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Abstract

In disease surveillance, there are often many different data sets or
data groupings for which we wish to do surveillance. If each data set
is analyzed separately rather than combined, the statistical power to
detect an outbreak that is present in all data sets may suffer due to
low numbers in each. On the other hand, if the data sets are added by
taking the sum of the counts, then a signal that is primarily present
in one data set may be hidden due to random noise in the other data
sets.

In this paper, we present an extention of the spatial and space-time
scan statistic that simultaneously incorporates multiple data sets into
a single likelihood function, so that a signal is generated whether it
occurs in only one or in multiple data sets. This is done by defining
the combined log likelihood as the sum of the individual log likelihoods
for those data sets for which the observed case count is more than the
expected.

Using data from the National Bioterrorism Syndromic Surveillance
Demonstration Project, we illustrate the new method using physician
telephone calls, regular physician visits and urgent care visits by Har-
vard Pilgrim Health Care members cared for by Harvard Vanguard
Medical Associates, a large multi-specialty group practice in Massa-
chusetts. For upper and lower gastrointestinal illness, there were on
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average 20 telephone calls, 9 urgent care visits and 22 regular physi-
cian visits per day. The strongest signal was generated by a single data
set and due to a familial outbreak of pinworm disease. The second
and third strongest signals were generated by the combined strength
of two of the three data sets.

Keyword: spatial statistics, syndromic surveillance, clusters, disease out-
breaks.

1 Introduction

The spatial and space-time scan statistics [1, 2, 3, 4] have become popular
methods in disease surveillance for the detection of disease clusters. The
standard approach is to look at a single disease or health outcome, such
as leukemia incidence [5], breast cancer mortality [6] or late stage prostate
cancer [7]. Very often though, it is of interest to simultaneously look at
multiple outcomes. For example, if we are interested in investigating whether
there are any geographical clusters of childhood leukemia, it is not easy to
know a priori whether to look for clusters of acute lymphocytic leukemia
(ALL), of acute myelogenous leukemia (AML), of chronic leukemia or of all
leukemia combined. In surveillance, as opposed to the evaluation of specific
epidemiological hypotheses, it is then natural to simultaneously evaluate the
geographical distribution of any combination of these outcomes.

One very interesting application of the space-time scan statistic is in
syndromic surveillance for the early detection of disease outbreaks [8, 9]. In
syndromic surveillance, symptoms such as fever or vomiting are used for the
early detection of disease outbreaks. The primary reason for using symptoms
rather than diagnosed diseases is that it can take many tests and several days
to establish a firm diagnosis. It is hence thought that a surveillance system
based on symptoms such as diarrhea or vomiting may allow public health
officials to detect a disease outbreak at the earliest time possible. There
are three major reasons for taking a multivariate approach to syndromic
surveillance:

1. No single data source captures all the individuals in the outbreak. De-
pending on the disease, some will go to their pharmacy and buy an
over-the-counter medication, some will call their physician or a nurses
hot-line, while other may visit their regular physician, go to a hospital
emergency room or call the ambulance.
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2. Some diseases will typically manifest itself with a single symptom like
diarrhea, while other disease can cause a wide variety of different symp-
toms in different individuals.

3. Some diseases such as rotavirus affect mainly children, while other dis-
eases affects the population at large or mainly the elderly. If it is a
work-site exposure causing the outbreak, it will be mainly working-age
adults that are affected.

Since we do not know what disease we are looking for, we do not know
in which of these groupings that we should look for an outbreak: which
combination of data sources, symptoms and/or age groups?

One simple approach is to sum up the counts from in all the data sets
and do the analysis on the combined data. The drawback is that if an
outbreak is only present in one of the data sets it may be hidden by the
random variation present in the other data sets, with an absent or delayed
signal as a result. Another approach to dealing with multiple data sets is to
analyze each separately, and then possibly use a Bonferroni type adjustment
for the multiple testing. The drawback of this approach is the potential lack
of power and consequently a delay in the signal if the outbreak is present
simultaneously in more than one of the data sets. Hence, what we want to do
is to simultaneously evaluate both single data sets and various combinations
of multiple data sets.

Even if a signal is present in multiple data sets, there is often different
informational content in observations from different data sets. For example, a
disease outbreak may generate both additional pharmacy sales and additional
ambulatory care visits, but ten more diarrhea medication sales in addition
to a daily count of 1000 is not as informative as ten more diarrhea related
emergency department visits in addition to an average daily count of 20. By
simply adding the counts, the difference in informational content is lost.

The idea of simultaneous analysis of multiple data sets or groupings for
disease surveillance is not new. In the purely temporal setting, Shmueli
and Fienberg [10] discuss a number of options. Dillard and Shmueli have
applied wavelets to multiple time series [11]. Naus and Wartenberg [12]
have developed purely temporal scan statistics for two data types, but their
purpose is different, to find clusters with a minimum number of both types
of events. To deal with multiple groupings, Wong et al. [13] proposed the
WSARE system: ‘What’s Strange About Recent Events?’, which searches
for outbreaks in various groupings of for example age and gender. In this
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system, geographical areas such as county or census tract may be one of the
groupings, but the spatial locations of those areas are ignored. Kulldorff et
al. [14] developed a tree-based scan statistic to do surveillance on groupings
that can be pre-classified into a hierarchical tree structure.

In a syndromic surveillance paper on applying the space-time scan sta-
tistic with multiple disparate data sources, Burkom [15] took the approach
of adding the counts as well as the expected counts, but he also mentions
the possibility of instead adding the log likelihoods. That is a nice way to
handle the different informational content in different data sets, but great
care needs to be taken when doing the summation. Rather than doing a raw
summation over all data sets, seperate summations should be done for the
data sets with more versus less cases than expected in the scanning window.
In this paper, we propose a multivariate scan statistic with the ability to
detect clusters in either one or in a combination of data sets, without having
to pre-specify which ones. We also propose a way to adjust a univariate scan
statistic taking the differential informational content in different data sets
into account.

2 The Univariate Scan Statistic

We first briefly review the existing theory of univariate scan statistics with
variable size window [16, 2], starting with the space-time version. Details
are provided in the cited publications. Let cst be the observed number of
cases in the geographical location s during time period t. Let nst be either
the population or the expected number of cases in location s during time
period t. Let C =

∑
s,t cst be the total number of cases and let N =

∑
s,t nst

be the total population/expected cases. The expected may be calculated in
different ways adjusting for various covariates such as age, gender, urbanicity,
day-of-week or seasonal effects [2, 17, 18].

The space-time scan statistic is defined through a huge number of over-
lapping cylinders [19]. For each cylinder z, a log likelihood ratio LLR(z) is
calculated, and the test statistic is defined as the maximum LLR over all
cylinders. The collection of cylinders will depend on the application. The
circular base defines a geographical area with the radius varying continuously
from zero up to some upper limit that is often defined so that the circle con-
tains at most 50 percent of the population at risk. It can also be defined
as for example 10 kilometers. The hight of the cylinder reflects a shorter or
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longer time period, and could be anything from a single day to several years.
For each choice of circle all choices of the temporal hight is considered and
vice-versa, so that the scanning is done over short and fat cylinders in the
shape of a plate, tall and thin cylinders in the shape of a pen, and everything
in between. Let cz =

∑
s,t∈z cst be the number of cases in cylinder z and let

nz =
∑

s,t∈z nst be the population or the expected number of cases in cylinder
z as applicable.

The mathematical formulation of the log likelihood ratio depends on the
probability model used. For a Poisson model, where the counts are generated
from a Poisson distribution, the log likelihood ratio is

LLR(z) =
(

cz

nz

)cz
(

C − cz

C − nz

)C−cz

where nz represents expected counts and C = N [2]. The definition of the
scan statistic is

T = max
z

LLR(z).

Other probability models have also been used for scan statistics. A Bernoulli
model is used for 0/1 case-control type data [2], an ordinal model for ordinal
data [20], an exponential model for survival data [21] and a space-time per-
mutation model for looking at space-time interaction clusters when only case
data is available [9]. The latter also uses the Poisson distribution but it is an
approximate rather than an exact log likelihood ratio. For the purpose of this
paper, it does not matter which probability model we work with. Only the
LLR(z) function is different, while the principles for dealing with multiple
data sets is the same.

Once the test statistic has been calculated, the next step is to evaluate its
statistical significance. This is done by generating a large number (typically
999) of random data sets generated under the null hypothesis of no clustering,
and then calculating the value of the test statistic for each of those data sets
as well. The most likely cluster for the real data set is then significant at
the 0.05 alpha level if the value of its scan statistic is among the 5 percent
highest among the one real and many random data sets [22]. More generally,
its Monte Carlo hypothesis testing p-value is defined as p = r/(1+sim) where
r is the rank and sim is the number of simulated Monte Carlo replications
generated under the null hypothesis. In this way, the p-value of the scan
statistic is adjusted for the multiple testing inherent in the many cylinder
locations and sizes evaluated.
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When there is only one time period, the space-time scan statistic simplifies
to the purely spatial scan statistic. Likewise, if there is only one spatial
location, then it simplifies to the purely temporal scan statistic. Hence, while
we will describe the subsequent theory in the framework of the space-time
scan statistic, everything applies to the purely spatial and purely temporal
scan statistics as well. Other shapes of the scanning window than circles and
cylinders are also possible [2, 23, 24, 25], but again, the principles for dealing
with multiple data sets is the same.

3 The Multivariate Scan Statistic

Sometimes it is interesting to simultaneously search for and evaluate clusters
in more than one data set. The multivariate scan statistic with multiple data
sets solves this problem, as follows.

1. For each cylinder, the log likelihood ratios are calculated for each data
set, and it is noted whether the observed number of cases is larger or
smaller than expected.

2. For each cylinder, the log likelihood ratios for the data sets with more
than expected number of cases is summed up. This sum is one of two
likelihoods for that particular cylinder. The second likelihood is the
sum of all the log likelihood ratios for the data sets with fewer than
expected cases.

3. The maximum of all the summed log likelihood ratios, taken over all
the cylinders, constitutes the most likely cluster. This maximum is the
definition of the multivariate scan statistic.

We will now write this down in mathematical notation. For the Poisson
model, let

LLRi(high, z) =
(

cz

nz

)cz
(

C − cz

C − nz

)C−cz

I(cz > nz)

and

LLRi(low, z) =
(

cz

nz

)cz
(

C − cz

C − nz

)C−cz

I(cz < nz)
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be the log likelihood ratio for high and low clusters respectively for cylinder
z in data set i. Note that for a specific cylinder and data set, only one of
these can be non-zero. The test statistic can now be written as

T = max
z

max

(∑

i

LLRi(high, z),
∑

i

LLRi(low, z)

)

Note that when defined in this way, the most likely cluster may either be a
’high cluster’ with more cases than expected or a ’low cluster’ with less cases
than expected. If there is only interest in one of these two, only one of the
sums in the second step above is used. That is, when search only for high
clusters,

T = max
z

∑

i

LLRi(high, z).

Note that with the multivariate scan statistic, we do not only adjust for
the multiple testing inherent in the many cylinder location and sizes eval-
uated in the same way as explained for the univariate case, but we also
automatically adjust for the multiple testing inherent in the various combi-
nations of data sets that can generate the most likely cluster. This is done
by taking the maximum over all data set combinations when taking finding
the maximum log likelihood in the random data sets in exactly the same way
as for the real data.

4 Adjusting for Different Informational Con-

tent in Different Data Sets

When data is classified by categorical covariates such as different age groups,
disease classifications or data sources, the simplest approach is to sum up
both the cases and the population/expected counts, and then use a univari-
ate scan statistic. Often though, it is important to adjust the analysis for
these covariates. For example, an unadjusted spatial scan statistic analy-
sis of cancer mortality in the United States would reveal significant clusters
in Florida, since many old people live there and older people are at much
higher risk of cancer. The standard way to adjust the Poisson based scan
statistic for covariates is to calculate the expected counts through indirect
standardization. Let cist and popist be the number of cases and the popu-
lation in covariate group i in location s in time period t respectively. The
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covariate adjusted expected count is then nst =
∑

i popistCi/POPi, where Ci

is the total number of cases in category i and POPi is the total population
in category i. With this type of adjustment, there is no differentiation in
the informational content between cases in different covariate groups. That
is, a fifty year old leukemia patient in a location provides no more and no
less evidence for a cluster there than a eighty year old patient. This equal-
ity is often appropriate but not always. For example, in influenza mortality
surveillance, one additional death of a thirty year old person would provide
more evidence of an outbreak with serious public health consequences than
one additional death of an eighty year old person. This is because influenza
mortality is common among the elderly during a normal flu season, while
many influenza deaths among the younger population may signal the arrival
of a very serious strain, so that there is more ’informational content’ in the
death of the thirty year old person.

To adjust for different informational content in different covariate groups,
we need to adjust the analysis in a different manner, as follows.

1. Divide the data into different data sets, one for each covariate group.

2. For each cylinder z calculate the log likelihood ratio for each data set,
and note whether the number of cases is higher or lower than expected.

3. For each cylinder, the log likelihood ratios for the data sets with more
than expected number of cases is summed up. Likewise, sum up all the
log likelihood ratios for the data sets with fewer cases than expected.

4. For each cylinder, subtract the second sum from the first, to create
the log likelihood for high clusters with an excess number of cases.
Subtract the first sum from the second, to create the log likelihood for
low clusters with fewer cases than expected. The larger of these is the
log likelihood for this particular cylinder.

5. The maximum of all the log likelihoods, taken over all the cylinders,
constitutes the most likely cluster. This maximum is the definition of
the informational content adjusted scan statistic.

When there is only interest in clusters with high rates, the same procedure
is used, except that only the first subtraction in step four is performed.
In mathematical notation, the scan statistic is then for the Poisson model
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expressed as
T =

∑

i

LLRi(high, z) −
∑

i

LLRi(low, z)

where LLRi(high, z) and LLRi(low, z) are defined as above. When searching
for both high and low clusters

T = max

(∑

i

LLRi(high, z) −
∑

i

LLRi(low, z),
∑

i

LLRi(low, z) −
∑

i

LLRi(high, z)

)

Note that the two types of adjustment may be used simultaneously for
different covariates. For example, in the influenza example, we could use the
indirect standardization approach to adjust for gender and the multiple data
set approach to adjust for age groups. We would then treat each age group
as a separate data set, and for each data set we would calculate the gender
adjusted expected counts for each location and time period combination.

5 Example: Syndromic Surveillance in Boston

5.1 Patient Encounter Data

Using data from the National Bioterrorism Syndromic Surveillance Demon-
stration Project, we illustrate the multivariate scan statistic using physician
telephone calls, regular physician visits and urgent care visits by the Harvard
Pilgrim Health Care health plan members cared for by Harvard Vanguard
Medical Associates, a large multi-specialty group practice in Massachusetts.
Data on patient encounters (visits or calls), including demographic infor-
mation and diagnostic codes, are recorded electronically as part of routine
patient care, usually on the same day. Each night, encounters with codes
of interest are extracted automatically from clinical data systems. The ex-
tracted encounter files are created to uniform specifications and are kept on a
directory accessible to software (”the console”) provided by the data center.

The console maps encounters to syndromes, in our caseupper gastroin-
testinal (GI) illness, and then identifies illness episodes by omitting individu-
als’ encounters in any syndrome that occur within 42 days of an earlier visit
in the same syndrome. Episodes are mapped to the individuals’ zip code of
residence, and a single file is created containing counts of new episodes in
each syndrome and zip code for each day. In addition, historical episode files
are created, which provide a basis for modeling end evaluation work of the
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type presented in this paper. During the processing of encounter files into
episode files, the console produces encounter lists, containing demographic
and clinical information, which remain at the originating site, where they are
available in the event of a query from public health authorities.

For this paper, we use historical data from 2002, mimicing a real-time
prospective surveillance system with daily analyses. On average, there were
about 20 new upper GI episodes per day through telephone call, about 22
regular physician visits and about 9 urgent care visits.

5.2 Choice of Scan Statistic and Parameter Settings

For this example, the prospective space-time permutation scan statistic [9]
was used for the early detection of disease outbreaks. This scan statistic uses
only case data and the expected values for each location and time period is
calculated by conditioning on the marginals. For example, if 1000 out of a
total of 10,000 cases (=10%) are in location A and there is a total of 100
cases during day d, then the expected number of cases in location A on day
d is ten percent of 100, equal to 10. If there is a total of 200 cases on the
next day, then the expected is 20 in location A on that day. Based on these
expected counts, the space-time permutation scan statistic uses the Poisson
based likelihood described above to define the test statistic.

To define the collection of cylinders, we used 3 days as the maximum
temporal window size. That is, the hight of the cylinder is either 1, 2 or 3
days. Since we are doing prospective surveillance, we are only interested in
ongoing outbreaks, so the last day of observation is always included as one
of the days in the cylinder. The circular base of the cylinder was defined
so that its centroid coincided with one of the zip-code centroids. For each
centroid, we evaluated all circles with a radius between zero and a centroid
dependent maximum so that at most 25 percent of all cases in the data set
was included in the circle.

A space-time scan statistic analysis was performed for each of the 122 days
from September 1 to December 31, 2002, using data from January 1, 2002
until and including the ’day of the analysis’. Calculations were performed
using the freely available SaTScan software [26].
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5.3 Results

The results of the multivariate prospective space-time permutation scan sta-
tistic are presented in Table 1. The strongest signal was on October 18, with
the cluster consisting of a single day and a single zip-code. On that day
in that zip-code, there were five individuals with upper GI illness compared
to 0.04 expected. With a recurrence interval (RI) greater than 1000 days
(p = 0.001), we would by chance only expect so see an outbreak of this mag-
nitude about once every three years. Hence, this cluster is unlikely to be a
chance occurrence.

A detailed investigation of the cluster revealed that all five were diagnosed
with pinworm disease, one of the more unusual forms of GI illness. The
investigation also revealed that all five were members of the same family,
with three of them being children. Such a signal is clearly not of public
health importance, but it does show the ability of the system to pick up very
small clusters if they are highly concentrated in time and space.

A set of three consecutive signals occurred on December 20 (p = 0.002,
RI=500 days), December 21 (p = 0.001, RI=1000 days) and December 22
(p = 0.002, RI=500 days). These three signals were generated by the same
cluster, the first two containing the same seven zip-code areas during two
and three days respectively, and the third containing three of those seven
zip-code areas. The next strongest signal occurred on October 26 (p = 0.007,
RI=142 days). The individuals in both the October and December clusters
had a fairly wide variety of different gastrointestinal illness, and it is not clear
whether or not there were a common etiological factor for the cases in these
two clusters.

To compare with the multivariate scan statistic, we also ran separate
analyses for each of the three data sets, again for each of the 122 days.
The October 18 analysis of the telephone data also picked up the 5 person
pinworm cluster (p = 0.001, RI=1000), while obviously, the regular visit and
urgent care data sets did not. The December 20 cluster was picked up by
both the telephone calls (p = 0.03, RI=32 days) and the regular physician
visit (p = 0.003, RI=333 days) data sets, also on December 20, with similar
size signals on the subsequent two days. The October 26 cluster was not
picked up by any of the separate data sets (p > 0.05, RI < 14 days).
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Signal Characteristics Telephone Calls Regular Visits Urgent Care
Date #zips #days obs exp RR obs exp RR obs exp RR p= RI
Oct 18 1 1 5 0.02 250 0 0.02 0 0 0 n/a 0.001 1000
Dec 20 7 2 7 1.24 5.6 7 1.18 5.9 2 1.12 1.8 0.002 500
Dec 21 7 3 9 1.64 5.5 7 1.20 5.8 2 1.60 1.3 0.001 1000
Dec 22 3 3 5 0.68 7.4 4 0.23 17.3 0 0.98 0 0.002 500
Oct 26 5 2 5 0.50 10.0 3 0.40 7.5 0 0.39 0 0.007 142

Table 1: The strongest signals of surveillance for upper gastrointestinal ill-
ness in Boston, during September 1 to December 31, 2002, as generated by
the multivariate space-time permutation scan statistic. All signals with a re-
currence intervals (RI) greater than 120 days are listed. By chance we would
expect approximately one signal during this four month period. The signals
on December 20-22 are for the same outbreak. RR = relative risk.

6 Discussion

We have presented a multivariate scan statistic and illustrated its use for
syndromic surveillance and the early detection of disease outbreaks. The
multivariate approach can also be used for purely temporal and purely spatial
surveillance in a wide variety of settings. For example, in geographical cancer
surveillance, one may treat acute lymphoblastic leukemia as one data set,
acute myelogenous leukemia as another and chronic leukemia as a third.
The multivariate scan statistic is then able to detect clusters due to only
one of the three types or two or three of them combined, adjusting for the
additional multiple testing due to the multiple combinations of the three data
sets.

When using the multivariate scan statistic, one automatically adjusts for
the differential informational content when combining different groupings.
Hence, we are really modifying the univariate scan statistic in two different
ways in this paper. It is also possible to adjust for the informational con-
tent without using a multivariate approach, as described in Section 4. The
converse is also possible. It is possible to construct a multivariate scan sta-
tistic without the informational content adjustment. To do this, one would
for each cylinder add the cases and the population/expected separately and
then calculate the log likelihood based on these sums rather than summing
the log likelihoods. We have not tried this approach.

The ability to adjust scan statistics for different informational content is
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very interesting in itself. Of particular interest in this regard is the ability
to adjust the Bernoulli based scan statistics for covariates, as that has not
been possible before.

The methods described in this paper are computer intensive, both because
of the nature of the scanning window and because of the need to evaluate
the test statistic for 999 or more random replicas of the data set. To make
it easy to apply, the methods have been incorporated into the freely avail-
able SaTScan software [26]. Using this software, it is possible to run purely
temporal, purely spatial as well as space-time multivariate scan statistics, us-
ing either a Poisson, Bernoulli or space-time permutation probability model.
It is also possible to do the informational content adjustment for all these
scenarios.
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