameter values are 

only in qualitative agreement.[14] The reasoning behind the selected variables as well as the 

model parameters are presented in the following.   
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Table 4. The modeling parameters for the best selected subset.  

b0 b1 b2 b3 b4 b5 

1.50±0.64 0.15±0.02 0.09±0.01 -0.08±0.01 -0.13±0.05 0.13±0.06 

Notes: The parameters are presented in a form of E(x) ± σ, where E(x) is the mean of 4N 

repetitions with corresponding standard deviation. 

 

The best prediction results for the rate constant, and thus for the end content of sulfur, were 

acquired with the model that includes the following variables:  

 

1) the particle diameter corresponding a value of 80% in the cumulative volume-based 

particle size distribution,  

2) total gas flowrate,  

3) mass flowrate of the reagent  

4) the mass of the hot metal.  

 

In addition to the aforementioned variables, three other variables, namely the Chromium (Cr), 

Phosphorus (P) or Carbon (C) contents in the hot metal are suggested to have a minor effect on 

the rate constant, but to a significantly lesser extent than the aforementioned variables. The 

most important variables selected by the algorithm are consistent with implications concerning 

the rate of transitory contact reaction. In fact, the four main variables chosen by the algorithm 

correspond to those suggested in an earlier study by the authors[14]. As the interfacial area 

between the hot metal and the transitory phase is mostly defined by the solid surface area, the 

particle size distribution of the reagent particles can be considered as a significant predictor. 

The effect of the mass flowrate can be considered to affect the same attribute as does the size 

of the reagent particles. The flowrate of the gaseous compounds formed in the decomposition 

of calcium carbonate contained by the reagent employed in the experimental data can be 

associated with either scattering of the reagent particles into smaller swarms of particles or to 

increased stirring of the metal bath. However, as was experimentally proven by Irons [34], the 

stirring effect related to the decomposition reaction is negligible compared with the bath mixing 

induced by the carrier gas. [34] In addition, the results given by Lindström et al. [35] support the 

postulated scattering effect. [35]  

 

The effect of composition of the metal bath could be associated with thermodynamic driving 

force; as the C dissolved in the metal bath is near the saturation limit, and thus acts as a high 

de-oxidizer, the high C content is beneficial for hot metal desulfurization. However, this 



  

16 

 

particular case is questionable for two main reasons: Firstly, the initial sulfur content is highly 

dependent on the operation of the blast furnace, and thus on the carbon content. Secondly, as 

the hot metal desulfurization operates very far from the thermodynamic equilibrium state, the 

effect of the activity of oxygen could be meaningful in the case of single particles, but non-

observable when concerning the net rate of desulfurization. The reasoning is similar in the case 

of P and Cr. Consequently, it can be said that the algorithm can be applied in the selection of 

the most relevant predictor variables amongst a high number of variable candidates.  

 

These results also highlight the dominance of the variables that are related to the transitory 

phase contact: the transitory contact reaction determines the rate of desulfurization, while the 

desulfurization via the permanent phase contact is of secondary importance. This can be 

associated with the magnitude of the interfacial area between the extracting phases, as the rate 

controlling step is the mass-transfer and not the thermodynamic driving force when the sulfur 

content in the hot metal operates very far from the thermodynamic equilibrium state, which is 

often true in the case of industrial hot metal desulfurization. However, it is possible that the 

effect of slag composition on the overall rate of reaction would be observable from the data 

with lower concentration areas, namely when sulfur content is well below 0.01 wt-%.  

 

4.3. Evaluation of the robustness of the algorithm 

 

To evaluate the robustness of the variable selection algorithm, the variable selection procedure 

was repeated 100 times. The significance of each of the predictor variables was evaluated with 

the rate of selection, i.e. the hit-rate, which is determined as: 

 

𝐻 (%)  =  
𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑛𝑟𝑒𝑝
∙ 100, 

 

[13] 

 

where H is the hit rate, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡 is the number of times that variable i is selected and 𝑛𝑟𝑒𝑝 is the 

number of repetitions of the variable selection algorithm.  From Figure 4 it is observable that 

the hit rate for the most significant injection parameters, i.e. particle size distribution, mass 

flowrate and total gas flowrate vary from 90% to 100%. When the variable selection is carried 

out with GA, the hit-rate of selecting mass of the hot metal phase as an explanatory variable is 

only 62.5%, which can be explained by the small variance of the mass of the hot metal in the 

input data under the conditions of this study. In this case, the small variance in the input data 
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Figure 4. Selection probabilities of predictor variables for different cross-validation scenarios 

with different population sizes. The dotted lines represent the chosen levels of significance. a)  

npop= 100, 4N LMO-cross-validation; b) npop = 20, no cross-validation; c)  npop = 20, 4N LMO 

cross-validation; d)  npop = 100, no cross-validation. 

makes the random split of the data-matrix inefficient. This being so, the relatively low selection 

probability for the mass of the hot metal relates to experimental conditions rather than to its low 

explanatory power.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 5, the most frequent number of selected predictor variables between repetitions with 

the corresponding standard deviations is presented. It is clearly seen in figure that a Genetic 

Algorithm that uses repeated cross-validation as the objective function tends to select 

parsimonious models with high repeatability, which is consistent with the results of the previous 

studies using the same kind of objective function for variable selection problems[19-21,24,29]. The 

bar graph on the left hand side supports this interpretation, as the selection frequency 

distribution between the repetitions is highly skewed to left in the case of the cross-validated 

objective function.  
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The increase in the population size used would intuitively result in an increased selection 

probability of the important variables, as the probability that a good variable subset candidate 

is included in the population increases with the population size. However, under the conditions 

of this study, the effect of population size on the convergence of the algorithm seems to be 

dependent on the objective function. In the case of a noisy data set there are several local 

minima to which the algorithm can converge. As the number of local minima is large, there is 

no significant improvement achieved by increasing the number of initial guesses, but actually 

the performance of the algorithm is worse. In the case of repeated cross-validation, the increase 

in the population size increases the probability of selecting a parsimonious model that contains 

only the relevant variables, which is mainly because the predictive power of the explanatory 

variables is evaluated for multiple data splits and not for only the full training set. However, the 

increase in the population size increases the computational load per iteration. As an example, 

for a population size of 20 individuals, it takes around 20 seconds for the algorithm to converge. 

With a relatively large population (~200 individuals), the computational time is around 7 

minutes.  For this reason, the proper population size is a compromise between the computational 

load and the desired accuracy and reliability.  In the light of the reasoning above, it is evident 

that a multi-objective function based GA outperforms the single-objective function in variable 

selection problems. This being so, the results of this study not only support the benefits of using 

search algorithms in the model selection for complex experimental data sets, but underline the 

significance of cross-validation in building prediction models. However, the dependent variable 

needs to be carefully selected in order for the effect of explanatory variables to be observable 

from the data.  
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Figure 5. A comparative illustration of the effect of the objective function on the most frequent 

number of selected explanatory variables between the repetitions as a function of the population. 

size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 
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A Genetic Algorithm-based variable selection was applied to the prediction of hot metal 

desulfurization kinetics. Based on the results of this study, the proposed variable selection 

algorithm can reveal the most significant variables for a multivariable regression model, and 

can also extract collinear or otherwise irrelevant variables from a sufficiently large industrial 

scale data set. It was observed that the most relevant variables were: 

 

1) the particle diameter corresponding a value of 80% in the cumulative volume-based 

particle size distribution,  

2) total gas flowrate,  

3) mass flowrate of the reagent  

4) the mass of the hot metal.  

 

The selected variables as well as the identified model parameters are consistent with the 

findings of previous studies. It was also found that the selection probability of the most relevant 

variables can be increased by applying a relatively large population for the Genetic Algorithm, 

which makes use a repeated leave-multiple-out cross-validation as the objective function.   

However in the case of the process under study, for optimized prediction performance the 

identification of the model parameters needs to be conducted by making use of a non-linear 

objective function. All and all, the proposed approach can be considered as a robust alternative 

for model selection based on similar data-sets. 
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NOMENCLATURE 

SYMBOLS AND ABBREVIATIONS 

 

A Area m2 

bi Regression coefficient for a variable i – 

ktot 1st order rate constant for hot metal desulfurization 1/s 

m Mass of a phase kg 

R2 Coefficient of determination – 

y Output variable – 

𝑦̂ Predicted output variable – 

w Mass fraction – 

X Data–matrix – 

[ ] Species dissolved in hot metal – 

( ) Species in slag phase – 

{ } Species in gas phase – 

< > Solid species – 

ANN Artificial neural network – 

CV Cross-validation – 

MLR Multivariable linear regression – 

MAE Mean absolute error of prediction – 

SVM Support vector machine – 

SSE Sum of squared errors – 
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