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Abstract. Models of excess mortality with random effects were used to estimate
regional variation in relative or net survival of cancer patients. Statistical inference
for these models based on the Markov chain Monte Carlo (MCMC) methods is
computationally intensive and, therefore, not feasible for routine analyses of cancer
register data. This study assessed the performance of the integrated nested Laplace
approximation (INLA) in monitoring regional variation in cancer survival. Poisson
regression model of excess mortality including both spatially correlated and un-
structured random effects was fitted to the data of patients diagnosed with ovarian
and breast cancer in Finland during 1955–2014 with follow-up from 1960 through
2014 by using the period approach with 5-year calendar time windows. We esti-
mated standard deviations associated with variation i) between hospital districts
and ii) between municipalities within hospital districts. Posterior estimates based
on the INLA approach were compared to those based on the MCMC simulation.
The estimates of the variation parameters were similar between the two approaches.
Variation within hospital districts dominated in the total variation between munic-
ipalities. In 2000–2014, the proportion of the average variation within hospital
districts was 68% (95% posterior interval: 35–93%) and 82% (60–98%) out of the
total variation in ovarian and breast cancer, respectively. In the estimation of re-
gional variation, the INLA approach was accurate, fast and easy to implement by
using the R-INLA package.
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1 Introduction

Excess mortality of a patient diagnosed with a given disease is the additional
hazard of death encountered by the patient compared to the hazard of death
in a relevant reference population group. Monitoring excess mortality by
region is important, because variation in the excess mortality may reflect
regional differences in the effectiveness of cancer care.[1] A comprehensive
national health service system should ensure the same level of cancer care to
all people in the country.

In Finland, inhabitants of a given municipality are most often treated in
their own central hospital and further referred to the pertinent university
hospital, if more advanced hospital care is needed. Therefore, we are pri-
marily interested in assessing regional variation across these central hospital
districts or university hospital regions. However, equity across these hospital
districts does not necessarily imply equity across municipalities within the
districts.

The excess mortality can be summarised in terms of relative or net sur-
vival these quantities being often used in population-based cancer survival
analyses to measure cancer survival after accounting for differences in ref-
erence population mortality.[2, 3, 4] They have been used e.g. in the in-
ternational comparisons of cancer survival between countries,[5, 6] between
regions within a country [7, 8] or between other population subgroups.[9]
The same methods apply to the assesments of mortality associated with dis-
eases other than cancer, too, e.g. cardiovascular [10, 11] and cerebrovascular
diseases [12] and HIV.[13]

Excess mortality is often modelled by splitting follow-up time in pre-specified
intervals within which binomial distribution for the number of deaths [14]
or a piecewise constant excess hazard [2] is assumed. These models can be
fitted in the framework of generalised linear models by using binomial or
Poisson distribution with non-standard link-functions.[15] When a piecewise
constant excess hazard is assumed, there is a good argument for using shorter
intervals early in the follow-up, as patients’ excess mortality often changes
most rapidly in the beginning of follow-up.[15] Alternatively, baseline excess
mortality has been parametrised by using mixture cure models [16] and flexi-
ble parametric models.[10] Modelling excess mortality with a non-parametric
baseline excess hazard function has also been proposed.[17, 18]

The piecewise constant excess hazard model [15] was extended by Kuss et
al[19] to account for clustered responses using spatially unstructured random
effects. This model was fitted within the class of generalised linear mixed
models by using maximum likelihood methods. In a Bayesian framework, a
similar type of model with spatially correlated random effects has been used
to assessing spatial variation in cancer survival by Fairley et al,[20] Cramb et
al,[21] Saez et al[22] and Kang et al.[23] Recently, Cramb et al[24] extended
a flexible parametric model [10] to estimation of spatial variation in excess
mortality. The disadvantage of these Bayesian approaches is that they are
computationally intensive,[24] because the models are fitted by using Markov
chain Monte Carlo (MCMC) methods.
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In Bayesian inference, the integrated nested Laplace approximation (INLA)
approach proposed by Rue et al[25, 26, 27] is computationally more efficient
than the MCMC methods. The INLA approach can be easily applied by
using the R-INLA package [25] (www.r-inla.org) to a wide variety of sta-
tistical models including generalised linear mixed models. In the estimation
of excess mortality and net survival, the INLA approach has been mentioned
as a possible solution to overcome the computational challenges related to the
MCMC approaches,[24, 23] but to our knowledge, it has not been employed
for the estimation in practice.

In this paper, we apply the piecewise constant excess hazard model with spa-
tially correlated random effects to the follow-up data of patients diagnosed
with the cancers of ovary and breast in Finland. Variation in cancer survival
is assessed in two levels: across hospital districts and across municipalities
within hospital districts. The model is implemented in a Bayesian framework
using the INLA approach. The results are compared to those estimated by
using the MCMC methods in order to validate the use of the INLA approach
in the assessment of regional variation in excess mortality and net survival.

2 Excess hazard model with regional random ef-
fects

2.1 Patients diagnosed with ovarian and breast cancer

We analysed the follow-up data of women diagnosed with the cancers of
ovary and breast (primary invasive malignancies with ICD-10 codes C56 and
C50, respectively) in Finland and reported to the Finnish Cancer Registry.
The patients were diagnosed in 1955–2014 and followed up for death in 1960–
2014. In Finland, specialised hospital care is currently provided by 20 central
hospital districts.[28] In addition, the autonomous region of Åland Islands
was considered as a separate hospital district in the analysis. Each central
hospital district consists of member municipalities and is subsumed under
one of the five larger cancer control regions, each being lead by a university
hospital. The analyses were based on the regional division of 313 municipal-
ities that existed in Finland in 2016 (Supplementary Figure S1). Patient’s
municipality was based on her place of residence at the beginning of the year
of diagnosis.

The period approach [29] was used in the analysis. The follow-up data were
split into 11 five-year period windows of calendar time: 1960–1964, 1965–
1969, . . . , 2010–2014. For example, in period window 2000–2004, follow-up
data in the first 5-year period after diagnosis are from patients diagnosed in
1995–2004 and followed-up in 2000–2004. Each patient contributed to one
or two period windows, because follow-up times were censored at 5 years
after diagnosis. Table 1 shows the number of patients diagnosed in each
period window and the number of patients diagnosed in the preceding pe-
riod, who contributed to the 5-year survival in the given period window with
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a late entry. All models considered were fitted separately for the 11 peri-
ods. Patient’s age at diagnosis was categorised into 5 groups: 0–44, 45–54,
55–64, 65–74 years, and 75 years and older. With the exception that we
included children aged <15 years, these age groups are nowadays often used,
for example, in the CONCORD-3 [6] (this study excluding patients 100 years
or older, though) and the EUROCARE-5 [5] studies. This age grouping is
also the default selection in the SEER*Stat software [30] provided by the
Surveillance, Epidemiology, and End Results (SEER) program, and used by
Corazziari et al,[31] too, who proposed the International Cancer Survival
Standard.

2.2 Piecewise constant excess hazard model

Let h(t) be the hazard of death for a patient alive at time t after diagnosis.
The excess hazard of death hE(t) = h(t)− hP(t) is the excess rate of death
that the patient has compared to the rate of death hP(t) in a comparable
person in the reference population. The expected hazard of death for a
patient i in follow-up interval j was determined by central hospital district
ri (r = 1, . . . , 21), calendar year kij (k = 1960, . . . , 2014) and age aij in years
(a = 0, . . . , 99), i.e. hP(t) = λij = λrikijaij

The excess hazard hE(t) of death due to cancer was assumed to be constant
within J pre-specified follow-up intervals, i.e., hE(t) = νj , when tj−1 ≤ t < tj
for j = 1, 2, . . . , J . The excess hazard νij of patient i is modelled as a
multiplicative function of covariates xij = (xij1, . . . , xijb)

′, such that νij =
exp(α′xij) where α = (α1, . . . , αb)

′ is the vector of regression coefficients,
in which each αl, l = 1, . . . , b, is interpreted as the additive effect of the lth
covariate on the logarithm of the excess hazard.

The baseline model included the age group and follow-up time (0–<4 months,
4–<12 months, and four annual intervals from 1 to 5 years) as categorical
covariates. Interaction terms between the five age groups and three follow-
up time intervals (0–<4 months, 4–<12 months, and 1–<5 years) were also
included to allow non-proportional excess hazards by age at diagnosis. The
first five years of follow-up after diagnosis were considered and longer survival
times were censored at five years.

The model was fitted within the framework of the generalised linear mod-
els by assuming a Poisson error for the observed number of deaths dij ∼
Poisson[(λij + νij)yij ] and specifying link function ln(µij − λijyij), where
yij is time at risk in interval j for patient i and µij is the expectation of
the Poisson distribution.[15] The Poisson model was fitted to collapsed data
Y mgj = (dmgj , d

∗
mgj , ymgj) where the observed number dij and expected

number d∗ij = λijyij of deaths and time at risk yij were summed over pa-
tients in each stratum of region m (hospital district or municipality), age
group g, and follow-up time interval j.
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2.3 Regional effects in excess mortality and net survival

The excess hazard of death νij may vary by hospital district (r = 1, . . . , R)
and by municipality (m = 1, . . . ,M) as follows:

νij = exp(α′xij + βri + umi + vmi), (1)

where βr is a hospital district specific effect, and um is a structured and vm
is an unstructured municipality-specific random effect. In our application
R = 21 and M = 313.

The parameter vectors of random effects β, u and v were assumed to be
mutually independent. Hospital district specific effects βr were assumed to
follow the normal distribution with mean zero and standard deviation σβ .
Unstructured heterogeneity across municipalities was modelled by multivari-
ate normally distributed random effects vm with mean vector of zeros and
covariance as σ2vI. Spatial dependencies between the municipalities were
described by assuming intrinsic Gaussian conditional autoregression (CAR)
[32] for the multivariate distribution of random effects u = (u1, . . . , uM ):

[um | u−m, σu] ∼ N

 1

nm

∑
j∈Nm

uj ,
σ2u
nm

 ,

where u−m denotes all components of u except um, σu and σv are the stan-
dard deviation parameters and Nm is the set of neighbours of municipality
m and nm is the number of its neighbours. In the CAR model, if two mu-
nicipalities are defined to be neighbours their random effects are correlated,
while random effects in non-neighbouring municipalities are modelled as be-
ing conditionally independent given the remaining random effects.[33, 34]
In our application, adjacent municipalities within the same hospital district
are defined as neighbours, and within each hospital district, a sum-to-zero
constraint is specified on the municipality-specific random effects.

The excess mortality can be summarised in terms of the net survival index
that could be interpreted, under strong assumptions, as the survival probabil-
ity in a hypothetical situation where the disease would be the only possible
cause of death with all other causes being eliminated.[3, 4] Although the
probability interpretation may not apply, net survival is an informative and
widely-used measure for cancer survival after elimination of the influence of
other causes of death. The age-standardised net survival [35] in municipality
m is the weighted average of age-specific net survival indices, i.e.,

SE(t, r,m) =
G∑
g=1

wg exp

[
−
∫ t

0
ν(g, u, r,m) du

]
,

where the excess hazard is ν(g, t, r,m) = exp[α′x(g, t) + βr + um + vm]
and wg is the proportion of patients in age group g (g = 1, . . . , G) at the
beginning of follow-up. The excess mortality ν and net survival SE were
estimated separately in each 5-year calendar period and standardised to the
average distribution of patients’ age at diagnosis, i.e., wg was the proportion
of patients diagnosed in Finland during the whole period 1960–2014 in age
group g.
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2.4 Quantifying regional variation

The amount of regional variation in each 5-year calendar period was sum-
marised by estimating i) variation between hospital districts, ii) variation
between municipalities within hospital districts, and iii) total variation be-
tween municipalities. The variations were quantified both in the relative
excess mortality and in the 5-year net survival.

Variation in the relative excess mortality was quantified on the logarithmic
scale by the standard deviation sB of the effects βr of R hospital districts
and the standard deviation sW of the effects um + vm of M municipalities,
respectively, i.e.:

s2B =
1

R− 1

R∑
r=1

(βr − β̄)2 and s2W =
1

M − 1

M∑
m=1

(vm + um − ū− v̄)2.

The total variation across municipalities was quantified by standard devia-
tion sT:

s2T =
1

M − 1

M∑
m=1

(θm − θ̄)2,

where θm = βrm + vm + um and θ̄ is the arithmetic mean of θm.

Variation in the age-standardised 5-year net survival was quantified by stan-
dard deviations sSB, sSW and sST:

s2SB =
1

R− 1

R∑
r=1

DS(5, r, ·)2 , s2SW =
1

M − 1

M∑
m=1

DS(5, ·,m)2 and

s2ST =
1

M − 1

M∑
m=1

DS(5, rm,m)2,

where DS(5, r, ·) = SE(5, r, ·)− 1
R

∑
r SE(5, r, ·) is the hospital district specific

deviation of the 5-year net survival from the arithmetic mean over R hospital
districts, DS(5, ·,m) = SE(5, ·,m) − 1

M

∑
m SE(5, ·,m) and DS(5, r,m) =

SE(5, r,m)− 1
M

∑
m SE(5, r,m) are the municipality-specific deviations from

the arithmetic means over M municipalities, and SE(5, r, ·) and SE(5, ·,m)
are calculated by setting um = vm = 0 and βr = 0, respectively.

2.5 Approximation and simulation of posterior distribution

The model was implemented in a Bayesian framework using both the INLA
approach and the MCMC simulation. Vague N(0, 1000) priors were assumed
for the fixed effects α. For the standard deviation parameters σβ , σu and σv
of the regional random effects, we assumed half-normal distributions centered
at 0 with standard deviation 100. A half-normal and a uniform distribution
were recommended by Gelman and Hill [36] for a diffuse but a proper prior
distribution of hierarchical standard deviations and are expected to work
well in general, unless the number of regions is below 5. The half-normal
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prior was convenient for the comparison between the two approaches by using
R-INLA and OpenBUGS, because it is available in both programs. For a
formal discussion of weakly informative priors in this context, see articles by
Simpson et al[37] and Riebler et al.[38]

The joint posterior distribution is given by

p(α,β,u,v, σβ, σu, σv | Y ) ∝ L(α,β,u,v)p(α)p(β | σβ)p(u | σu)p(v | σv)p(σβ)p(σu)p(σv),

where L is the Poisson likelihood of the entire patient population based on
collapsed data Y = (d,d∗,y) stratified by municipality m, age group g and
follow-up time interval j:

ln[L(α,β,u,v)] =
∑
mgj

{
dmgj ln[d∗mgj/ymgj + ν(α,β,u,v)]− ν(α,β,u,v)ymgj

}
+constant.

2.5.1 MCMC simulation

MCMC is a simulation-based approach for computations in Bayesian infer-
ence by generating a sample of correlated values from the posterior distri-
bution by running a Markov chain. Gibbs sampling is an MCMC algorithm
that generates samples of each parameter conditional on all the other pa-
rameters. It is used, for instance, by OpenBUGS [39] and JAGS [40] and
can be easily applied to the inference of complex models that include a large
number of parameters. The well known problem with Gibbs sampling is that
subsequent values in MCMC simulation are highly correlated in hierarchical
models, because the random effects strongly depend on each other and also
on the standard deviations of their distributions. Alternative approaches
to overcome these problems include construction of a joint proposal for the
full conditional distribution of random effects and updating random effect
and hierarchical parameters jointly. Yet, despite these developments MCMC
sampling remains painfully slow from the end user’s point of view.[25]

In our application, the MCMC simulations were carried out by Gibbs sam-
pling using OpenBUGS (version 3.2.3).[39, 41] Three series of 4 200 000 it-
erations were run. The first 200 000 iterations were discarded as burn-in in
each run. Every 100th and 2000th of the remaining iterations was stored
in the analyses without and with municipality-specific effects, respectively.
The posterior inference was based on the pooled sample of 120 000 (analy-
ses without municipalities) and 6000 (municipality-specific analyses) thinned
values.

The coda package in R was used for the convergence diagnostic of the Markov
chain and for the estimation of the Monte Carlo error. The convergence was
examined by calculating the Gelman-Rubin statistic, as modified by Brooks
and Gelman.[42] The OpenBUGS program code for specifying the model in
the municipality-specific analyses is included in the supplementary material.
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2.5.2 INLA approximation

As an alternative to simulation-based MCMC, INLA is a deterministic ap-
proach proposed by Rue et al[25] for computations in Bayesian inference on
the class of latent Gaussian models which include a wide variety of commonly
applied statistical models.[27] It produces accurate and fast approximations
to the marginal posterior distributions based on Laplace approximations and
numerical integration. The INLA approach is implemented in R-INLA pack-
age in R.[25]

In the INLA approach, the posterior marginal distributions p(θq | Y ) and
p(ψq | Y ) of parameters θ = (α,β,u,v) and hyperparametersψ = (σβ, σu, σv),
respectively, are approximated by

p̃(θq | Y ) =

∫
p̃(θq | ψ,Y )p̃(ψ | Y )dψ and (2)

p̃(ψq | Y ) =

∫
p̃(ψ | Y )dψ−q ,

where subscript q refers to the qth component of the correspoding vector
(θ or ψ) and −q to the vector without the qth component. The Laplace
approximation of the joint posterior of the hyperparameters is denoted by
p̃(ψ | Y ) and the simplified Laplace approximation was used for p̃(θq | ψ,Y ).
The first integral (2) can be solved numerically through a finite weighted sum

p̃(θq | Y ) ≈
∑
k

p̃(θq | ψ(k),Y )p̃(ψ(k) | Y )∆k (3)

over some relevant integration points {ψ(k)} with a corresponding set of
weights {∆k}.[25, 43] Rue et al[25] proposed two different strategies to iden-
tify the integration points for exploring the joint posterior of the hyperpa-
rameters p̃(ψ | Y ). In the grid integration strategy the joint posterior is
evaluated in a regular grid of points. The other one is called central com-
posite design (CCD) strategy and reduces the computational costs by using
much fewer integration points, these being located on a sphere around the
mode.[27]

In addition to providing approximations to posterior marginals of model pa-
rameters θq and ψq, R-INLA includes tools to draw samples independently
from an approximated full posterior distribution that can be used to esti-
mating the functionals of model parameters θ. The sampling makes use of
the values p̃(ψ(k) | Y ) of the joint posterior of hyperparameters and the
joint Gaussian approximation of p̃(θ | ψ(k),Y ) that were already computed
for the grid points {ψ(k)} in the numerical integration (3). The sampling
algorithm has two steps:

1. Sample hyperparameters ψ∗ from the set of {ψ(k)} with probabilities
p̃(ψ(k) | Y )∆k computed in the numerical integration (3).

2. Conditional on the sampled ψ∗, sample θ∗ jointly from the correspond-
ing joint Gaussian approximation of p(θ | ψ∗,Y ) which was already
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calculated in the numerical integration (3) in order to obtain the ap-
proximation p̃(ψ∗ | Y ) to the joint posterior of the hyperparameters.
Here, however, an improved approximation using a Gaussian copula
[44] that retains the dependence structure of the Gaussian approxima-
tion of p(θ | ψ∗,Y ) while having the improved approximations of the
marginals p(θq | ψ∗,Y ) is used.

In our application, the model was fitted by using inla function in R-INLA
package [25] with the default CCD integration strategy. Then, the grid
integration strategy was utilised to improve the estimates of the posterior
marginals of the hyperparameters by using inla.hyperpar function. The
posterior estimates were based on a sample of 3000 values drawn indepen-
dently from the approximated posterior distribution by using the function
inla.posterior.sample. The program code for fitting the model in the
municipality-specific analyses is included in the supplementary material.

3 Results

3.1 Computation time

In the MCMC approach, computation time was based on the number of iter-
ations required to obtain the Monte Carlo (MC) errors of 5% or less out of the
standard deviations of target parameters sB, sW and sT: 260 thousands and
1.1 million iterations in the analyses without and with municipality-specific
effects, respectively. In R-INLA, parallel computing with four threads was
utilised.

In the model without municipality-specific effects, the analyses of ovary and
breast cancer took altogether 2.1 minutes with the INLA and 100 minutes
with the MCMC approach (based on the 5% level of MC error). When
the effects of municipalities were included in the model, computation time
increased to 1.6 hours and 400 hours in the INLA and the MCMC approach,
respectively. If the number of threads was limited to one in R-INLA, the
analyses took 3.25 hours. In the INLA approach, the posterior sampling part
took 61% and 29% out of the total computation time in the models without
and with municipality-specific effects, respectively.

In the following, results are based on the total number of stored iterations
with MC errors of 1.4% or less out of the standard deviations of the param-
eters.

3.2 Regional variation

Figure 1 compares the estimates of the standard deviations sB and sSB be-
tween the INLA and the MCMC approach in the model without municipality-
specific effects. The posterior means and 95% posterior intervals were very
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similar between the two approaches. In ovarian cancer, the standard devia-
tions were relatively large in 1965–1969 and in 2000–2004. In breast cancer,
the standard deviations decreased from the 1960s to the 1980s. From 1990s,
the variation in the relative excess mortality has not decreased even though
it has decreased on the scale of 5-year net survival.

Figure 2 compares the estimates of the standard deviations sB, sW and sT
between the INLA and the MCMC approach in the model in which the
effects of municipalities are also included. The estimates of INLA are close
to those of MCMC simulation. The standard deviation sB is smaller than
that based on model without municipality. Variation within hospital districts
dominated in the total variation. We estimated the average of variation over
the last three 5-year periods for obtaining a more precise estimate. In 2000–
2014, the average of variation s2W within hospital districts was 68% (95%
posterior interval: 35–93%) and 82% (60–98%) out of the total variation s2T
in ovarian and breast cancer, respectively. Supplementary Figure S2 shows
the standard deviations in the 5-year net survival.

The close similarity in the estimates of standard deviations between INLA
and MCMC (Figures 1 and 2) was based on the improved estimates obtained
by using the grid integration strategy in INLA. By using the CCD integration
in INLA, the posterior means were overestimated on average by 15% and the
posterior intervals were up to 29% shorter, because the lower limits of the
intervals were clearly overestimated.

Although the estimates of the standard deviations were similar, the poste-
rior means of the baseline of 5-year net survival based on INLA was most
often smaller than that based on MCMC. The largest difference was 2.2 per-
centage points (pp) in the municipality-specific analysis of ovarian cancer in
1960–64 (Table 1). In the analysis without municipality (Table S1), the dif-
ferences between INLA and MCMC were on average 33% smaller than those
in municipality-specific analysis. The regional estimates of 5-year net sur-
vival based on the INLA approach are shown in Figure 3. In ovarian cancer,
there was more variation between hospital districts in the end of 1960s and
in the beginning of 2000s. However, the capital of Finland was divergent in
2000s but not in 1960s. Figure 4 shows the regional estimates of 5-year net
survival in 1960–1964 and in 2010–2014 divided by hospital districts in order
to assess variation within each hospital district.

3.3 Simulation study on bias in estimators of baseline excess
mortality

A simulation study was performed to compare the INLA and the MCMC
approach in the estimation of baseline excess mortality νij = exp(α′xij),
because the baseline estimates differed between the approaches. Altogether
1000 datasets were generated from the Poisson distribution by using the
observed numbers of deaths in ovarian and breast cancer patients as the
expected values in each stratum of age group, follow-up time interval and
calendar time period (categorised similarly as earlier in Sections 2.1 and 2.2).
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Excess mortality was summarised in the terms of the net survival index. The
MCMC and the INLA estimators of 5-year net survival were compared with
the maximum likelihood estimator (MLE) in two different baseline models:

M1) a full model which included a parameter for each stratum of age group
and follow-up time, and

M2) a simplified model in Section 2.2, which assumed the same interaction
effect of age and follow-up time in the intervals of follow-up time from
1 to 5 years.

The bias, variance and mean squared error were calculated and, in the INLA
and the MCMC approach, were based on the posterior means. The MCMC
approach was carried out using JAGS program (version 4.1.0) [40] and was
based on 110 000 iterations of which the first 10 000 samples were discarded
as burn-in.

The expectation of MLE was between the expectations of INLA and MCMC
in the simulation setting of ovarian and breast cancer (Supplementary Fig-
ures S3–S6). In the age-standardised 5-year net survival, the absolute dif-
ferences between INLA and MLE were about the same as those between
MCMC and MLE.

In the full baseline model (M1), from which the datasets were generated,
the MLE was practically unbiased (Supplementary Figures S3 and S5). In
ovarian cancer, the MCMC approach overestimated the age-standardised
net survival on average by 0.8 percentage points (pp), whereas the INLA
approach underestimated the survival on average by 1.6 pp. In breast cancer,
MCMC overestimated and INLA underestimated the survival on average by
0.4 pp and 0.6 pp, respectively.

In the simplified baseline model (M2), also the MLE was slightly biased
(Supplementary Figures S4 and S6), because the datasets were generated on
the basis of observed mortality rates. The magnitudes of bias related to the
MCMC and the INLA approach were clearly smaller than those in the full
baseline model, especially in ovarian cancer. MCMC overestimated the net
survival on average by 0.2 pp on ovarian and 0.1 pp in breast cancer. INLA
underestimated the corresponding quantities on average by 0.3 pp and 0.2
pp.

In the age group specific estimators of the 5-year net survival, the INLA
approach introduced some bias in every age group whereas the MCMC ap-
proach was biased mainly in the two oldest age groups. The largest val-
ues of bias were related to small number of deaths (dmgj) or excess deaths
(dmgj − d∗mgj) in an interval of follow-up time. The posterior distribution
of the logarithm of excess mortality based on the MCMC simulations had
a heavy lower tail, if the number of excess deaths was small. This resulted
in the overestimation of net survival. On the other hand, the posterior ap-
proximation based on the INLA was symmetric and poor (supporting large
values of excess mortality), if the number of deaths was small, and espe-
cially, if it was smaller than the expected number d∗mgj . This resulted in the
underestimation of net survival.
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4 Discussion

In this study we demonstrated and validated the use of the INLA approach
for estimation of regional variation in excess mortality and relative or net
survival. The study showed that the estimates of regional variation were
similar based on the INLA and the MCMC simulations, and the results were
obtained much faster by using the INLA than the MCMC approach. The
simulation study based on the model without random effects showed that
both approaches introduced some bias in the estimation of baseline excess
mortality, but the magnitude of bias was most often modest.

Small variation in survival between hospital districts does not imply regional
equity, because there may be substantial variation within hospital districts.
The variation within hospital ditricts is influenced by differences in personal
health behaviour and in primary health care. The former one includes per-
son’s ability to seek medical care and person’s health status which affects
the available treatment options. The latter one includes the availability of
health care services and delays in the patient path from primary care to the
central hospital.

The same determinants that cause variation in survival within hospital ditricts
cause variation between hospital districts, if the distributions of the deter-
minants differ between hospital districts. In addition to these determinants,
variation between hospital districts is affected by differences in cancer care
provided by the central hospitals and university hospitals.

Spatial correlation in survival across municipalities was considered impor-
tant, as it is likely that many determinants of survival exist that correlate
between neighbouring municipalities. Information on geographical proxim-
ity between hospital districts was not incorporated in the models, because
patients in a given municipality are treated in a designated central hospital
and further referred to the pertinent university hospital, if more advanced
care is needed.

Patients’ mortality was compared to the population mortality in the corre-
sponding hospital district. Although the reference population also includes
cancer patients under study, this can usually be considered to have a negligi-
ble effect on the estimated net survival.[45] In prostate cancer and especially
in all cancer sites combined, an adjustment for the reference population
mortality has been recommended.[46, 47] This adjustment was not done, for
example, in the EUROCARE-5 and the CONCORD-3 study,[5, 6] either.
In our application, the 5-year net survival is likely to be overestimated ap-
proximately by 0.7 percentage points in breast cancer and less than that in
ovarian cancer according to the results of Talbäck and Dickman.[46]

Considering hospital district-specific population mortality rates to be fixed
without random variation was shown to be a reasonable assumption for
the estimation of excess mortality.[7] However, variation in excess mortal-
ity within hospital districts includes variation due to potential differences in
population mortality between municipalities within each hospital district. In
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municipality-specific population mortality rates, random variation should be
taken into account by using an extended model that includes the likelihood
for population mortality.[7]

Standard deviations sB, sW and sT quantify how much there is variability
in the logarithm of relative excess mortality across regions. This variation
can remain at the same level, even though regional variation in net survival
decreases, as it happened in breast cancer in Finland. Interpretation of
both measures depends on the average level of excess mortality and net
survival. The choice of the measure is ultimately based on the decision
on whether we shall count the failures or the successes and whether we shall
make relative or absolute comparisons.[48] The standard deviations sSB, sSW
and sST of net survival may have more attractive interpretation, because net
survival is commonly used for summarising excess mortality among cancer
patients.[5, 6]

An increased regional variation in the survival of ovarian cancer around year
2000 was shown by Pohar Perme et al[49] in the study that assessed variation
between the five cancer control regions in Finland in 10-year periods of di-
agnosis from 1953–1962 to 1993–2002. Our study showed that the increased
difference was more related to the variation between the hospital districts
than to the variation within them, and that the regional variation decreased
thereafter.

The decrease in the standard deviation of the net survival in breast cancer
does not indicate that the public health importance of regional variation has
decreased, because breast cancer incidence increased simultaneously. When
assessing the public health importance, the changes in incidence can be taken
into account, for example by estimating potential numbers of person years
or deaths that would be saved, if regional variation were eliminated.[7]

We estimated the finite population variances, because the data were collected
from all the 21 hospital districts and 313 municipalities in Finland and we
wish to describe the variation across these very districts. Alternatively, vari-
ation may be measured by estimating the so-called superpopulation variance,
i.e. the theoretical variance of the distribution of the random effects, would
be appropriate for assessing the uncertainty about the value of a potential
new district not in the original set.[36] The posterior mean of the superpopu-
lation standard deviation σβ was on average 7% larger than that of the finite
population sB. The credible intervals for σβ were from 14% to 27% wider
than those of sB. The superpopulation variance of municipalities is not di-
rectly obtained, because the standard deviation σu of the CAR model is not
comparable with that σv of the unstructured effect. However, the intrinsic
CAR model can be scaled, such that the conditional variance will be equal
to the marginal one.[50]

Censoring all follow-up times at 5 years may affect the results of regional
variation if notable excess mortality exists and varies across regions after the
first 5 years since diagnosis. Quite often follow-up is considered only up to
the first 5 years, because thereafter, excess mortality typically becomes small.
Among breast cancer patients, however, the mortality remains elevated even
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beyond 5 years compared with the reference population,[51] and therefore,
including a longer-term follow-up could have an effect on regional variation.

Excess hazard was assumed to be constant in each follow-up time interval
according to model ??. We divided the first year of follow-up into three
and nine-months intervals, because excess mortality changed most rapidly
in the beginning of follow-up especially among ovarian cancer patients. In
addition to incorrectly specified functional form, the model may suffer from
lack-of-fit due to omission of important unmeasured covariates (i.e. overdis-
persion) or absence of important interaction terms.[15] Overdispersion may
occur, if important determinants of cancer survival are omitted in the model.
For example, tumour stage and patient’s health status at the time of diag-
nosis and information on whether a patient participated in mammography
screening are such covariates that may cause overdispersion. According to
a score test for overdispersion proposed by Luque-Fernandez et al,[52] no
statistically discernible overdispersion could be observed for all periods com-
bined. However, some evidence for overdispersion was found in some periods:
1990–1994 in breast and ovarian cancer and in 2005–2009 in ovarian cancer
(analyses without municipality); and 1990–1994 and 2000–2004 in breast can-
cer (municipality-specific analyses). In addition, we did a sensitivity check
by including an additional stratum-specific random effect in the model to
adjust for potential overdispersion. The effect of adjusting for overdisper-
sion was small. By including the overdispersion effect in the model without
municipalities, posterior mean of sB decreased on average by 3% in ovarian
cancer and by 5% in breast cancer and the length of the posterior interval
increased by 3% and by 5%, respectively. In the municipality-specific model,
the overdispersion-adjusted estimates differed from the non-adjusted ones
less than 3%.

Stratifying the calendar periods into 5-year periods and modelling them sep-
arately was a convenient choice, because the intrinsic CAR model was avail-
able in R-INLA and OpenBUGS. It would be difficult to select particular
break points at which some actions related to cancer survival occurred. In
addition, a temporal stucture that would remain valid over the long 55 years
calendar period, was not plausible. Spatio-temporal models become easily
complex, and the challenge is to find a sufficiently realistic, yet manage-
able model that includes necessary interactions. R-INLA includes spatio-
temporal models with a first- or second-order random walk structure for the
temporal effect and several options for space-time interactions.[43, 53] We
also tried to fit a spatio-temporal model where we assumed a second-order
random walk across the 11 calendar periods for each hospital district indepen-
dently. In addition, we tried to fit another spatio-temporal model where the
temporal dependence stucture of each municipality depends on the temporal
patterns of the neighbouring municipalities. However, we did not succeed to
fit the models with municipality-specific effects due to memory limitations
in our computation environment. The only model that converged (without
the grid integration strategy in INLA), was a model without municipality-
specific effects in breast cancer. There is ongoing work within the R-INLA
project to improve this limitation.

INLA has shown to give very accurate approximations to the posterior
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marginals of the model parameters over a wide range of commonly used
latent Gaussian models including generalised linear mixed models.[25, 54]
In this study, we were interested in the posterior estimates of functionals
of model parameters rather than the posterior marginal distributions of the
parameters. For example, presenting variation on the scale of net survival
requires the joint posterior of the all model parameters except the variance
parameters. In our application, the sampling algorithm implemented in R-
INLA package for generating samples from an approximated posterior proved
to be very accurate to estimating these functionals.

INLA and MCMC approaches introduced some bias in the estimation of the
baseline excess mortality. The model itself may introduce bias, because it
does not allow negative excess mortality. However, because the maximum
likelihood estimator was practically unbiased, the bias in the MCMC ap-
proach relates to the prior assumption that becomes informative because of
the model and its likelihood, which is greater than 0 for excess mortality
ν = 0. Therefore, a flat normal prior for the logarithm of excess mortality
may result in posterior p[ln(ν) | Y ] with a heavy negative skew, if the number
of deaths is small, because small values of excess mortality are supported by
the prior. The INLA approximation, on the other hand, may not catch the
shape and the spread of the negatively skewed posterior and may therefore
support too large values of excess mortality. Results based on the simplified
baseline model (M2) show that the bias may be reduced by excluding some
interaction terms between follow-up time and age, if the simplified model still
fits the data well. The previous study of Saez et al[22] that used a similar
model and MCMC simulation did not explore the potential bias. The model
included the main effects of follow-up time and age only. This is, however,
often invalid assumption in cancer survival, and therefore, may not reduce
bias.

In the MCMC estimation, the convergence has to be explored carefully. In
our application, the mixing of the Markov chain was very slow especially
in the municipality-specific effects and their standard deviations. A large
number of iterations were run in order to achieve negligible Monte Carlo
errors. A clearly smaller number of iterations satisfied the 5% level of MC
error suggested in the OpenBUGS manual,[39] but computation time was
still from 48-fold to 250-fold in the MCMC approach compared to the INLA
approach. This is in line with other applications of hierarchical Poisson
model implemented in R-INLA and OpenBUGS [55] or WinBUGS,[53] as
these other implemantations did not utilise the grid integration and the
posterior sampling of INLA that were necessary in our application.

In the estimation of regional variation in excess mortality of ovarian and
breast cancer patients in Finland, the INLA approach was accurate, fast and
easy to implement by using the R-INLA package. It can be recommended
for routine use in monitoring regional variation in excess mortality and net
survival.
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Figure 1: Estimates of INLA (black) and MCMC (gray) based on model (??)
without municipality-specific effects: posterior means (solid lines) and 95%
posterior intervals (dashed lines) of the standard deviations sB and sSB in
female patients diagnosed with cancers of ovary and breast in Finland and
followed 5-year periods from 1960–1964 to 2010–2014.
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Figure 2: Estimates of INLA (black) and MCMC (gray) based on model (1)
that includes both hospital district and municipality specific effects: pos-
terior means (solid lines) and 95% posterior intervals (dashed lines) of the
standard deviations sB, sW and sT in female patients diagnosed with cancers
of ovary and breast in Finland and followed in 5-year periods from 1960–1964
to 2010–2014.
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Figure 3: Posterior means of 5-year net survival by hospital districts (open
circles) and municipalities (black dots) of patients diagnosed with cancers of
ovary and breast in Finland and followed in 5-year periods from 1960–1964
to 2010–2014 based on INLA. Capital letter H shows the estimate of patients
diagnosed in the capital of Finland, Helsinki.
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Figure 4: Posterior means of 5-year net survival by hospital districts (open
circles) and municipalities (black dots) of patients diagnosed with cancers
of ovary and breast in Finland and followed in 1960–1964 and in 2010–
2014 based on INLA. Horizontal lines show 95% posterior intervals of 5-year
net survival in hospital ditricts, and capital letter H shows the estimate of
patients diagnosed in the capital of Finland, Helsinki.
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