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C.R.A.N. (C.N.R.S. U.A. 821), Université de Nancy I
186 rue de Lorraine, 54400 Cosnes et Romain, France

Abstract
This paper presents a new approach to the loop transfer recovery (LTR) in linear multivariable

control systems, based on the unknown input reduced-order observer-based controller. Two
parametrizations methods for all unknown input observers are presented, the first one is based on the
matrix fraction description (MFD) and the second one is developed in RH∞. The LTR for both minimum

and non-minimum phase systems are considered. An exact recovery, based on the unknown input
observer, is provided for minimum phase systems. For non-minimum phase systems, an approximate
recovery is obtained by minimizing the H∞ norm of the recovery matrix.

I. Introduction
Doyle [1] and Doyle and Stein [2] have analyzed the effects of observers on the robustness of LQG

designs in a continuous time. They showed that, incorporating an observer in the LQ feedback law, can
cause a loss of robustness of the LQ scheme. They proposed a linear quadratic gaussian loop transfer
recovery (LQG/LTR) procedure as a multivariable robust control design tool to improve the classical
LQG design [3]. The LQG/LTR design is based on the fact that, for minimum phase plants, the open loop
transfer function of a state feedback system can be asymptotically recovered by the open loop transfer
function of an output feedback system composed of an LQ regulator with a high gain observer. The
robustness of the LQG/LTR synthesis is obtained when the phase and gain margins are close to those
given by the LQ design.

Recently, a new method based on an H∞ optimization has been introduced in the LTR problem [4]-
[7]. The use of an H∞ criterion for the LTR allows to improve the robustness properties of the feedback

design [8]-[9]. In [1]-[7], all the LTR compensators are observer-based controllers. The reader can find
the major aspects of the LTR theory in the recent book of Saberi et al. [10].

In this paper, we consider the problem of the loop transfer recovery at the input point (LTRI), and
then from the robustness point of view, we make the assumption that the nominal plant model is perturbed
by multiplicative uncertainties at the input. In the LTRI, the problem is reduced to an appropriate design of
the observer part of the compensator such that the feedback system will have the same robustness as that
of the direct state feedback system [10]. We assume that the gain matrix of the state feedback has been
computed a priori with given robustness and performance specifications.

Generally in the LTR problem, the external disturbances which act upon the nominal system are not
taken into account. These disturbances are unknown plant inputs, which can have a detrimental effect on



the closed loop performances. On the other hand the problem of estimating the state of a linear time-
invariant system driven by both known and unknown inputs has received a considerable attention in the
last decade [11], [12]. The problem is of a considerable importance since in practice there are many
situations where plant disturbances are present, or some of the inputs of the system are inaccessible, and
therefore a classical observer which assumes the knowledge of all inputs cannot be used.

This paper introduces an unknown input reduced-order observer-based controller in the LTR
design. The observer is designed in the frequency domain using the matrix fraction description (MFD).
To obtain the MFD representation of this observer, we present a straigthforward computational method
which only requires operations on matrices of real numbers, rather than on polynomial matrices.

To design an LTR compensator, we consider the open loop transfer function as target loop transfer
function. We show that, for minimum phase systems, an exact LTR can be obtained by considering the
control input as an unknown input in the design of the observer. For non-minimum phase systems, an
approximate LTR is obtained by minimizing the H∞ norm of the recovery matrix. With an unknown input

observer-based controller, we show that the recovery matrix is equal to the transfer matrix from the control
input to the state estimate.

The paper is organized as follows. In section II, an unknown input reduced-order observer is
parametrized and designed in the frequency domain. The necessary and sufficient conditions for the
existence of this observer are given. The disturbance rejection with an unknown input observer-based
controller is analyzed. In section III, we present LTR design methods for minimum and non-minimum
phase systems. In section IV, two numerical examples are given to illustrate and to compare our method
with other LTR methods presented in [2], [3] and [13].

In the sequel, we'll refer to the following finite dimensional linear time invariant system (FDLTI)

x
.
 = A x + B1 w + B2 u (1.1)

z = C1 x (1.2)
y = C2 x (1.3)

where x ∈ Rn, w ∈ Rm, u ∈ Rq, z ∈ Rk and y ∈ Rp are the state, the unknown external input, the
control input, the controlled output and the measured output  respectively with p ≥ m and n > q. A, B1, B2,
C1 and C2 are constant matrices with appropriate dimensions. Without loss of generality, we assume that
rank(B1) = m and rank(C2) = p. The basic block diagram used in this paper has the following form

Ga(s)

K(s)

w

u

z

yu

Figure 1 : modified standard problem



where Ga(s) = 
 






 




G11(s) G12(s)

G21(s) G22(s)
0 Iq

 is the generalized plant and K(s) is an FDLTI controller. The

proposed controller K(s) is designed to stabilize internally the closed loop transfer function Twz(s) from

w to z, and to recover the closed loop properties of a state feedback controller scheme in the full
information case (C2 = In and n = p).

In the sequel, we make the following assumptions.

A-1 : G21(s) is of full column rank for almost all complex numbers s,
A-2 : triplet (A, B1, C2) has no unstable invariant zero, i.e. G21(s) is minimum phase,
A-3 : rank(C2 B1) = rank(B1) = m,
A-4 : (A, B2) is stabilizable and (C2, A) is detectable.

Unlike G21(s), the system [ ]G21(s) G22(s)  can be minimum or non-minimum phase.

In this paper, we consider that the compensator K(s) is an unknown input observer-based controller.
Before designing the observer, one must compute a state feedback control law u = F x which stabilizes
internally the system (1) (see [3], [9] and [14]). In the sequel, we assume that the gain matrix F is known.

II. Unknown input reduced-order observer design in the frequency domain
This section is divided in fourth sub-sections. In the first sub-section, we present a parametrization,

in a matrix fraction description (MFD), of all unknown input observers for system (1) in the frequency
domain. In the second sub-section, we propose a straightforward procedure, based on this parametrization,
to design this observer. In the third sub-section, we present a parametrization of all unknown input
observers for system (1) in RH∞. This parametrization in RH∞ is used in section III to achieve an exact or

an approximate LTR design. Finally in the last sub-section, the obtained disturbance rejection is analyzed.

a. Parametrization of unknown input observers from MFD
The system described by

xe(s) = Ny(s) y(s) + Nu(s) u(s) (2)

is called an unknown input observer for system (1) if the state estimate xe converges asymptotically to the

state x by using the control input u and the measured output y, without the knowledge of the external
disturbance w.

Hautus [15] has formulated, in the frequency domain, the necessary and sufficient conditions for the
existence of a stable unknown input observer for system (1). These conditions are given in the two
following theorems.



Theorem 1 [15]
A stable unknown input observer for system (1) is determined by relation (2) if and only if there

exist stable matrices M(s) and N(s) such that N(s) is proper and

[ ]M(s) N(s)  
 






 




sIn-A -B1 -B2

C2 0 0
0 0 Iq

 = [ ]In 0 0 (3)

where N(s) = [ ]Ny(s) Nu(s) . ■

Theorem 2 [15]
The unknown input observer described in theorem 1 exists if and only if assumptions A-2 and A-3

are satisfied. ■

The state space system (1) can be written in  Laplace transform as

 






 




sIn-A -B1 -B2

C2 0 0
0 0 Iq

 
 



 

x

w
u

 = 
 




 


x0

y
u

(4)

where x0 is the initial state vector.

Combining equations (2)-(4), we obtain

x = M(s) x0 + Ny(s) y + Nu(s) u = M(s) x0 + xe (5)

Then (x - xe) converges to zero since M(s) is stable. The FLDTI system K(s) = F N(s) is an unknown

input observer-based controller for the modified standard problem in figure 1. The following theorem
presents the separation principle for such controllers.

Theorem 3
The closed loop transfer function of system in figure 1 is internally stable for K(s) = F N(s) if and

only if M(s), N(s) and (sIn - A - B2F)-1 are stable, where M(s) and N(s) are given in theorem 1. ■

Proof
From (3)-(5), the state estimation error is given by e = x - xe = M(s) x0 where M(s) is the strictly

proper transfer matrix given by

M(s) = (In - Ny(s) C2) (sI - A)-1 (6)

Let [Φ, G, H, 0] be a state-space realization of M(s), and let v be a state vector associated with the
system M(s). By using equations (1), (2), (4), (5) and the state feedback gain F, the closed loop system
has the following state-space form



 


x

.
 = A x + B1 w + B2 u

v
.
 = Φ v + G x0

xe = x - H v
u = F xe

The closed loop state matrix Acl

Acl = 
 


 
A + B2F -B2FH

0 Φ

is internally stable under the assumptions of theorem 3. ■

To obtain an MFD representation of the transfer function matrices M(s) and N(s), we can write
equation (3) as

[ ]M_(s) N_y(s) N_u(s) D_(s)  

 



 



sIn-A -B1 -B2
C2 0 0
0 0 Iq

-In 0 0
 = [ ]0 0 0 (7)

where D_-1(s) [ ]M_(s) N_y(s) N_u(s)  is a MFD representation of [ ]M(s) Ny(s) Nu(s) . The

solution of (7) can be obtained from the left kernel of a polynomial matrix. This kernel can be easily
parametrized if we consider the following polynomial matrix factorization

U1(s) 

 



 



sIn-A -B1 -B2
C2 0 0
0 0 Iq

-In 0 0
 U2 = 

 




 




In 0 0
0 Iq 0
0 0 Im
0 0 0
0 0 0

(8)

where U1(s) and U2 are two unimodular matrices given by

U1(s) = 

 




 




0 0 0 -In
0 0 Iq 0

P1 0 P1B2 P1(sIn-A)
P2 0 P2B2 P2(sIn-A)
0 Ip 0 C2

 and U2 = 
 




 


In 0 0

0 0 Im
0 Iq 0

(9.1)

with
P1 = -(BT

1 B1)-1BT
1 (9.2)

and



P2 B1 = 0, det(
 



 

P1

P2
) ≠ 0 (9.3)

Matrix U1(s) is unimodular since det(U1(s)) = ± det(
 



 

P1

P2
). From (7)-(9), we obtain

D_(s) = a1(s) P2 (sIn - A) + a2(s) C2 (10.1)
M_(s) = a1(s) P2 (10.2)
N_y(s) = a2(s) (10.3)
N_u(s) = a1(s) P2 B2 (10.4)

where a1(s) and a2(s) are arbitrary polynomial matrices, of dimensions (n,n-m) and (n,p) respectively, such

that D_(s) is a non-singular polynomial matrix and det(D_(s)) has all its roots strictly in the left half
complex plane. Equations (10.1), (10.3) and (10.4) define the MFD representation of an unknown input
observer for system (1). Polynomial matrices a1(s) and a2(s) give a parametrization of all unknown input

observers for system (1) in a matrix fraction description. Before presenting the design procedure for the
unknown input reduced-order observer, we prove the following result.

Theorem 4
Under the assumption A-2, the fixed poles of all unknown input observers are stable. ■

Proof
From assumption A-2 we have

rank(
 


 
sIn-A -B1

C2 0 ) < n+m or rank(
 






 




sIn-A -B1 -B1

C2 0 0
0 0 Iq

) < n+m+q, ∀ s ∈ CC, Re(s) ≥ 0

Define the following non-singular matrices

V1 = 
 






 




P1 0

P2 0
0 Iq

 and V2 = 
 


 
In 0

P1(sIn-A) Im

Then we have

rank(
 


 
sIn-A -B1

C2 0 ) = rank(V1 
 


 
sIn-A -B1

C2 0  V2)

= rank(
 






 




0 Im

P2(sIn-A) 0
C2 0

)



= rank(
 




 


0

P2(sIn-A)
C2

) + m, ∀ s ∈ CC, Re(s) ≥ 0 (11)

Now from (10.1), we have

D_(s) = [ ]0 a1(s) a2(s)  
 




 


0

P2(sIn-A)
C2

(12)

From (11) and (12), it is easy to deduce the result of theorem 4. ■

b. Design procedure of the unknown input reduced-order observer
The previous MFD parametrization is used to derive a straightforward procedure to design an

unknown input observer of minimal order.
Since we have x ∈ Rn, y ∈ Rp and rank(C2) = p, then the minimal order of the unknown input

observer is (n-p), i.e. we must find D_(s) such that degree(det(D_(s))) = n - p. If degree(a1(s)) =
degree(a2(s)) = 0, the polynomial equation (10.1) can be written as

[ ]a1 a2  
 



 

P2 -P2A

0 C2
 = [ ]d0 d1 (13.1)

where
D_(s) = s d0 + d1 (13.2)

Equation (13.1) has a solution if and only if

Im(
 



 

P2 -P2A

0 C2

T
) ⊃ Im([ ]d0 d1

T) (14)

where Im(A) denotes the column space of matrix A.
Define the non-singular matrices T1 and T2 such that

C2 T-1
1  = [ ]0 Ip (15.1)

T2 P2 T-1
1  = 

 



 

In-p α2

0 γ2
(15.2)

Matrix P2 being of full row rank (see (9.3)), matrix T2 in equation (15.2) exists if and only if
assumption A-3 is satisfied. With matrices T1 and T2, we obtain

 



 

T2 0

0 Ip
 
 



 

P2 -P2A

0 C2
 
 






 




T-1

1 0

0 T-1
1

 = 
 




 


In-p α2 α3 α4

0 γ2 γ3 γ4
0 0 0 Ip

(16)



Define matrices a_1, a_2, Z, d_1 and d_2 such that

[ ]a_1 a_2  = [ ]a1 a2  
 




 


T-1

2 0
0 Ip

 
 




 


In-p -Z 0

0 Ip-m 0
0 0 Ip

(17)

and

[ ]d_0 d_1  = [ ]d0 d1  
 






 




T-1

1 0

0 T-1
1

(18)

With these notations, equation (13.1) is equivalent to

[ ]a_1 a_2  
 




 


In-p Z 0

0 Ip-m 0
0 0 Ip

 
 




 


In-p α2 α3 α4

0 γ2 γ3 γ4
0 0 0 Ip

 = [ ]d_0 d_1 (19)

To satisfy condition (14), we can choose d_0 and d_1 as follows

d_0 = 
 



 

In-p α2+Zγ2

0 0
(20.1)

and

d_1 = 
 



 

α3+Zγ3 α4+Zγ4

0 Ip
(20.2)

Hence, the polynomial matrix D_(s) is given by

D_(s) = 
 



 

sIn-p+α3+Zγ3 s(α2+Zγ2)+(α4+Zγ4)

0 Ip
 T1 (21)

and the (n-p) poles of the unknown input reduced-order observer are the eigenvalues of (-α3-Zγ3). The

free parameter Z is of dimension (n-p,p-m). If p = m, there is no freedom in the assignment of the
observer poles, the stability of the observer being guaranteed by theorem 4.

Finally, by inserting relations (13) and (16)-(18) into equations (10.1), (10.3) and (10.4), the MFD
representation of this observer is given by

D_(s) = 
 




 


[ ]In-p Z T2P2(sIn-A)

C2
(22.1)

N_y(s) = N_y = 
 



 

0

Ip
(22.2)

N_u(s) = N_u = 
 



 

[ ]In-p Z T2P2B2

0
(22.3)



We can now propose the following design procedure.

1) Compute matrices P2, T1 and T2 defined in equations (9.3), (15.1) and (15.2).
2) Compute matrices α3 and γ3 from equation (16).

3) Choose matrix Z by a pole-placement procedure. The poles of the observer are the
eigenvalues of (-α3-Zγ3). The pair (α3, γ3) is detectable if and only if assumption A-2

is satisfied (see theorem 4).
4) Matrices D_(s), N_y and N_u are given by relations (22.1), (22.2) and (22.3).

The proposed computational method requires only operations on matrices of real numbers. The
transfer matrices of this observer, Ny(s) and Nu(s), are given by

Ny(s) = T-1
1  

 




 


-(sIn-p+α3+Zγ3)-1(s(α2+Zγ2)+(α4+Zγ4))

Ip
(23.1)

and

Nu(s) = T-1
1   

 



 

(sIn-p+α3+Zγ3)-1(B21+(α2+Zγ2)B22)

0
(23.2)

where matrices B21 and B22 are defined by

 



 

B21

B22
 = T1 B2 (24)

c. Parametrization of unknown input observers in RH∞∞∞∞
Now, we present a parametrization of this observer in RH∞. This parametrization will be used to

achieve an exact or an approximate LTR design. Let N(s) be given in theorem 1, our aim is to parametrize
all unknown input observer for system (1) in an affine form

L(s) = N(s) + Q(s) W(s) (25)

where L(s) is the parametrized unknown input observer, Q(s) is an arbitrary transfer matrix of dimension
(n,p-m) belonging to RH∞, and W(s) is a stable transfer matrix of dimension (p-m,p+q) chosen such that

theorem 1 remains true if we replace N(s) by L(s) in (3) (the construction of W(s) is detailed in (27) and
(28)). N(s) is called the central unknown input observer. The parametrization (25) is reduced to finding
the unknown parameter Q(s) such that L(s) ∈ RH∞.

The transfer matrix W(s) can be obtained as follows. From (3) and (7) we have

N(s) = [ ]Ny(s) Nu(s)  = D_-1(s) [ ]N_y(s) N_u(s) (26)

where D_(s), N_y(s) and N_u(s) are given by equations (10.1), (10.3) and (10.4). A particular expression
for polynomial matrices D_(s), N_y(s) and N_u(s) is given in (22) where det(D_(s)) is of minimal order.



Let Dt(s) and Nt(s) be polynomial matrices of dimensions (p-m,p-m) and (p-m,n+p+q) respectively, such
that Dt(s) is non-singular, det(Dt(s)) has all its roots strictly inside the left half plane and

Nt(s) 
 






 




sIn-A -B1 -B2

C2 0 0
0 0 Iq

 = [ ]0 0 0 (27)

Remark : if p = m, we have L(s) = N(s).
A straightforward algorithm to compute the kernel of a polynomial matrix, based on the resultant, is

proposed by Barnett [16]. Hence, for system (1), all the unknown input observers L(s) are given by (25),
where the matrix W(s) is

W(s) = Dt
-1(s) Nt2(s) (28)

The matrix Nt2(s) can be obtained by selecting the (p+q) last columns of Nt(s).

d. Disturbance rejection with an unknown input observer-based controller
Before using this parametrization in an LTR design, we analyze the disturbance rejection which can

be achieved with an unknown input observer-based controller. The closed loop system described by the
modified standard problem in figure 1 can be depicted as shown in figure 2.

N_  (s)

(sI-A)
-1

C

C

1

2

u

B1

B2

N_  (s)
y

-1D_(s)

+

+

+

+

F

w

u

x

z

y

xe

i
u

ii

Figure 2 : closed loop with an unknown input observer-based controller

The controller K(s) is given by

K(s) = F N(s) = F [ ]Ny(s) Nu(s) (29)

Let Twu(s) and Twz(s) be the transfer matrices from external disturbance w to the control input u
and the controlled output z respectively. Twu(s) is given by



Twu(s) = (Iq - FD_-1(s) (N_u(s) + N_y(s)C2(sIn - A)-1B2))-1 FD_-1(s)N_y(s)C2(sIn - A)-1B1 (30)

For a direct state feedback system, this transfer matrix is given by

TFwu(s) = (Iq - F (sIn - A)-1 B2)-1 F (sIn - A)-1 B1 (31)

By using equation (7), which is equivalent to

M_(s) (sIn - A) + N_y(s) C2 = D_(s) (32.1)
M_(s) B1 = 0 (32.2)
M_(s) B2 = N_u(s) (32.3)

we obtain
Twu(s) = TFwu(s) (33)

In figure 2, the controlled output z can be written as

z = C1 (sIn - A)-1 (B1 w + B2 u) (34)

By using relation (33), we obtain Twz(s) from relation (34)

Twz(s) = C1 (Iq + (sIn - A)-1 B2 (Iq - F (sIn - A)-1 B2)-1 F) (sIn - A)-1 B1 (35)

For a direct state feedback system, this transfer matrix is given by

TFwz(s) = C1 (In - (sIn - A)-1 B2 F)-1 (sIn - A)-1 B1 (36)

By using the matrix inversion lemma, we can see that

Twz(s) = TFwz(s) (37)

Then for an unknown input observer-based controller, the transfer matrices from external
disturbance w to the control input u and the controlled output z respectively are identical to those obtained
by a direct state feedback controller.

III. LTR design problem with an unknown input observer-based controller
In this section, we present an LTR procedure to design an observer-based controller using the above

unknown input reduced-order observer with its two parametrizations.

a. Exact LTR design
Let Lt1(s) and Lt2(s) be the loop transfer matrices obtained with the loop broken at (i) and (ii) in

figure 2 respectively. We have



Lt1(s) = (Iq - F D_-1(s) N_u(s))-1 (F D_-1(s) N_y(s) C2 (sIn - A)-1 [ ]B1 B2 ) (38)

and
Lt2(s) = F D_-1(s) [ ](N_y(s)C2(sIn - A)-1B1) (N_u(s) + N_y(s)C2(sIn - A)-1B2) (39)

For a direct state feedback, these two break points are identical and the loop transfer function is
given by

LFt(s) = F (sIn - A)-1 [ ]B1 B2 (40)

From (32) and (39), it is easy to see that

LFt(s) = Lt2(s) (41)

In order to have the same robustness with an observer-based controller than with a state feedback,
Doyle and Stein [2], [3] propose to choose the loop transfer function as target loop transfer function in
the LTR design : one wishes to make Lt1(s) = LFt(s), i.e. Lt1(s) = Lt2(s). Then, an exact LTR design is

attained with the unknown input observer defined in (10) (we can use the minimal order observer defined
in (22)) if

N_u(s) = 0 (42.1)

or
Nu(s) = 0 (42.2)

The polynomial matrix N_u(s) and the transfer matrix Nu(s) are called recovery matrices [10]. The

polynomial matrix D_(s) being non-singular, relations (42.1) and (42.2) are equivalent. In these relations,
the control input is considered as an unknown input in the design of the observer. From theorem 4, we
know that the fixed poles of the obtained unknown input observer are given by the invariant zeros of the
triplet (A, [ ]B1 B2 , C2).

The exact LTR defined by one of the two relations (42) is achievable if assumptions A-2 and A-3
are satisfied when one replaces matrix B1 by matrix [ ]B1 B2 , then [ ]G21(s) G22(s)  must be a

minimum phase plant. Hence, we have solved an LTR design problem by designing an unknown input
observer.

The main issue in robust control paradigm is to design a controller which tracks a reference signal
in face of various types of uncertainties, which can be disturbances, measurement noise, unmodeled
dynamics or unknown reference signals to be applied. It is well known that this tracking objective and all
these kinds of uncertainties are related to two transfer matrices, the sensitivity function S(s) and the
complementary sensitivity function T(s). The robust control objectives can be formulated as the
minimization of ||WS(s)S(s)||∞ and ||WT(s)T(s)||∞ where WS(s) and WT(s) are weighting functions

chosen to have a trade-off between performance and robust stability. To analyze the robustness of the
proposed LTR design (i.e. Nu(s) = 0), we compare the obtained sensitivity and complementary sensitivity

functions given by



S(s) = (Iq - (Iq - F D_-1(s) N_u(s))-1 F D_-1(s) N_y(s) C2 (sIn - A)-1 B2)-1 (43.1)

and
T(s) = - S(s) (Iq - (Iq - F D_-1(s) N_u(s))-1 F D_-1(s) N_y(s) C2 (sIn - A)-1 B2) (43.2)

with those obtained with a direct state feedback control law

SF(s) = (Iq - F (sIn - A)-1 B2)-1 (44.1)

and
TF(s) = - SF(s) F (sIn - A)-1 B2 (44.2)

If N_u(s) = 0 (or equivalently Nu(s) = 0), we have

S(s) = SF(s) (45.1)

and
T(s) = TF(s) (45.2)

b. Approximate LTR design with an unknown input observer-based controller
Throughout this section, we assume that assumptions A-2 and A-3 are satisfied with matrix B1 but

not with matrix [ ]B1 B2 . In this case, we cannot equal to zero the matrix Nu(s) with respect to the

stability of the closed loop, therefore we must solve an approximate LTR design with an unknown input
observer. To solve this design problem with robustness and performance specifications, we minimize a
recovery error E(s) given by

E(s) = SF(s) - S(s) = T(s) - TF(s) (46)

(where relation S(s) + T(s) = I is exploited). By using equations (43) and (44), the recovery error E(s) can
be written as

E(s) = (Iq - F(sIn - A)-1B2)-1 - (Iq - (Iq - FD_-1(s)N_u(s))-1FD_-1(s)N_y(s)C2(sIn - A)-1B2)-1 (47)

Using equations (32.1) and (32.3), equation (47) becomes

E(s) = (Iq - F(sIn - A)-1B2)-1 - (Iq - (Iq - FD_-1(s)N_u(s))-1(F(sIn - A)-1B2 - FD_-1(s)N_u(s))) (48)

and from the matrix inversion lemma, we obtain

E(s) = (Iq - F (sIn - A)-1 B2)-1 - ((Iq - F D_-1(s) N_u(s))-1 (Iq - F (sIn - A)-1 B2))-1 (49)

which can be written in a similar form as in [5], [7] and [10]

E(s) = SF(s) F D_-1(s) N_u(s)  = SF(s) F Nu(s) (50)



Since SF(s) and F are independent of the recovery matrix Nu(s), the minimization of ||E(s)||∞, i.e.
the approximate LTR design, can be solved by a weigthed minimization of the H-infinity norm of Nu(s). It

should be noted that, in the non-minimum phase case, the minimization of E(s) is not equivalent to the
unweighted minimization of Nu(s) [7]. We propose two approximate LTR design methods. In the first

one, the unknown input observer-based controller is designed from (42.1), equations (22.1) and (22.3)
can be used to obtain a minimal order observer. In the second method, which is optimal, we use equations
(25) and (42.2).

Method 1
As alternative to equation (42.1), we can choose a matrix Z such that ||N_u||F is minimal subject to

the stability of (-α3-Zγ3), where ||A||F is the Frobenius norm of matrix A. The Frobenius norm is used
since the numerator of the matrix fraction description of N_u(s) is a constant matrix N_u (22.3) if the

unknown input observer is of minimal order. This method is suboptimal since the polynomial
denominator D_(s) is not considered.

Before giving a more practical formulation for this constrained optimization problem, we present
suitable expressions for matrices (T2P2T-1

1 ), α3 and γ3.

Equation (15.2) can be written as

T2 P2 T-1
1  = 

 




 


In-p -B11B+

12
0 0

 + 
 



 

Y1

Y2
 [ ]0 Ip-B12B+

12 (51)

where Y1 ∈ Rn-pxp and Y2 ∈ Rp-mxp are arbitrary matrices. Matrices T1, T2 and P2 being of full rank,
matrix Y2 must be chosen such that

rank(Y2 (Ip - B12 B+
12)) = p - m (52)

where B11 ∈ Rn-pxm and B12 ∈ Rpxm are given by

 



 

B11

B12
 = T1 B1 (53)

and B+
12 is a generalized inverse of matrix B12 given by B+

12 = (BT
12 B12)-1BT

12.

From equations (16) and (51), we obtain

α3 = - (A1 - (B11 B+
12 - Y1 (Ip - B12 B+

12)) A3) (54)

and
γ3 = - Y2 (Ip - B12 B+

12) A3 (55)

where matrices A1 and A3 are given by



 



 

A1 A2

A3 A4
 = T1 A  T-1

1 (56)

 A1 being a square matrix of dimension n - p.

From equations (22.3), (51), (54) and (55), the previous constrained optimization problem can be
formulated as follows : find a matrix Y such that

||Ju1 + Y Ju2||F is minimal subject to the stability of (Δ + Y Π) (57)

where
Ju1 = B21 - B11  B+

12 B22 (58.1)

Ju2 = (Ip - B12 B+
12) B22 (58.2)

Δ = A1 - B11 B+
12 A3 (58.3)

Π = (Ip - B12 B+
12) A3 (58.4)

and
Y = Y1 + Z Y2 (58.5)

Hence, [ ]G21(s) G22(s)  is non-minimum phase, we obtain an approximate LTR with an unknown
input reduced-order observer by solving the problem (57), i.e. ||N_u||F is minimal under the constraint (-
α3-Zγ3) must be a stability matrix. With the solution Y, after the choice of Y2 with respect to condition
(52), the design parameters Z and (T2P2) are given by equations (51) and (58.5). From (52) the
determination of Y and Y2 is equivalent to that of Z and (T2P2).

With this procedure, the unknown input observer is of minimal order (n - p), and the parameters
a1(s) and a2(s) (see (10)) are given by

a1(s) = 
 



 

In-p Z

0 0
(59.1)

and

a2(s) = 
 



 

0

Ip
(59.2)

Method 2
We propose, as an alternative to equation (42.2), to minimize ||Nu(s)||∞ with respect to the stability

of the observer. Then, the H∞/LTR design problem can be stated as follows : under assumptions A1-A4,
find Q(s) ∈ RH∞ such that

J∞ = ||Lu(s)||∞ = ||Nu(s) - Q(s) Wu(s)||∞ (60)

is minimal, where Wu(s) corresponds to the q last columns of the stable transfer matrix W(s) defined in
(28). This H∞/LTR design problem is equivalent to a model matching which can be transformed into a
standard problem with H∞ norm minimization [8] and solved using the H∞ control with the output



feedback [9], [17], [18]. Unlike the procedure presented in method 1, the obtained unknown input
observer (25) may be not of minimal order.

In addition, using a suitable frequency weighting matrix R(s), the designer can choose the frequency
range in which the properties of the direct state feedback must be recovered. The cost function becomes

Jr∞ = ||Lu(s)R(s)||∞ = ||(Nu(s) - Q(s) Wu(s))R(s)||∞ (61)

The weighting function R(s) can be selected as be shown in [7].
With cost functions J∞ or Jr∞ we minimize the recovery error E(s) or a frequency weigthing

recovery error E(s) R(s) [7]. We obtain an approximate LTR, but not an exact (or asymptotic) LTR, with
any state feedback control law u = F x, because the transfer matrix [ ]G21(s) G22(s)  is non-minimum

phase [19], [20].

IV. Examples

a. Minimum phase system
Consider the unstable minimum phase system described by

A = 

 





 





-0.5
0

-0.6667
0.3333

0.5
0

0.3333
0.3333

0
-2
0

0.6667
0

1.5
0

-0.3333

0
0
-4
0
0
0
-1
0

0
0

-0.6667
-6
0
0

0.3333
1

2
0

-1.3333
0.6667

1
0

0.6667
0.6667

0
3
0

-0.6667
0

-0.5
0

0.3333

0
0
-2
0
0
0
-5
0

0
0

-1.3333
2
0
0

0.6667
-5

,

B1 = 

 





 





-0.3333
-1

-0.3333
-0.6667
0.6667

0
-0.3333
0.3333

, B2 = 

 





 





0 1
-0.3333 -0.6667
-0.3333 0.3333

0 -0.6667
0 0

0.6667 0.3333
-0.3333 0.3333

0 0.3333

, C1 = C2 = 
 




 


1 0 -1 1 2 0 1 2

0 0 0 1 0 3 0 2
0 -1 1 0 0 1 2 0

-1 0 0 0 1 0 0 3

This system has the following poles : {-7, -6, -4, -3.5, -3, -1, 1, 1.5}. The triplets (A, B2, C2) and (A,
[ ]B1 B2 , C2) have no invariant zero.The state feedback gain matrix is given by

F = 
 


 
-23.0510 7.8978 -0.5498 0.9969 -124.7563 19.1460 1.7525 1.2351

74.5590 -18.2269 1.6648 -2.0414 398.4068 -43.6511 -5.5812 -1.7409

which is obtained by solving an H∞ minimization problem [18]. Assumptions A-2 and A-3 are satisfied
for matrix [ ]B1 B2



rank(C2 [ ]B1 B2 ) = rank([ ]B1 B2 ) = m + q = 3 (62.1)

rank(
 



 

sIn-A B1 B2

C2 0 0 ) = n + m + q = 11, ∀ s ∈ CC, Re(s) ≥ 0 (62.2)

Therefore an exact LTR design with an unknown input observer is achievable. We apply three LTR
procedures to recover the state feedback control law obtained with the gain matrix F :

a) LQG/LTR design [2], [3],
b) LTR design proposed in [13],
c) LTR design proposed in this paper (exact LTR design).

For these three designs, the performance objectives and the disturbance rejection objectives are given
by the recovery of the transfer matrices given by the state feedback system (i.e. the loop transfer and the
transfers from the disturbance w to the controlled output z and to the control input u respectively).

Figures 3 to 5 show the obtained frequency singular values. We have used the same line types for
each design : “” for direct state feedback, “----” for method (a), “_._._” for method (b) and “”
for method (c).

For methods (a) and (b), the design parameter for asymptotic LTR is ρ2 = 10-6. These two methods
require a full-order observer (of order n = 8), whereas the proposed LTR method requires a reduced-order
observer (of order n - p = 4).

For method (a) which does not take the disturbance w into account, the loop transfer of the state
feedback system (i.e. F (sIn - A) B2)-1) is not recovered at high frequencies (e.g. figure 3), whereas the

transfer of the state feedback system from the disturbance w to the controlled output z is not recovered at
low frequencies (e.g. figure 4). The transfer of the state feedback system from the disturbance w to the
control input u is not recovered in the whole frequency range (e.g. figure 5).

For method (b) which takes the disturbance w into account, the loop transfer of the state feedback
system is not recovered at high frequencies (e.g. figure 3), whereas the transfer of the state feedback
system from the disturbance w to the controlled output z is recovered in the whole frequency range (e.g.
figure 4). The transfer of the state feedback system from the disturbance w to the control input u are not
recovered in the whole frequency range (e.g. figure 5).

For methods (a) and (b), we can obtain a loop transfer recovery in the whole frequency range if the
design parameter ρ → 0, but this increases the required input energy. In this case, the transfer matrix from
the disturbance w to the control input u can not be recovered.

For method (c), proposed in this paper, the three transfer matrices of the state feedback system are
exactly recovered as shown in figures 3, 4 and 5.

To compare the obtained disturbance rejection, we give ||Twu(s)||∞,  ||Twz(s)||∞ (see (30) and (35))

state feedback method (a) method (b) method (c)
||Twu(s)||∞ 3.5068 5.4857 337330 3.5068
||Twz(s)||∞ 3.1395 6.2556 3.1404 3.1395



The disturbance rejection is better with method (c) than with method (a). For method (b), the
disturbance rejection is good for the controlled output z, whereas the disturbance w has a great effect on
the control input u (110.5 db at low frequencies).

Method (c) gives, without using high eigenvalues of methods (a) and (b), better stability robustness
and performances than these two methods. In addition, the eigenvalues of the observer in method (c) can
be chosen to achieve other design objectives without damage in the disturbance rejection and the loop
transfer recovery.

Then, if assumptions A-2 and A-3 are satisfied by using matrix [ ]B1 B2 , we obtain, in the whole

frequency range, an exact LTR by using an unknown input reduced-order observer. The disturbance
rejection and the stability margins are those obtained by a direct state feedback.

b. Non-minimum phase system
Consider the following unstable non-minimum phase system

A = 

 




 




3 0 -4 0 4 0
-1 -4 1 7 0 -7
2 0 -2 0 3 0

-1 -5 1 8 0 -7
2 0 -1 0 2 0

-1 -5 1 5 0 -4

, B1 = 

 




 




1 0
-1 -1
1 -1

-2 -1
1 -2

-1 0

, B2 = 

 




 




0 1
-1 -1
-1 1
0 -2
0 0
0 -1

C1 = C2 = 
 




 


1 -1 -1 1 0 -1

0 0 0 -1 0 0
-1 0 1 -1 -1 1
0 -1 0 1 0 -1

This system has the following poles : {-4, -1, 1, 1, 3, 3}. The state feedback gain matrix is given by

F = 
 


 
47.0888 -9.5338 -60.5401 9.1668 33.4966 0.0627

-135.6089 10.9071 180.5697 -39.2825 -89.8290 28.8759

which is obtained by solving an H∞ problem [18]. Assumptions A-2 and A-3 are satisfied for matrix B1,
but not for matrix [ ]B1 B2

rank(C2 B1) = rank(B1) = m = 2 (64.1)

rank(
 



 

sIn-A B1

C2 0 ) = n + m = 8, ∀ s ∈ CC, Re(s) ≥ 0 (64.2)

rank(C2 [ ]B1 B2 ) = rank([ ]B1 B2 ) = m + q = 4 (64.1)
{A, [ ]B1 B2 , C2} has two transmission zeros : {-2, 2} (64.3)
{A, B2, C2} has a transmission zero : {2} (64.4)

So an exact recovery of the state feedback control law obtained with the gain matrix F is not achievable
with the three LTR designs used in the previous example (i.e. methods (a) [2], [3], (b) [13] and (c)). We



propose an approximate LTR design which minimizes the H-infinity criterion (61), called method (d).
In figures 6 to 8, we use the same line types for each design as in figures 3 to 5 (“_._._” for

method (d)).
For methods (a) and (b), the design parameter for the approximate LTR is ρ2 = 10-6. For method

(d), using the parametrization of unknown input observer in RH∞ proposed in (25), we minimize the H∞
frequency weigthed norm of the recovery matrix Nu(s) (61).

For methods (a) and (b), the loop transfer function of the state feedback system (i.e. F (sIn - A) B2)-

1) is not recovered in the whole frequency range (e.g. figure 6). For method (d), the loop transfer function
of the state feedback system is recovered at high frequencies. At low frequencies, i.e. in a frequency range
inferior to 10 rd/s, methods (a), (b) and (d) have the same loop transfers which are close to that given by
the state feedback control law. One have not an exact recovery in this frequency range, since the triplet (A,
B2, C2) has an unstable invariant zero at s = 2.

For method (a), the transfer functions of the state feedback system, from the disturbance w to the
controlled output z and the control input u respectively, are not recovered in the whole frequency range
(e.g. figures 7 and 8). For method (d), these two transfer functions are exactly recovered in the whole
frequency range. For method (b), the transfer function of the state feedback system from the disturbance
w to the control input u is not recovered in the whole frequency range. For this method, the transfer
function of the state feedback system from the disturbance w to the controlled output z is recovered in the
whole frequency range for the largest frequency singular values, but not for the smallest one at low
frequencies.

To compare the obtained disturbance rejection, we give ||Twu(s)||∞,  ||Twz(s)||∞ (see (30) and (35))

state feedback method (a) method (b) method (d)
||Twu(s)||∞ 9.1505 39.5310 1113685 9.1505
||Twz(s)||∞ 6.0285 41.3110 6.0318 6.0285

The disturbance rejection is better with method (d) than with method (a). For method (b), the
disturbance rejection is good for the controlled output z, whereas the disturbance w has a great effect on
the control input u (121 db at low frequencies).

The recovery error, i.e. ||SF(s) - S(s)||∞, is given by

method (a) method (b) method (d)
23.7772 23.8917 1.6183

For method (d), the minimization gives a better approximate LTR than methods (a) and (b).

V. Conclusion
In this paper, we have derived, in the frequency domain, an unknown input observer for FDLTI

systems. The necessary and sufficient conditions of its existence are given. To design the observer, we
have proposed, in the frequency domain, a straigthforward method which requires only operations on



matrices of real numbers. This method is based on a pole placement and gives an unknown input reduced-
order observer. By using the MFD, all unknown input observers are parametrized from the MFD
representation and in RH∞.

We have shown that, for minimum phase systems, if we consider the control input as an unknown
input in the design of the reduced-order observer, we obtain an exact simultaneous recovery of loop
transfer property and disturbance attenuation. If there exists an unstable invariant zero for the triplet (A,
[ ]B1 B2 , C2), we have proposed two approximate LTR designs based on the minimization of the norm
of the recovery matrix. In the first we minimize a Frobenius norm, and in the second we solve an H∞

model matching problem.
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Figure 3 : frequency singular values for loop transfer matrices
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Figure 5 : frequency singular values for transfer matrices from disturbance w to control input u
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Figure 6 : frequency singular values for loop transfer matrices
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