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Abstract 64 

 Documenting the patterns of biological diversity on Earth has always been a central 65 

challenge in macroecology and biogeography. However, we are only beginning to generate an 66 

understanding of the global patterns and determinants of macrophyte diversity. Here, we studied 67 

large-scale variation and community-environment relationships of lake macrophytes along climatic 68 

and geographical gradients using regional data from six continents. We applied statistical routines 69 

typically used in the context of metacommunity studies to provide novel insights into macrophyte 70 

community compositional patterns within regions worldwide. We found that lake macrophyte 71 

metacommunities followed clumped species replacement structures, suggesting that two or more 72 

species groups were responding similarly to the environment within regions. Underlying such 73 

general convergence, our results also provided evidence that community-environment relationships 74 

were largely context-dependent, stressing that no single mechanism is enough to account for the 75 

complex nature of compositional variation. Surprisingly, we found no general relationships between 76 

functional or phylogenetic composition and main metacommunity types, suggesting that linking 77 

multi-trait and evolutionary information to the elements of metacommunity structure is not 78 

straightforward. Our findings highlight that global conservation initiatives and biodiversity 79 

protection need to capture environmental variation at the metacommunity level, and acknowledge 80 

the highly context-dependent patterns in the community-environment relationships of lake 81 

macrophytes. Overall, we emphasise the need to embrace the potential complexity of ecological 82 

inferences in metacommunity organisation across the globe. 83 

 84 

 85 

 86 

 87 
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Introduction 88 

 Regional biotas develop under influences of environmental, climatic and geographical 89 

factors (Willig et al. 2003). However, much uncertainty remains in our understanding of their role in 90 

affecting local biotic assemblages over large spatial extents, due in part to the lack of comparable 91 

and well-curated data over large areas (Wüest et al. 2020). Consequently, examining the relative 92 

importance of these factors on geographical patterns of community compositional variation is still 93 

central to macroecology and biogeography (Heino 2011) and a prerequisite for understanding the 94 

distribution of biodiversity on Earth (Kreft and Jetz 2007). Recently, considerable progress has been 95 

made towards documenting large-scale patterns in the biodiversity of terrestrial ecosystems, 96 

including woody plants, insect, birds and mammals (e.g. Swenson et al. 2012; Cooke et al. 2019). 97 

By contrast, organisms inhabiting inland waterbodies have been far less studied from the 98 

macroecological perspective (see Heino 2011 and Hortal et al. 2014 for comprehensive reviews). 99 

Given that freshwater ecosystems are typically more isolated and fragmented than most terrestrial 100 

and marine systems, the underlying factors controlling the ecogeographical patterns of freshwater 101 

biodiversity should differ from those found in the other two realms of life (Kinlock et al. 2018). In 102 

this regard, generalisations about ecogeographical rules evidenced using terrestrial plants can rarely 103 

be used to explain distributional patterns and their underlying mechanisms in freshwater 104 

macrophytes (Alahuhta et al. 2020). These inconsistencies originate from differences in accessibility 105 

to water and atmospheric gases between terrestrial and aquatic plants, the latter of which also 106 

experience less extreme temperatures in inland waters (Iversen et al. 2019). However, we are only 107 

beginning to generate an understanding of the global patterns and determinants of freshwater 108 

macrophyte diversity (Grimaldo et al. 2016; Alahuhta et al. 2017; Alahuhta et al. 2018a; Murphy et 109 

al. 2019). Such a research program should not only be of interest to macroecologists and 110 

biogeographers, but also to environmental managers and conservation practitioners seeking to 111 

delineate biogeographical regions for environmental assessment and conservation (Bailey 2010).  112 
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 Given the strong associations between the theoretical foundations of metacommunity 113 

ecology (Leibold et al. 2004) and modern biogeography (Jocque et al. 2010), understanding the 114 

mechanistic basis of large-scale biogeographical patterns also necessitates use of hypotheses and 115 

analytical approaches that have been more typically applied in the analysis of metacommunities at 116 

the landscape level (Heino et al. 2015a). Metacommunities (i.e. a set of interacting communities 117 

linked by dispersal; Leibold et al. 2004) show multiple patterns and models in space and time, 118 

ranging from those assuming strong species interactions to those suggesting idiosyncratic responses 119 

to the environment (Heino et al. 2015a). Indeed, these ideas intrigued plant ecologists in the first 120 

half of the 20th century, when Clements (1916) and Gleason (1926) debated the discrete versus 121 

continuous nature of community boundaries along underlying environmental gradients. More 122 

recently, Leibold and Mikkelson (2002) devised a stepwise routine based on the three `elements of 123 

metacommunity structure´ (hereafter, EMS) - coherence, species range turnover and range boundary 124 

clumping - to examine such community patterns. In this approach, random distributions of species 125 

are contrasted with four main idealised models: nested subsets (Patterson and Atmar 1986), evenly 126 

spaced gradients (Tilman 1982), Clementsian gradients (Clements 1916) and Gleasonian gradients 127 

(Gleason 1926). These main metacommunity types are broad idealisations of nature and, hence, 128 

multiple subtypes (i.e. quasi-structures) can also be distinguished (Presley et al. 2010, see Table 1 129 

for a glossary).     130 

 Although the EMS approach was originally aimed at testing for multiple patterns across a set 131 

of local communities (Leibold and Mikkelson 2002), the same analytical routine can be adopted to 132 

examine distributional patterns across regions at large biogeographical scales (Heino and Alahuhta 133 

2015; Schlemmer-Brasil et al. 2017). Nonetheless, this approach is not without its problems, as 134 

outlined recently by Ulrich and Gotelli (2013) and Schmera et al. (2018). Their criticism mainly 135 

concentrated on the likely unreliable mathematical mechanisms that give rise to some idealised 136 

structures (Schmera et al. 2018). While we agree that the EMS framework may be burdened by 137 
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anomalies in detecting some empirical patterns (e.g. checkerboard distributions, Presley et al. 2019), 138 

we argue that its careful non-mechanistic interpretation and subsequent combination with alternative 139 

analytical approaches should lead to a better understanding of main macroecological patterns and 140 

community-environment relationships (Meynard et al. 2013; Heino and Alahuhta 2015). For 141 

example, a simultaneous comparison of multiple study regions may help to elucidate whether 142 

compositional variation is moulded predictably by a set of ecological settings or if that 143 

compositional variation is context-dependent (Tonkin et al. 2016). Those settings could be revealed 144 

using ecological correlates of metacommunity structure similar to functional traits and phylogenetic 145 

distances of species in other contexts (Heino et al. 2015b; García-Girón et al. 2019a). Surprisingly, 146 

to our knowledge, no single study has assessed both the best fit patterns of community variation and 147 

the ecological features of regional metacommunities simultaneously at global scale.  148 

 Here, we present an analysis of geographical variation, context dependency and community-149 

environment relationships of macrophytes using data from 16 regions worldwide (Fig. 1a). We 150 

specifically examined the following questions: (i) Which idealised metacommunity model best fits 151 

the empirical data of lake macrophyte metacommunities within study regions? (ii)  Are community-152 

environment relationships consistent or variable among different regions? (iii) What ecological 153 

correlates describing metacommunity characteristics (i.e. elevation range, spatial extent, latitude, 154 

longitude, age of the oldest lake within each region, matrix fill, species richness, functional 155 

composition and phylogenetic composition) best determine variation in coherence, species range 156 

turnover and range boundary clumping? Based on evidence from previous studies (Henrique-Silva et 157 

al. 2013; Heino et al. 2015b), we expected to find clear geographical variation in metacommunity 158 

structuring, with a change from Gleasonian to Clementsian gradients from the equator to the poles 159 

(H1). This is because we expected that two or more groups of species would respond similarly to the 160 

typically harsher environmental conditions in boreal regions, leading to clumped range boundaries 161 

in their geographical distributions (Heino et al. 2015b). We also hypothesised (H2) that a strong 162 
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context dependency would be observed in the community-environment relationships, not least 163 

because the structuring of lake metacommunities can be highly variable among different regions 164 

(Heino and Tolonen 2017; Alahuhta et al. 2017, 2018a). In addition, we predicted (H3) that 165 

variables describing the ecological features of metacommunities would be good predictors of the 166 

three elements of metacommunity structure, because multi-trait and evolutionary information should 167 

be related to the predictability of the underlying distributional patterns (Meynard et al. 2013; García-168 

Girón et al. 2019a).  169 

Methods 170 

Macrophyte data sets and regional characteristics 171 

We analysed a data set of 16 different study regions covering six continents across the Earth 172 

(Fig. 1a, Supporting Information Appendix S1 and Fig. S1). The study regions and field methods 173 

have been described previously (Alahuhta et al. 2018a) and are here outlined briefly to aid 174 

understanding of the ecological context of individual regions. We had strict quality control for 175 

selecting each data set: (i) each study region had to include ca. 30 lakes with similar geographical 176 

distribution from the pool of candidate lakes; (ii) all lakes had to be mostly natural lentic systems 177 

(i.e. reservoirs were excluded); and (iii) all macrophyte communities within each data set had to 178 

have been empirically surveyed using similar methods to maintain data comparability. The selected 179 

lakes ranged from glacial-origin and relatively stable lakes situated in temperate and boreal zones 180 

(e.g. Finland, Sweden, Norway, Estonia, Denmark, Poland, New Zealand and US states of 181 

Minnesota and Wisconsin) to semi-arid shallow Mediterranean lakes (e.g. Morocco and Spain). 182 

Most of the study lakes suffered from various anthropogenic pressures such as water extraction, 183 

invasive species, nutrient enrichment, and decreased connectivity, which cannot be avoided in an 184 

increasingly human-dominated world. 185 

Our data set consisted of presence-absence observations of aquatic macrophyte species (i.e. 186 

species that are strongly bound to aquatic environments; see Kosten et al. 2009). These species 187 
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included submerged (elodeids and isoetids), floating-leaved, free-floating (ceratophyllids and 188 

lemnids) and emergent forms (Cook 1999). The species list from each region was carefully checked 189 

to guarantee that inconsistencies were minimal. To do this, non-aquatic helophytes, shore species, 190 

aquatic bryophytes and charophytes were removed from the final data sets. Similarly, we excluded 191 

hybrids, subspecies, and genus level identifications when species from the same genus were 192 

recorded from the data.  193 

Elements of metacommunity structure (EMS) analysis using site-by-species incidence matrices 194 

Following the metacommunity framework originally proposed by Leibold and Mikkelson 195 

(2002), and thereafter expanded by Presley et al. (2010) and Henriques-Silva et al. (2013), we 196 

analysed which metacommunity structure best fitted lake macrophyte data in each study region 197 

across the globe. To do this, we adopted the “range perspective” in our analyses (Presley et al. 198 

2010). The metacommunity types were assessed by analysing aspects of coherence, species range 199 

turnover and range boundary clumping of site-by-species presence-absence matrices. Incidence 200 

matrices were first ordinated via reciprocal averaging (CA). This procedure allowed us to obtain a 201 

latent gradient in which sites were ordered according to species composition and species were 202 

ordered according to site occurrences. After rearranging the data matrix, we tested the different 203 

metacommunity elements in a hierarchical way, that is, (i) coherence, (ii) species range turnover, 204 

and (iii) range boundary clumping (Fig. 1b; Table 1).  205 

Coherence is based on calculating the number of embedded absences (i.e. gap in a species 206 

range) in the ordinated empirical incidence matrix and then comparing the observed value to a null 207 

distribution of embedded absences from 1,000 simulated matrices. A metacommunity is considered 208 

to be coherent when the number of observed embedded absences is lower than expected by chance. 209 

Significantly positive coherence thus suggests that species distributions are responding similarly to a 210 

common environmental gradient represented by the ordinated site-by-species presence-absence 211 

matrix. Non-significant coherence means that species are distributed at random, suggesting that 212 
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species are not responding to a common environmental gradient (Leibold and Mikkelson 2002). For 213 

metacommunities with positive and significant coherence, the range turnover component was tested 214 

(Fig. 1b). Species range turnover was measured as the number of empirical replacements for each 215 

possible pair of species and for each possible pair of sites in the ordinated matrix. Then, the number 216 

of observed replacements was compared to a null distribution that randomly shifts the entire ranges 217 

of species (Leibold and Mikkelson 2002). Significantly negative turnover (i.e. the observed 218 

replacement is lower than expected by chance) is consistent with a nested structure (i.e. 219 

hyperdispersed species loss, random species loss and clumped species loss), whereas significantly 220 

positive turnover (i.e. the number of observed replacements are higher than expected by chance) 221 

indicates evenly spaced, Gleasonian or Clementsian metacommunity types. The cases of significant 222 

positive coherence and non-significant turnover can be interpreted as quasi-structures (Presley et al. 223 

2010). We further analysed range boundary clumping using Morisita´s index of dispersion and a 224 

subsequent χ2 test that compares the empirical distribution of range boundaries to an expected 225 

uniform distribution. Index values significantly larger than `1´ indicate clumped range boundaries 226 

(i.e. Clementsian and clumped species loss structures) and values significantly less than `1´ suggest 227 

hyperdispersed range boundaries (i.e. evenly spaced distribution and hyperdispersed species loss 228 

structures). Species distributions that occur independently and idiosyncratically with respect to each 229 

other (i.e. Gleasonian and random species loss structures) are indicated by a non-significant χ2 test. 230 

Correspondingly, quasi-evenly spaced, quasi-Gleasonian, quasi-Clementsian structures, quasi-231 

hyperdispersed species loss, quasi-random species loss and quasi-clumped species loss can be 232 

separated by boundary clumping (Presley et al. 2010; see Fig. 1b).  233 

The significance of the index values for coherence and range turnover was tested using the 234 

fixed-proportional null model (Gotelli 2000), where the species richness of each site is maintained 235 

(i.e. row sums are fixed) but species ranges (i.e. columns) are filled based on their marginal 236 

probabilities. Random matrices for the fixed-proportional null model were produced by the `r1´ 237 
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method as implemented in the vegan package (Oksanen et al. 2016). Although the fixed-238 

proportional null model makes sense ecologically and is not highly sensitive to type I or type II 239 

errors (Presley et al. 2009), this modelling approach does not involve shifting of ranges and 240 

therefore our findings need to be treated with caution. We also used a strict and conservative fixed-241 

fixed null model based on the `quasi-swap´ method in the R package vegan to find out if the null 242 

model used affected the results. In the fixed-fixed null model, both species richness of each site and 243 

species frequencies are maintained. We used 1,000 simulations to provide random matrices for 244 

testing coherence and species range turnover. Elements of metacommunity structure were evaluated 245 

for each study region along the first reciprocal averaging (i.e. correspondence analysis) axis because 246 

we were interested in the most important species compositional gradient. Analyses of coherence, 247 

species range turnover and range boundary clumping were performed using the metacom package 248 

(Dallas 2013) in the R environment (R Core Team 2018).  249 

 We also used a Z-score or standardized effect size (SES) for the indices of coherence and 250 

species range turnover for each individual metacommunity:  251 

𝑆𝐸𝑆 =
𝑜𝑏𝑠 − 𝑟𝑛𝑑. 𝑚𝑒𝑎𝑛

𝑟𝑛𝑑. 𝑠𝑑
 252 

where obs is the observed index value, rnd.mean the mean index value of the null distribution, 253 

and rnd.sd the standard deviation of simulated index values (see Gotelli and McCabe 2002). 254 

Z-scores allow comparisons among data sets and can thus subsequently be used in 255 

comparative analyses (see Heino et al. 2015b). Basically, Z-scores between -1.96 and 1.96 are non-256 

significant at α = 0.05 and, thus, Z-scores of coherence and species range turnover can also be used 257 

to infer metacommunity structures. We also applied the traditional approach to delineate 258 

metacommunity types based on statistical significance from the randomisation tests of coherence 259 

and species range turnover (see above).    260 

Community-environment relationships 261 
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Community-environment relationships within the study regions were compared based on a set 262 

of a priori determined lake-level variables. Physico-chemical variables consisted of lake area (km2), 263 

Secchi depth (m) and water total phosphorus concentration (mg l-1). These three physico-chemical 264 

variables were chosen because they often account for significant variation in community structure of 265 

lake macrophytes (see Alahuhta et al. 2018b), and correlate with other hydromorphological and 266 

water chemistry variables that were not available for all study regions (e.g. Kosten et al. 2009). 267 

Physico-chemical variables were surveyed and determined following similar procedures within each 268 

study region (Supporting Information Appendix S1). Climate variables included atmospheric annual 269 

mean temperature (°C), annual temperature range (°C), and annual precipitation (mm) defined for 270 

each study lake based on 30 years average values (1 km resolution data) obtained from the 271 

WorldClim (Hijmans et al. 2005). Climate variables were not only a surrogate for thermal energy 272 

availability (Alahuhta et al. 2017) and water-level fluctuation (Carpenter et al. 2011), but also for 273 

nutrient and material loading from the catchment (Sahoo et al. 2015).  274 

Our main statistical method to explore community-environment relationships within regions 275 

was canonical correspondence analysis (CCA), which is a constrained extension of reciprocal 276 

averaging (Legendre and Legendre 2012), thus providing a link to the EMS analysis. We used the 277 

intraset correlations between environmental variables and site scores along the first two ordination 278 

axes to infer which factors were best related to variation in community composition and compare 279 

whether the same environmental drivers were important in each study region (see Heino et al. 280 

2015b). Note, however, that we cannot associate a given metacommunity type specifically to 281 

environmental drivers, not least because there is no evidence that a particular mechanism can map 282 

onto a particular structure. CCAs were run with the `cca´ function using the R package vegan.  283 

Comparative analyses 284 

We used simple linear regression to analyse variation in the Z-scores of coherence, the Z-285 

scores of species range turnover or the index of range boundary clumping with a set of ecological 286 
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correlates (i.e. predictor variables) describing metacommunity characteristics (see below). 287 

Standardised effect sizes of each metacommunity element (𝑌𝑖) were log-transformed 288 

[min  (𝑌𝑚𝑎𝑥 + 𝑎 = 1) → log  (𝑌𝑖 + 𝑎)] before analyses to improve normality and reduce skewness.  289 

We first summarised regional environmental information within convex hulls encompassing 290 

the minimum area containing all surveyed lakes within each region. For each study region, we 291 

defined elevation range within the convex hull (m), area of the convex hull (km2), latitude of the 292 

convex hull (from centroid), longitude of the convex hull (from centroid), and estimated the 293 

maximum lake age within a particular region (see Supporting Information Appendix 1 and Table S1 294 

for variable information). These variables can indirectly affect lake macrophytes by indicating 295 

variation in habitat suitability (Alahuhta et al. 2017), dispersal limitation (García-Girón et al. 296 

2019b), environmental heterogeneity (Downing and Rath 1988), and temporal availability for 297 

colonisation sources (Alahuhta et al. 2018a). Second, we used matrix fill (i.e. the proportion of `1s´ 298 

in the site-by-species incidence matrix) and species richness because data set characteristics may 299 

have strong effects in comparative analyses of metacommunities (Heino et al. 2015b). Third, we 300 

considered several key functional traits (Supporting Information Appendix S2, Table S2 and Fig. 301 

S2) to provide information on multiple ecological aspects of each metacommunity (Heino et al. 302 

2015b) and to give a broad characterisation of the realised niche of the species. We then used the 303 

mixed-variables coefficient of distance (i.e. a generalization of Gower´s distance; Borcard et al. 304 

2011) to extract a functional distance matrix across the 16 data sets using the `daisy´ function in the 305 

R library cluster (Maechler et al. 2014). The phylogenetic composition of each study region was 306 

addressed using the phylogenetic fuzzy-weighting method implemented in the PCPS package 307 

(Debastiani 2018). To do this, we used a molecular-based phylogeny for aquatic macrophytes 308 

recently developed by García-Girón et al. (2020) (for details on phylogenetic reconstruction, see 309 

Supporting Information Appendix S3 and Fig. S3). Thereafter, the pairwise output values for the 310 

functional distance matrix were synthesised into principal coordinate analysis (PCO) following 311 
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Duarte et al. (2012). The scores of each single metacommunity along PCO1, PCO2, PCPS1, and 312 

PCPS2 components were then used to indicate the combined functional (i.e. PCO) and phylogenetic 313 

(i.e. PCPS) features of each metacommunity (Supporting Information Appendix S4 and Fig. S4).  314 

Results  315 

The Z-scores of coherence from fixed-proportional (i.e. `r1´) or fixed-fixed (i.e. `quasi-swap´) 316 

null models were strongly correlated (rp = 0.93, p < 0.001), and the same was true for the Z-scores 317 

of species range turnover (rp = 0.73, p < 0.01). Accordingly, we focused on the results based on the 318 

fixed-proportional method because most previous studies have used it in the context of the EMS 319 

analysis (Heino et al. 2015b; Gascón et al. 2016; Schlemmer-Brasil et al. 2017). There was wide 320 

variation in the Z-scores of coherence, the Z-scores of species range turnover, and the index of range 321 

boundary clumping among the metacommunities (Table 2). However, the EMS analysis showed 322 

consistent patterns among study regions, resulting in three observed metacommunity types (Fig. 2 323 

and Table 2). We found that Clementsian structure (n = 8) was the most common, followed by 324 

quasi-Clementsian (n = 7) and clumped species loss (n = 1) metacommunity types. In other words, 325 

most metacommunities were responding to latent environmental gradients, here represented by the 326 

first CA axis; groups of species had coincident range boundaries in each metacommunity; and 327 

species composition changed consistently in similar places of the underlying environmental 328 

gradient.  329 

Community-environment relationships varied among individual metacommunities and did not 330 

allow us to single out a few environmental drivers among the set of available predictor variables 331 

(Fig. 3), suggesting that specific details of community-environment relationships were largely 332 

context dependent. For instance, Secchi depth had the highest effect on variation in community 333 

composition in China (CCA1), whereas temperature range and precipitation were strongly related to 334 

community composition in Wisconsin (CCA1) and New Zealand (CCA2), respectively. Similarly, 335 
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total phosphorus, lake area and mean temperature were particularly important in Florida (CCA1), 336 

Morocco (CCA1) and Finland (CCA2), respectively.  337 

Simple linear regressions showed that no ecological feature of metacommunities was 338 

significantly associated with variation in the Z-scores of coherence, the Z-scores of species range 339 

turnover or the index of range boundary clumping (Table 3). This indicated that the single 340 

components of the EMS analysis were not necessarily strongly related to ecological correlates 341 

describing metacommunity characteristics.  342 

Discussion 343 

 While a relatively large number of studies have examined geographical variation in species 344 

richness across large spatial resolutions and extents (e.g. Raes et al. 2018; Murphy et al. 2019), 345 

fewer studies have examined species compositional variation worldwide based on local resolution 346 

(e.g. a lake) in the freshwater realm. In this regard, our study is unique in bringing together the three 347 

elements of metacommunity structure (i.e. coherence, species range turnover and range boundary 348 

clumping) and the varying ecological settings of multiple study regions to infer large-scale patterns 349 

and community-environment relationships of lake macrophytes across the world. Such a 350 

combination of techniques allowed us to better understand patterns in lake macrophyte 351 

metacommunities and the factors governing these patterns worldwide. We found mostly 352 

Clementsian (n = 8) and quasi-Clementsian (n = 7) metacommunity structures in the regions of our 353 

empirical data set, a finding which did not support our hypothesis of geographical variation in 354 

metacommunity types (H1). We also revealed highly context-dependent patterns in the community-355 

environment relationships between different study regions, confirming our second hypothesis (H2). 356 

Unexpectedly (H3), our results also indicated that the three elements of metacommunity structure 357 

were weakly related to the predictor variables describing ecological features of metacommunities.  358 

Local communities show clumped range boundaries but respond differently to environmental 359 

gradients  360 
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 Species may experience environmental gradients as gradual or more-or-less discrete 361 

boundaries depending on species-specific characteristics (e.g. tolerance to abiotic factors and habitat 362 

specialisation; Valanko et al. 2015). In our present study, Clementsian and quasi-Clementsian 363 

gradients were the most commonly found metacommunity types within regions along the ≈10,000 364 

km latitudinal gradient. The idea of Clementsian gradients suggests that there are two or more 365 

groups of species (i.e. species associations) showing similar responses to the environment (i.e. 366 

species distributions are generally coherent), and that the responses differ among groups (Clements 367 

1916). Consequently, the quasi-Clementsian structures observed here were probably the result of an 368 

artefact because species niche breadth extended beyond the range in which species turnover is 369 

significant (Presley et al. 2010), affecting the identification of boundaries in some study regions 370 

(Gascón et al. 2016). The Clementsian (or sometimes the quasi-Clementsian) pattern is commonly 371 

found in metacommunity studies conducted in aquatic systems, and both have already been reported 372 

in comparative analyses of lake biotas (Heino et al. 2015a, 2015b), as well as for stream invertebrate 373 

metacommunities in Central Germany (Tonkin et al. 2016), Amazonian stream damselflies 374 

(Schlemmer-Brasil et al. 2017), soft-sediment benthic invertebrates from the Baltic Sea (Valanko et 375 

al. 2015), Hungarian stream fishes (Erős et al. 2014), and Mediterranean wetland microcrustaceans 376 

(Gascón et al. 2016). However, it is still particularly striking that environmental variation has such 377 

an important role in structuring lake macrophyte metacommunities in different biogeographical 378 

realms of the Earth (here, Palaearctic, Nearctic, Neotropical, Indomalayan and Australasian). This 379 

finding may be related to the fact that lake systems and their drainage basin characteristics are 380 

inherently highly heterogeneous (Downing et al. 2006) and, hence, responses of macrophyte species 381 

groups to environmental variation are typically more complex than a simple gain or loss of species 382 

along major biologically-important thresholds (sensu Heino et al. 2015a).  383 

 Behind such general convergence, the disagreement among important community-384 

environment relationships also highlights that no single mechanism (i.e. a single constraining 385 
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environmental factor) is enough to account for the complex nature of compositional variation and 386 

metacommunity organisation. Instead, it appears that metacommunity (i.e. regional) structuring of 387 

lake macrophytes is highly difficult to predict. This has been demonstrated in two recent global-388 

scale studies that showed variable patterns in the factors shaping species-based beta diversity 389 

(Alahuhta et al. 2017) and community composition (Alahuhta et al. 2018a). Whatever the case, our 390 

study results agree with previous works in which climate and water quality were found to be 391 

primarily related to variation in macrophyte community composition at regional scales (Capers et al. 392 

2010; García-Girón et al. 2019a, 2019b, 2020). However, these findings should be interpreted with 393 

caution due to differences in sample timing between macrophytes and lake-level environmental 394 

variables in our study. Similarly, factors other than environmental filtering may also affect 395 

metacommunity structure. For example, connectivity among lakes and associated dispersal events 396 

may interfere with the environment in determining community composition by hindering species´ 397 

tracking of local and climatic conditions (see García-Girón et al. 2019b). Nevertheless, associating 398 

the effects of dispersal with the idealised metacommunity types may be difficult, even if they existed 399 

(Meynard et al. 2013). Meanwhile, previous works using the same test data set showed that 400 

environmental filtering overcame the effects of potential connectivity in explaining local 401 

communities across the globe (Alahuhta et al. 2018a; García-Girón et al. 2020). We thus suggest 402 

that environmental differences between sites remain the main structuring force within lake 403 

macrophyte metacommunities worldwide, although individual metacommunities may respond 404 

differently to major limiting or constraining environmental gradients.   405 

Metacommunity characteristics are poorly related to variation in coherence, species range 406 

turnover and range boundary clumping 407 

We found that the three elements of metacommunity structure were weakly correlated to the 408 

ecological variables describing individual metacommunity characteristics. In a recent study, Heino 409 

et al. (2015b) suggested that the ecological factors underlying variation in coherence, species range 410 
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turnover and range boundary clumping should not be inferred too strongly in isolation, because it is 411 

their combined influence which distinguishes different metacommunity structures. Previous studies 412 

suggested that accounting for trait and phylogenetic composition may provide more accurate 413 

predictions of metacommunity organisation by approximating species niches similarities and 414 

evolution (Gianuca et al. 2018; García-Girón et al. 2019a). This is because functional traits and 415 

evolutionary legacy are key in determining diversity patterns within and among communities and 416 

species replacement along environmental gradients (de Bello et al. 2017). Interestingly, however, we 417 

found no general relationships between functional or phylogenetic composition and metacommunity 418 

structures. A reason for this lack of relationship may be that two or more groups of species sharing a 419 

common response to underlying environmental thresholds comprised either functionally dissimilar 420 

or distantly related macrophyte taxa. This finding contradicts our initial expectations and suggests 421 

that linking multi-trait and evolutionary information to the elements of metacommunity structure is 422 

not necessarily straightforward (but see Meynard et al. 2013). Nonetheless, we cannot exclude the 423 

possibility that future macrophyte studies decoupling trait and phylogenetic information at the 424 

metacommunity level will uncover hidden signals underlying species coexistence and replacements 425 

along major environmental gradients (see de Bello et al. 2017).  426 

Conclusions   427 

 From a methodological perspective, our study shows that the simultaneous evaluation of the 428 

elements of metacommunity structure (i.e. coherence, species range turnover and range boundary 429 

clumping) and the ecological settings of metacommunities can enhance our ability to understand 430 

large-scale patterns and community-environment relationships across the globe. More specifically, 431 

we found that our empirical data set fitted best Clementsian and quasi-Clementsian metacommunity 432 

types within regions, suggesting that lake macrophyte communities follow clumped species 433 

replacement structures. This information is relevant to the current debate about conservation of 434 

freshwater biodiversity, and we advance the notion that it needs to capture environmental variation 435 
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at the metacommunity level (Socolar et al. 2016). Behind such general convergence of 436 

metacommunity types, our results also provide evidence that community-environment relationships 437 

are shaped by multiple environmental factors within regions. This finding suggests that individual 438 

metacommunities may respond differently to major limiting or constraining environmental 439 

thresholds, emphasising the need to embrace the potential complexity of ecological inferences in 440 

metacommunity organisation worldwide. We propose that future studies should examine the effects 441 

of climatic conditions, historical events and vicariance biogeography on species associations 442 

consistently occurring and disappearing at similar locations along the latitudinal gradient. Such an 443 

approach may not only provide insightful information about the evolutionary or physiological trade-444 

offs associated with important ecogeographical thresholds (see Heino and Alahuhta 2015), but also 445 

offer a means of testing the very foundations of biogeographical regionalisation and inferring major 446 

breakpoints in lake macrophyte community composition at global scale.   447 

 448 
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Figure Legends 652 

Fig. 1. (a) Our study system comprised ca. 30 lakes surveyed in each of the 16 regions (coloured 653 

triangles) across the world. (b) Schematic representation describing Leibold and Mikelson´s (2002) 654 

elements of metacommunity structure (i.e. coherence, species range turnover and range boundary 655 

clumping). The combination of coherence, species range turnover and range boundary clumping 656 

results in seven main metacommunity types (i.e. random, random species loss, hyperdispersed 657 

species loss, clumped species loss, evenly spaced, Clementsian and Gleasonian; bold font) and six 658 

quasi-structures (i.e. quasi-evenly spaced, quasi-Clementsian, quasi-Gleasonian, quasi-659 

hyperdispersed species loss, quasi-random species loss and quasi-clumped species loss; italic font). 660 

Species × sites distributions corresponding to the principal metacommunity types are represented as 661 

follows: columns represent different species and rows represent sites. Figure modified from Presley 662 

et al. (2010) and Henriques-Silva et al. (2013). MI, Morisita´s Index.  663 

Fig. 2. Metacommunity structures (Clementsian, circle; quasi-Clementsian, square; clumped species 664 

loss, triangle) of the 16 study regions plotted in the space of the Z-scores of coherence and species 665 

range turnover. Bubble size denotes the index of range boundary clumping. Dashed lines indicate Z-666 

scores between -1.96 and 1.96. See Fig. 1a for colour scales corresponding to the study regions.  667 

Fig. 3. Community-environment relationships along the first two CCA axes as evidenced by intraset 668 

correlations between each variable predictor (a, Secchi depth; b, total phosphorus; c, lake area; d, 669 

mean temperature; e, temperature range; f, precipitation) and the ordination axes (CCA1, orange; 670 

CCA2, green). See Fig. 1a for abbreviations.  671 


