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Lycopene and green tea consumption have been observationally associated with reduced prostate cancer risk, but the

underlying mechanisms have not been fully elucidated. We investigated the effect of factorial randomisation to a 6-month

lycopene and green tea dietary advice or supplementation intervention on 159 serum metabolite measures in 128 men with

raised PSA levels (but prostate cancer-free), analysed by intention-to-treat. The causal effects of metabolites modified by the

Key words: prostate cancer, dietary intervention, lycopene, green tea, Mendelian randomisation

Abbreviations: 2LSR: 2 least-squares regression; BMI: body mass index; CI: confidence interval; DHA: docosahexaenoic acid; ECGC: epigallo-

catechin-3-gallate; FA: fatty acid; GCKR: glucokinase regulatory protein; IV: instrumental variable; MCT2: monocarboxylate transporter 2; MR:

Mendelian randomisation; NMR: Nuclear magnetic resonance; PCA: principle component analysis; PCs: principle components; PDPR: pyru-

vate dehydrogenase phosphatase regulatory; PSA: prostate specific antigen; PUFA: polyunsaturated fatty acids; RCT: Randomised controlled

trial; SD: standard deviation; SNP: single nucleotide polymorphism

Additional Supporting Information may be found in the online version of this article.
†Members from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL)

consortium are provided in the Supplement/foot notes. Information of the consortium can be found at http://practical.icr.ac.uk/.
‡Authors with equal contributions.
#Coprinciple investigators.

Grant sponsor: Academy of Finland ; Grant numbers: 312476 312477, 312477, 312476; Grant sponsor: Cancer Research UK (CRUK);

Grant numbers: C11046/A10052C18281/A19169, C11046/A10052, C18281/A19169; Grant sponsor: Medical Research Council; Grant
numbers: MC_UU_12013/ 5MC_UU_12013/1, MC_UU_12013/5, MC_UU_12013/1; Grant sponsor: Wellcome Trust; Grant
numbers: WT099874MA; Grant sponsor: Novo Nordisk Foundation; Grant numbers: 15998; Grant sponsor: University of Bristol; Grant
sponsor: Diabetes UK; Grant numbers: 17/0005587; Grant sponsor: UK National Institute for Health Research (NIHR) Health Technology

Assessment (HTA) Programme; Grant numbers: ISRCTN20141297, HTA 96/20/99; Grant sponsor: Sigrid Juselius Foundation

DOI: 10.1002/ijc.31929
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction

in any medium, provided the original work is properly cited.

History: Received 21 Mar 2018; Accepted 24 Sep 2018; Online 16 Oct 2018

Correspondence to: Rhona Beynon, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield

Grove, BS8 2BN; E-mail: rhona.beynon@bristol.ac.uk; Tel.: +44 (0)117, 3313328

International Journal of Cancer

IJC

Int. J. Cancer: 144, 1918–1928 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

C
an

ce
r
E
pi
de
m
io
lo
gy

https://orcid.org/0000-0001-5494-9519
http://practical.icr.ac.uk/
http://creativecommons.org/licenses/by/4.0/
mailto:rhona.beynon@bristol.ac.uk


intervention on prostate cancer risk were then assessed by Mendelian randomisation, using summary statistics from 44,825

prostate cancer cases and 27,904 controls. The systemic effects of lycopene and green tea supplementation on serum

metabolic profile were comparable to the effects of the respective dietary advice interventions (R2 = 0.65 and 0.76 for
lycopene and green tea respectively). Metabolites which were altered in response to lycopene supplementation were acetate [β

(standard deviation difference vs. placebo): 0.69; 95% CI = 0.24, 1.15; p = 0.003], valine (β: −0.62; −1.03, −0.02; p = 0.004),

pyruvate (β: −0.56; −0.95, −0.16; p = 0.006) and docosahexaenoic acid (β: −0.50; −085, −0.14; p = 0.006). Valine and

diacylglycerol were lower in the lycopene dietary advice group (β: −0.65; −1.04, −0.26; p = 0.001 and β: −0.59; −1.01, −0.18;
p = 0.006). A genetically instrumented SD increase in pyruvate increased the odds of prostate cancer by 1.29 (1.03, 1.62;

p = 0.027). An intervention to increase lycopene intake altered the serum metabolome of men at risk of prostate cancer.

Lycopene lowered levels of pyruvate, which our Mendelian randomisation analysis suggests may be causally related to reduced

prostate cancer risk.

Introduction
Prostate cancer is the second most common cancer diagnosed
in males worldwide.1 The burden of the disease is not evenly
distributed however, with “Western Countries” like the United
States, Western Europe and Australia experiencing the highest
incidences and Asia the lowest.1 Given this geographical varia-
tion, lifestyle factors are thought to influence prostate cancer
risk2 and there has been growing interest in studying the
impact of dietary changes on prostate cancer incidence.

Several dietary factors have been purported to modulate
prostate cancer risk.3,4 Green tea and lycopene, a bright-red
carotenoid found primarily in tomatoes, have received partic-
ular attention. This is largely because of their potent antioxi-
dant activity in vitro,5,6 although other chemopreventative
mechanisms have been suggested.7,8 Epidemiological evidence
that lycopene and green tea protect against prostate cancer is
inconsistent however. Of the three published meta-analyses
that have considered the association of lycopene intake with
prostate cancer, two report an inverse association,9,10 while
the other found insufficient evidence to either support or
refute the use of lycopene for the prevention of prostate can-
cer.11 An initial meta-analysis suggested that green tea con-
sumption may have a protective effect, especially in Asian
populations,12 but this finding was not supported in a more
recent meta-analysis.13

The results of observational studies of diet and cancer risk
must be interpreted with caution as they are susceptible to
confounding14 and measurement error in the reporting of die-
tary exposures, mainly due to recall and reporting bias.15 Such
issues can be overcome using well-designed and conducted
randomised controlled trials (RCTs).

We recently reported the primary results of a randomised,
placebo-controlled factorial trial of lycopene and green tea in
men at elevated risk of prostate cancer (ProDiet).16 Post-
intervention plasma lycopene and epigallocatechin-3-gallate
(ECGC) (a bioactive component of green tea) levels were
increased in the respective intervention arms, indicating high
levels of adherence. In the present study, we investigated the
metabolic effects of lycopene and green tea intake in men
enrolled in the same trial, using nuclear magnetic resonance
(NMR)-based metabolic profiling. Where evidence of an effect
of one of the interventions on metabolic measures was found,
we used Mendelian randomisation (MR) to assess the causal
role of these metabolic traits on prostate cancer risk. MR is a
technique that uses genetic variation to proxy exposures of
interest to circumvent issues of reverse causation and con-
founding that bias observational epidemiology.17,18 Formal MR
approaches have been used previously in this context, to cap-
ture causal relationships between metabolites and disease,19–22

facilitated by strong genotypic effects on metabolites.23–27

Materials and Methods
Overview
The present report includes two separate but interlinked
investigations (Fig. 1):

1. An intention-to-treat analysis of the ProDiet factorial
RCT. This assessed the effects on serum metabolome of
interventions to increase green tea and lycopene intake;

2. A two-sample Mendelian randomisation analysis28 using
summary statistics data from the PRACTICAL (Prostate
Cancer Association Group to Investigate Cancer Associated

What’s new?
Prostate cancer incidence varies by geographic region, suggesting that environmental factors, such as diet, play a role. Here,

the authors investigated how green tea and lycopene intake affects prostate cancer risk. They conducted a 6-month

intervention on men with raised PSA levels but no cancer, testing levels of 159 serum metabolites by NMR. Lycopene

supplementation, they found, reduced levels of circulating pyruvate, and Mendelian randomisation analysis suggests pyruvate

may boost PC risk. These results suggest a possible mechanism of action by which consuming dietary lycopene may reduce

prostate cancer risk.
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Alterations in the Genome) consortium.29 This investigated
the causal effects of those metabolic measures shown to be
altered by the interventions on prostate cancer risk.

Effect of lycopene and green tea on serum metabolome
Study population. The ProDiet RCT (ISRCTN 95931417)
included 133 men between the ages of 50 and 69 years with
elevated prostate specific antigen (PSA) levels (results between
2.0 and 2.95 ng/mL or at least 3.0 ng/mL with a negative
biopsy), who were identified as part of the community-based
PSA testing in the ProtecT (Prostate cancer testing and Treat-
ment) study.30

Study design. Full details of the trial have been provided in
the Supporting Information (available online). Briefly, ProDiet
was a feasibility randomised-controlled trial of dietary
interventions for prostate cancer prevention. Men were
randomised to a daily lycopene arm (active capsules or
lycopene-rich diet or placebo capsules) and a green tea arm
(active capsules or green tea drink or placebo capsules) for
6 months16 in a 3 × 3 factorial design (Fig. 2).

Data collection. At recruitment, trained nurses collected
information on the men’s weight, blood pressure, socio-
economic status and medical history.16,31 Men were asked to
complete a lifestyle questionnaire, which included questions
on smoking, alcohol consumption and dietary intake of sup-
plements or vitamins. Dietary intake was further assessed
using a 117-item food frequency questionnaire (FFQ), which
was adapted from the UK arm of the EPIC study32 (see Sup-
porting Information Methods). During the same clinic
appointment, non-fasted blood samples were drawn for base-
line PSA, lycopene, EGCG and metabolic profiling, according
to a standard protocol. Six-months after randomisation, par-
ticipants attended a follow-up appointment, where repeat
non-fasted blood samples were taken. Samples were left at
room temperature to clot and then centrifuged at 1640g for
20 min within 2 h of collection. They were kept at 5 �C during
transportation to the laboratory, where they were aliquoted
for storage at −80 �C within 36 h of collection. Serum lyco-
pene levels were measured using reversed-phase high-
performance liquid chromatography (HPLC).33 Plasma EGCG
levels were analysed and quantified using HPLC-mass spec-
troscopy (MS), as described by Stalmach et al.34

Figure 1. Analysis steps for investigating the effects of lycopene and green tea on serum metabolome of men at risk of prostate cancer, and
the causal role of altered metabolic traits on prostate cancer risk. We conducted 2 analyses. In stage one, relationships between metabolic
measures and lycopene or green tea randomisation arms were tested using an intention-to-treat analyses. In stage two, we used GWAS
summary statistics from Kettunen et al to identify genetic variants that could be used as instrumental variables for the effects of metabolites
on prostate cancer risk. Data on the association of these genetic variants with prostate cancer risk were obtained from the PRACTICAL
consortium (44,825 prostate cancer cases and 27,904 controls of European ancestry). Data on the association of genetic variants with
metabolite levels and with prostate cancer risk were combined to estimate the influence of metabolites on prostate cancer risk. ITT, intention-
to treat; IV, instrumental variable.
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Measurement of metabolites. Metabolic profiling was per-
formed using a high-throughput serum nuclear magnetic reso-
nance (NMR) metabolomics platform (Nightingale Health®,
Helsinki, Finland), originally described by Soininen et al.35 A
brief overview of the platform can be found in the Supporting
Information methods.

Full details of the protocol and protocol, including infor-
mation on quality control procedures, have been published
elsewhere.36 In total, 159 metabolic traits were measured (see
Supporting Information Table 8), including several amino
acids (alanine, glutamine, glycine, histidine, isoleucine, leu-
cine, valine, phenylalanine and tyrosine), glycolysis measures
(glucose, lactate, pyruvate, citrate and glycerol), ketone bodies
(acetate, acetoacetate and 3-hydroxybutyrate), inflammatory
markers (glycoprotein acetyls) and fatty acids (polyunsatu-
rated, monounsaturated, linoleic, omega-3, omega 6 and doco-
sahexaenoic fatty acids), fatty acids traits (chain length, degree
of unsaturation), as well as particle concentrations and lipid
compositions of 14 lipoprotein subclasses (including low,
intermediate, large and very large lipoprotein subclasses). In
addition, fatty acids were also expressed as ratios (%) to total
fatty acids. This set of metabolite traits are from multiple met-
abolic pathways, including those involved in carcinogenesis.

Statistical analysis. The effects of lycopene and green tea
dietary interventions were examined in an intention-to-treat
analysis, by comparing metabolic measures at 6-months
follow-up for each intervention. To allow comparison of mag-
nitudes of association across measures with different units, all
metabolite concentrations were converted to standard devia-
tion (z) scores. Linear regression was used to compare stan-
dardised (z-scored) 6-month metabolite measures across
lycopene and green tea intervention groups, treating placebo
as the reference category. As some metabolite concentrations
had right skewed distributions, robust standard errors were
estimated for all associations. In our primary analysis, no cov-
ariates were included in the models, as confounders were
shown to be well balanced across the intervention arm
(Supporting Information Tables 1 and 2). The overall match
between the metabolic changes associated with supplement-
advice (vs. placebo) and the metabolic changes associated with
dietary-advice (vs. placebo) were assessed using linear regres-
sion, separately for both lycopene and green-tea arms. The
correspondence between respective supplement and dietary-
advice associations were assessed using the R2 statistic.

Given that many metabolic measures were analysed, the
probability of finding evidence of association by chance

Figure 2. Flow of ProDiet participants through the study.
Adapted from the main ProDiet study (Lane, AJ., unpublished), with thanks.
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(i.e., false positive) was high. Principle Component Analyses
(PCA) was carried out on standardised metabolic measures
data and used to set a significance threshold that takes into
account both multiple testing and the correlation between
metabolic traits,37 as discussed previously.19,37,38 This method
assumes that the independence of the principle components
(PCs) is equivalent to the degree of freedom of the original
metabolic dataset, and that retaining a number of PCs that is
enough to explain at least 95% of the variance will only result
in a small chance of type 1 error. The first 14 principal com-
ponents explained >95% of the variance in the metabolic mea-
sures data. We therefore set our significance threshold as
p < 0.05/14 (=0.0036). p-Values below this can be interpreted
as providing strong evidence of an association of the respec-
tive intervention on metabolic trait levels.

Whilst randomisation aims to prevent bias in the alloca-
tion of participants to intervention arms in a RCT, this does
not guarantee that groups will be comparable with respect to
baseline measures, particularly in small feasibility trials. As a
sensitivity analysis, we repeated the intention-to-treat analysis
adjusting for pre-intervention metabolic measures. All indi-
viduals with complete baseline and follow-up metabolite data
were included in the sensitivity analyses.

To establish the causal effect of lycopene and EGCG dose on
metabolite measures at follow-up, we employed instrumental
variable (IV) analysis,39 using intervention status as an IV. The
IV analysis was performed using a 2-stage least squares (2SLS)
regression method, implemented using the “ivreg2” function in
Stata. F-statistics and R2 values from the first-stage regression
between intervention arm and serum lycopene/EGCG levels
were examined to check the instrumental variable assumption
that the instrument is sufficiently associated with the exposure.
Causal estimates for the instrumented effect of serum lycopene/
EGCG levels on each follow-up metabolite were obtained from
the second-stage regression. The regression coefficients were
calculated in units of 1-SD metabolite concentration per one-
unit increment in lycopene (μmol/L) or EGCG (nM). Associa-
tions were adjusted for baseline metabolic measures.40

Analyses were performed in Rstudio and Stata ver-
sion 14.2.

Causal effect of altered metabolites on prostate cancer risk
Given evidence that the dietary interventions were associated
with changes in some of the metabolic measures at follow-up,
we used MR to investigate whether these metabolites could
have a causal role in mediating the effect of the dietary inter-
ventions on prostate cancer risk.

MR is a form of IV analysis that uses genetic variants as
instruments to examine the causal effects of modifiable expo-
sures on outcomes of interest.17,41 This method depends on
the existence of genetic variants that are robustly associated
with metabolite levels (see Supporting Information materials).

We utilised the two-sample MR approach, described in
more detail in the Supporting Information Methods. Briefly,

genetic variants robustly associated with the serum metabolites
of interest were first identified using data from a recently pub-
lished genome-wide association study (GWAS) of 123 circulat-
ing metabolite levels.27 These genetic instruments were analysed
in relation to prostate cancer risk in a series of 44,825 prostate
cancer cases and 27,904 control subjects GWAS data from the
PRACTICAL consortium.29 PRACTICAL samples were geno-
typed using an Illumina.

Custom Infinium genotyping array (OncoArray), details of
which may be found on their website http://practical.icr.ac.uk/
blog/?page_id=1244). Two types of sensitivity analyses were
undertaken to assess potential horizontal pleiotropic effects: a
weighted median approach and MR-Egger regression.42

Results
One hundred and thirty-three men were recruited and rando-
mised into lycopene and green tea intervention groups
(Fig. 2). One hundred and thirty-two men attended the six-
month follow-up appointment. Not all participants had suffi-
cient blood available for metabolic profiling in the current
study; metabolic measures were available for 119 men at base-
line and 128 men at follow-up.

Baseline characteristics
Supporting Information Tables 1 and 2 show the baseline charac-
teristics of the men stratified by lycopene and green tea treatment
groups, respectively. Men were a mean age of 64.5 years (SD 5.0),
had a mean BMI of 27.0 kg/m2 and had a median baseline PSA
level of 2.6 ng/mL. There were no apparent differences across
intervention arms with respect to any of the sociodemographic
or lifestyle variables considered. Two of the men, randomised to
lycopene and green tea supplement arms had diabetes.

Among the 116 men with complete baseline metabolic mea-
sures data, there were no clear differences in metabolic traits
between the lycopene randomisation arms pre-intervention
(Supporting Information Table 3). At baseline, there was evi-
dence of by-arm differences in glycine, phenylalanine, alanine,
glycoprotein acetyls and a number of fatty acid metabolic mea-
sures in the green tea group (Supporting Information Table 3).

Difference in metabolite levels between intervention groups
at six-month follow-up
Correlation between metabolic profiles from lycopene dietary
advice and supplement arms. There was a strong correlation
between the effects of supplements compared to the effects of the
dietary advice interventions on 6-month metabolic measures
(slope = 1.07 � 0.06; R2 = 0.65) (Fig. 3), which remained when
regression models were adjusted for baseline serum metabolite
levels (Supporting Information Fig. 1). Forest plots comparing
the metabolic profile of supplemental and dietary advice inter-
ventions provide further confirmation that they have broadly
comparable effects on the measured metabolic traits (Fig. 3).
There were consistent decreases in the glycolysis-related

1922 Investigating the effects of lycopene and green tea on the metabolome of men at risk of prostate cancer
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Figure 3. (a) Comparison of overall effects on serum metabolic traits between lycopene intervention arms vs. placebo models. Estimates of the
standard deviation (SD) difference in metabolic trait concentration between lycopene dietary advice and placebo arms at follow-up (x-axis) plotted
against the SD difference in metabolic trait concentration in the lycopene supplement arm vs. placebo (y-axis). (b) Comparison of overall effects on
serum metabolic traits between green tea intervention arms vs. placebo models. Corresponding results for green tea. Each dot on plots A and B
represents an individual metabolic trait. A linear fit of the overall correspondence summarises the similarity in magnitude between diet and
supplement associations (solid lines). A slope of 1 with an intercept of 0 (dashed lines), with all dots sitting on that line (R2 = 1), would indicate
that diet and supplement estimates had the same magnitude and direction. Corresponding results for green tea. (c) SD follow−up metabolic trait
concentration difference between lycopene diet or supplement vs. placebo. (d) SD follow−up metabolic trait concentration difference between
green tea diet (drink) or supplement vs. placebo. Circles indicate β-regression coefficients for the dietary intervention arms. Squares indicate
β-regression coefficients for the supplement arms. Closed symbols denote values that reached the threshold for multiple testing (p ≤ 0.004).
Association magnitudes are in units of 1-SD metabolic measure concentration. Horizontal bars represent 95% confidence intervals.
Abbreviations: C, cholesterol; HDL, high-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; MUFA,
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; VLDL, very-low-density lipoprotein.
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metabolites glucose, lactate and pyruvate after lycopene supple-
ment and dietary advice interventions, as well as decreases in
branched-chain amino acid measures isoleucine, leucine and
valine.

Lycopene effects. There was strong evidence of a reduction in
valine in both supplement and dietary advice arms compared to
placebo (β = −0.62; 95% CI = −1.03, −0.20; p = 0.004) and
β = −0.65; 95% CI = −1.04, −0.26; p = 0.001 respectively,
whereby β represents the standard deviation (SD) change in
metabolic measures), as well as increased levels of acetate in the
lycopene supplement group (β = 0.69; 95% CI = 0.24, 1.15;
p = 0.003) (Table 1). There was some evidence that serum pyru-
vate and docosahexaenoic acid (DHA) were lower in the lyco-
pene supplement group compared to placebo (β = −0.56; 95%
CI = −0.95, −0.16; p = 0.006 and β = −0.50; 95% CI = −085,
−0.14; p = 0.006 respectively), although effects did not reach our
strict threshold for multiple testing (p = 0.004). Serum diacylgly-
cerol levels were lower in the lycopene dietary advice group
compared to placebo (β = −0.59; 95% CI = −1.01, −0.18;
p = 0.006). See Supporting Information Table 4 for full results,
including associations, expressed as magnitudes in absolute con-
centration units (e.g. mmol/L metabolite difference between diet
or supplement vs. placebo).

The trends for decreased valine, increased acetate and
decreased pyruvate, were largely robust to adjustment for
baseline metabolites (Supporting Information Table 5).

Correlation between metabolic profiles from green tea diet
and supplement arms. Overall, the effects of green tea drink-
ing and supplement interventions at follow-up on serum meta-
bolome were similar (slope = 0.57� 0.03, R2 = 0.76) (Fig. 3).

Green tea effects. There was no strong evidence of an effect
of green tea supplementation on serum metabolic profile. In
the group advised to drink green tea, there was evidence of a
reduction in the ratio of polyunsaturated fatty acids relative to
total fatty acids (PUFA: FA) (vs. placebo), which survived cor-
rection for multiple testing (β = 0.66; 95% CI = 0.273, 1.049;
p = 0.001) (Table 1). There was weaker evidence of a change
in the proportions of omega-6 and monounsaturated fatty
acids relative to total fatty acids (β = 0.59; 95% CI = 0.19,
1.00; p = 0.005 and β = −0.58; 95% CI = −0.99, −0.17;
p = 0.006, respectively). Post green-tea drinking intervention
levels of glycine were also lower compared to placebo
(β = −0.58; 95% CI = −0.98, −0.18; p = 0.005) (full results in
Supporting Information Table 6). The trends for increased
PUFA: FA and reduced glycine, which were observed in the

Table 1. Linear regression results for metabolic traits that were found to be altered by supplement or dietary advice interventions (n = 128)

Metabolite Intervention arm Mean difference1 Lower CI Upper CI p value

Lycopene

Valine Supplement −0.62 −1.03 −0.2 0.0042

Dietary advice −0.65 −1.04 −0.26 0.0012

Acetate Supplement 0.69 0.24 1.15 0.0032

Dietary advice 0.26 −0.08 0.59 0.129

Pyruvate Supplement −0.56 −0.95 −0.16 0.006

Dietary advice −0.30 −0.75 0.15 0.196

Diacylglycerol Supplement −0.47 −0.9 −0.03 0.036

Dietary advice −0.59 −1.01 −0.18 0.006

DHA Supplement −0.5 −0.85 −0.14 0.006

Dietary advice −0.15 −0.62 0.32 0.537

Green tea

PUFA: FA Supplement 0.66 0.27 1.05 0.0012

Dietary advice 0.43 −0.01 0.86 0.057

Cholesterol esters in small HDL Supplement 0.22 −0.24 0.67 0.347

Dietary advice 0.62 0.19 1.04 0.005

Omega-6: FA Supplement 0.32 −0.12 0.76 0.148

Dietary advice 0.22 −0.24 0.67 0.005

Glycine Supplement −0.32 −0.79 0.14 0.172

Dietary advice −0.58 −0.98 −0.18 0.005

1Standardised mean difference (and 95% confidence interval [CI]) in metabolic trait concentration. Where there was evidence that one of the interven-
tions altered follow-up metabolic trait levels, results for the respective metabolic trait have been presented. For comparison, supplement and dietary
advice results have been provided.
2Metabolic measures that reached the principle component analysis based-Bonferroni corrected threshold for multiple testing (p = 0.004).
Abbreviations: N, sample size; CI, confidence interval; DHA, docosahexaenoic acid; FA, fatty acid; HDL, high density lipoprotein; Omega-6: FA, omega-6
as a proportion of total FA; PUFA: FA, polyunsaturated fatty acids as a proportion of total FA. Omega-6: FA and PUFA: FA are expressed as a % of
total FA.
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unadjusted green tea analyses, were not present in the
adjusted analyses (Supporting Information Table 5).

IV estimates
Results of the lycopene IV regression were broadly consistent
with those of the intention to treat analysis (Supporting Infor-
mation Table 7). There was an increase in acetate (β = 2.13;
p = 0.006) and decreases in pyruvate (β = −1.90; p = 0.009),
valine (β = −1.79; p = 0.023), diacylglycerol (β = −1.81;
p = 0.026) and DHA (p = 0.097). Alanine was also lower
(β = −1.55; p = 0.015). The IV analysis provided no strong
evidence that green tea altered circulating metabolite levels
(Supporting Information Table 7).

Mendelian randomisation
Causal effects of metabolites on prostate cancer. Acetate,
pyruvate, valine, diacylglycerol and DHA were taken forward
for MR analysis because both the intention-to-treat and the
IV analysis indicated they were modified in response to lyco-
pene dietary intervention, although not all metabolic traits
met our strict threshold for multiple testing. Glycine was also
taken forward, since increased green tea intake was associated
with altered glycine levels in the intention-to-treat analysis.

We identified 17 genetic variants associated with our metab-
olites of interest at genome-wide significance (p < 5 × 10−8 for
the allelic effect of each SNP on the exposure) in the MR Base
GWAS database (http://www.mrbase.org/) (Table 2). The
genetic variants comprised five sets of candidate genetic instru-
ments corresponding to acetate, valine, pyruvate, DHA and gly-
cine. Diacylglycerol was not available in the GWAS summary
statistics from Kettunen et al.,27 therefore this metabolite could
not be instrumented.

The MR analysis provided some evidence that genetically
raised pyruvate increased the odds of prostate cancer by 1.29
(95% CI: 1.03, 1.62; p = 0.027 (Bonferroni corrected p value
= 0.05/4 = 0.0125)), using 2 SNPs (Table 3). There was no evi-
dence that acetate, valine DHA, or glycine were causal in prostate
cancer. Given evidence of a causal effect of pyruvate on prostate
cancer risk, we further investigated functionality of the SNPs used
to instrument pyruvate to identify potential pleiotropy.
rs1260326 is located within GCKR, coding for the glucokinase
regulatory protein which has a widespread effect on metabolite
levels and is therefore likely to be highly pleiotropic (Supporting
Information Fig. 2) rs74249229 is not consistently associated with
other metabolites apart from pyruvate, alanine and lactate, which
are all very closely related metabolites. However, as the variant is
located within the PDPR (pyruvate dehydrogenase phosphatase
regulatory) gene, this suggests the SNP primarily influences pyru-
vate, and therefore alanine and lactate through vertical (rather
than horizontal) pleiotropy, suggesting that this SNP is likely to
be a valid instrument for the MR analysis of pyruvate. Using only
this SNP as an instrument, the causal effect of pyruvate on pros-
tate cancer was found to be 1.31 (95% CI: 0.90, 1.93, p = 0.154), Ta
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consistent with a positive causal effect of pyruvate on prostate
cancer risk, albeit with a wider confidence interval.

Discussion
In a sample of men with an elevated risk of prostate cancer, a
6-month intervention to increase lycopene intake was found to
modify circulating valine, acetate and pyruvate, compared to
placebo, which were robust to adjustment for baseline metabo-
lites. MR analysis provided some evidence that genetically pre-
dicted higher levels of pyruvate were associated with higher
prostate cancer risk, supporting a causal role for this metabolite
in prostate cancer aetiology. In this small/proof-of-concept
trial, there was insufficient evidence to say whether supplemen-
tation with green tea affected the metabolome.

Metabolic reprogramming is a recognised hallmark of can-
cer.43 Elevated levels of important cellular metabolites (such
as pyruvate) in the circulation may support and encourage the
process of carcinogenesis, by fuelling metabolic pathways that
are required to support cellular proliferation. Indeed, it has
been demonstrated in vitro that cancer cells proliferate more
rapidly in the presence of exogenous pyruvate through the
fuelling of mitochondrial metabolism.44 Extracellular pyruvate
may be a particularly important metabolite for prostate cancer
cells because, unlike other cancer cell types, they do not rap-
idly metabolise glucose.45 This may mean their reliance on
extracellular pyruvate as a source of acetyl-CoA is crucial to
tumour development. Consistent with this, the monocarboxy-
late transporter 2 (MCT2) which shows a high affinity for the
transport of pyruvate46 is increased in expression in prostate
cancer tissue.47–49

It was interesting to find a reduction in valine in the
intention-to-treat analysis, even though we found no evidence
of a causal link with PCa in the MR (using the four available
SNPs). This is because there is an accumulating body of evi-
dence to show that branched chain amino acids (BCAAs),
including valine, leucine and isoleucine, may help support the
high metabolic demands of tumour cells.50 For example, they
can serve as indirect sources of nitrogen for nucleotide (and
nonessential amino acid) biosynthesis and/or they can become
further catabolised to yield acetyl-CoA, which feeds into the

tricarboxylic acids (TCA) cycle and can contribute to energy
production.50 Further studies are needed to confirm our find-
ings, and to establish whether a reduction in circulating
BCAAs could have an impact on PCa risk, since few studies
have examined the relation of BCAAs with PCa specifically.

Some studies suggest that certain tumours have acquired a
dependency on acetate as a source of carbon to produce
acetyl-CoA.51,52 In the current analysis, we observed an
increase in acetate after lycopene dietary intervention how-
ever, which needs to be verified. If confirmed, this would sug-
gest that any potential protective effects of lycopene intake on
PCa are not acting through this metabolite.

Study strengths and limitations
Our study has several strengths. Firstly, adherence to the ProDiet
study was high.16 Thus, any differences in metabolites across
intervention groups at follow-up are most likely the result of the
intervention itself, since all other measured variables were com-
parable at baseline. Secondly, we obtained metabolite measures
across multiple metabolic pathways including glycolysis, the
citric acid cycle and amino acid metabolism, facilitated through
high-throughput NMR, which is highly reproducible.53 Thirdly,
by utilising summary statistics from a large prostate cancer con-
sortium and effect estimates from a previous GWAS of metabo-
lites, we were able to conduct a two-sample MR to appraise the
causal role of altered metabolites in prostate cancer risk.

Several limitations of our study warrant mention. A major
limitation of our study was that the ProDiet RCT was originally
designed to test the feasibility of a dietary intervention; it was
not therefore powered to detect an effect of the intervention on
metabolite levels. The small sample size precludes us from ruling
out additional effects of lycopene and green tea dietary interven-
tions on the serum metabolome. Furthermore, whilst the RCT
design is designed to minimise residual confounding by distrib-
uting any known or unknown confounding factors across ran-
domisation arms, there was evidence of a difference in some
metabolite measures in the green tea intervention groups at
baseline (attributable to chance). To address this, we conducted
a sensitivity analyses, in which models were adjusted for baseline
metabolite levels. The results were largely consistent.

An important aspect in any metabolomics study is the ana-
lytical reproducibility of the platform and protocols used.
NMR has been shown to provide excellent reproducibility and
quantitative accuracy.53 Moreover, the technique requires
minimal sample preparation, decreasing the chances of analyt-
ical variability. The reproducibility of data generated from the
NMR platform used in the current analysis has been assessed
previously.27 The coefficients of variation ([CV] (in percent))
for selected metabolic measures are provided in Supporting
Information Table 9. For pyruvate, valine, acetate, DHA and
glycine (i.e. metabolites taken forwards to MR), the CVs were
4.7, 3.9, 5.5, 2.7 and 7.7% respectively.

A further potential issue, which is common feature of many
‘omics’ studies, is the assessment of many traits in a relatively

Table 3. Causal effect estimates of metabolites on prostate cancer

using individual-level data from the PRACTICAL consortium

Metabolite Number of SNPs OR† 95% CI P-value

Acetate 1 0.89 0.63, 1.25 0.501

Pyruvate 2 1.29 1.03, 1.62 0.027

Valine 4 1.03 0.90, 1.18 0.647

DHA 4 0.97 0.85, 1.01 0.647

Glycine 6 0.99 0.92, 1.06 0.787

Mendelian randomisation estimates of odds ratios† [OR] (and associated
95% confidence intervals [CI]) of prostate cancer risk per 1 standard devi-
ation [SD] increase in genetically instrumented metabolite levels. Results
obtained using the inverse-variance weighted (IVW) method. DHA, docosa-
hexaenoic acid.
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small number of samples. Not considering the possible effect of
multiple testing can greatly increase the probability of false pos-
itives (Type I errors), whilst an overly conservative approach
may result in low statistical power to detect true positive signals
(47). We used a multiple testing correction based on PCA to
reduce false positives, as has been done previously (46).

We were unable to fully rule out the possibility of pleiot-
ropy in the association between pyruvate and prostate cancer
due to the limited number of genetic instruments currently
available for pyruvate.

Conclusions
In summary, our results suggest that in men with elevated
prostate cancer risk, increasing dietary lycopene may result in
changes in circulating levels of valine, acetate, pyruvate, dia-
cylglycerol and docosahexaenoic acid. Our results provide

some evidence that pyruvate may be causally related to pros-
tate cancer risk and warrants investigation.

Acknowledgements
This work has been supported by Cancer Research UK (CRUK) (ref:
C11046/A10052) and the UK National Institute for Health Research
(NIHR) Health Technology Assessment (HTA) Programme, HTA 96/20/
99; ISRCTN20141297. Further information available at: http://www.bris.ac.
uk/social-community-medicine/projects/protect/. RAB is funded by a Well-
come Trust 4-year studentship (WT099874MA). RCR is funded by CRUK
(grant number: C18281/A19169). EEV is funded by an RD Lawrence Fel-
lowship from Diabetes UK (grant number: 17/0005587). RMM is supported
by CRUK (C18281/A19169). RB, DDSF, RCR, EEV, CA, MAK and RMM
work in a Unit that receives funds from the University of Bristol and the
UK Medical Research Council (MC_UU_12013/1, MC_UU_12013/5). AL
and CM work in a unit that receives National Institute for Health Research
CTU Support Funding. PW is supported by the Academy of Finland
(312476 and 312477) and the Novo Nordisk Foundation (15998). MAK
was supported by the Sigrid Juselius Foundation, Finland.

References

1. Ferlay JSI, Ervik M, Dikshit R, et al. GLOBOCAN
2012 v1.0, cancer incidence and mortality world-
wide: IARC CancerBase no. 11, Lyon, France:
International Agency for Research on Cancer
(IARC), 2013.

2. Sonn GA, Aronson W, Litwin MS. Impact of diet
on prostate cancer: a review. Prostate Cancer Pros-
tatic Dis 2005;8:304–10.

3. Chan JM, Gann PH, Giovannucci EL. Role of diet
in prostate cancer development and progression.
J Clin Oncol 2005;23:8152–60.

4. Stacewicz-Sapuntzakis M, Borthakur G, Burns JL,
et al. Correlations of dietary patterns with prostate
health. Mol Nutr Food Res 2008;52:114–30.

5. Anderson RF, Fisher LJ, Hara Y, et al. Green tea
catechins partially protect DNA from (.)OH
radical-induced strand breaks and base damage
through fast chemical repair of DNA radicals.
Carcinogenesis 2001;22:1189–93.

6. Di Mascio P, Kaiser S, Sies H. Lycopene as the
most efficient biological carotenoid singlet oxygen
quencher. Arch Biochem Biophys 1989;274:532–8.

7. Holzapfel NP, Holzapfel BM, Champ S, et al. The
potential role of lycopene for the prevention and
therapy of prostate cancer: from molecular mech-
anisms to clinical evidence. Int J Mol Sci 2013;14:
14620–46.

8. Connors SK, Chornokur G, Kumar NB. New
insights into the mechanisms of green tea cate-
chins in the chemoprevention of prostate cancer.
Nutr Cancer 2012;64:4–22.

9. Etminan M, Takkouche B, Caamano-Isorna F.
The role of tomato products and lycopene in the
prevention of prostate cancer: a meta-analysis of
observational studies. Cancer Epidemiol Bio-
markers Prev 2004;13:340–5.

10. Chen P, Zhang W, Wang X, et al. Lycopene and
risk of prostate cancer: a systematic review and
meta-analysis. Medicine (Baltimore) 2015;94:
e1260.

11. Ilic D, Forbes KM, Hassed C. Lycopene for the
prevention of prostate cancer. Cochrane Database
Syst Rev 2011, (11). https://doi.org/10.
1002/14651858. Art. No.: CD008007.

12. Zheng J, Yang B, Huang T, et al. Green tea and
black tea consumption and prostate cancer risk:

an exploratory meta-analysis of observational
studies. Nutr Cancer 2011;63:663–72.

13. Lin YW, Hu ZH, Wang X, et al. Tea consumption
and prostate cancer: an updated meta-analysis.
World J Surg Oncol 2014;12:38.

14. Fewell Z, Davey Smith G, Sterne JA. The impact
of residual and unmeasured confounding in epi-
demiologic studies: a simulation study.
Am J Epidemiol 2007;166:646–55.

15. Kipnis V, Midthune D, Freedman L, et al. Bias in
dietary-report instruments and its implications for
nutritional epidemiology. Public Health Nutr
2002;5(6A):915–23.

16. Lane AJ, Er V, Knl A, et al. ProDiet: a phase II
randomized placebo-controlled trial of green tea
Catechins and lycopene in men at increased risk
of prostate cancer. Cancer Prev Res 2018;
11(11):1–10.

17. Lawlor DA, Harbord RM, Sterne JA,
et al. Mendelian randomization: using genes as
instruments for making causal inferences in epi-
demiology. Stat Med 2008;27:1133–63.

18. Davey Smith G, Hemani G. Mendelian randomi-
zation: genetic anchors for causal inference in epi-
demiological studies. Hum Mol Genet 2014;
23(R1):R89–98.

19. Wurtz P, Wang Q, Kangas AJ, et al. Metabolic
signatures of adiposity in young adults: Mendelian
randomization analysis and effects of weight
change. PLoS Med 2014;11:e1001765.

20. Holmes MV, Ala-Korpela M, Smith GD. Mende-
lian randomization in cardiometabolic disease:
challenges in evaluating causality. Nat Rev Cardiol
2017;14:577–90.

21. Wang Q, Holmes MV, Davey Smith G, et al. Genetic
support for a causal role of insulin resistance on circu-
lating branched-chain amino acids and inflammation.
Diabetes Care 2017;40:1779–86.

22. Do R, Willer CJ, Schmidt EM, et al. Common
variants associated with plasma triglycerides and
risk for coronary artery disease. Nat Genet 2013;
45:1345–52.

23. Kettunen J, Tukiainen T, Sarin AP,
et al. Genome-wide association study identifies
multiple loci influencing human serum metabolite
levels. Nat Genet 2012;44:269–76.

24. Teslovich TM, Musunuru K, Smith AV,
et al. Biological, clinical and population relevance
of 95 loci for blood lipids. Nature 2010;466:707–13.

25. Illig T, Gieger C, Zhai G, et al. A genome-wide
perspective of genetic variation in human metabo-
lism. Nat Genet 2010;42:137–41.

26. Petersen AK, Zeilinger S, Kastenmuller G,
et al. Epigenetics meets metabolomics: an
epigenome-wide association study with blood
serum metabolic traits. Hum Mol Genet 2014;23:
534–45.

27. Kettunen J, Demirkan A, Wurtz P, et al. Genome-
wide study for circulating metabolites identifies
62 loci and reveals novel systemic effects of LPA.
Nat Commun 2016;7:11122.

28. Pierce BL, Burgess S. Efficient design for Mende-
lian randomization studies: subsample and
2-sample instrumental variable estimators.
Am J Epidemiol 2013;178:1177–84.

29. The Institute of Cancer Research. Welcome to
PRACTICAL, London: The Institute of Cancer
Research, 2017. http://practical.icr.ac.uk/blog/.

30. Lane JA, Donovan JL, Davis M, et al. Active moni-
toring, radical prostatectomy, or radiotherapy for
localised prostate cancer: study design and diag-
nostic and baseline results of the ProtecT rando-
mised phase 3 trial. Lancet Oncol 2014;15:1109–18.

31. Lane A, Metcalfe C, Hamdy FC, et al. Prostate
and Diet Study: Protocol v1:3. 2010. https://core.
ac.uk/download/pdf/73984079.pdf. In press.

32. Bingham SA, Welch AA, McTaggart A,
et al. Nutritional methods in the European pro-
spective investigation of cancer in Norfolk. Public
Health Nutr 2001;4:847–58.

33. Craft N. Carotenoid reversedd-phase high-
performance liquid chromatography methods: ref-
erence compendium. Methods Enzymol 1992;213:
185–205.

34. Stalmach A, Troufflard S, Serafini M,
et al. Absorption, metabolism and excretion of
Choladi green tea flavan-3-ols by humans. Mol
Nutr Food Res 2009;53(Suppl 1):S44–53.

35. Soininen P, Kangas AJ, Wurtz P, et al. High-
throughput serum NMR metabonomics for cost-
effective holistic studies on systemic metabolism.
Analyst 2009;134:1781–5.

Beynon et al. 1927

Int. J. Cancer: 144, 1918–1928 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

C
an

ce
r
E
pi
de
m
io
lo
gy

http://www.nihr.ac.uk/funding-and-support/funding-to-support-research/funding-to-support-research-in-the-nhs/ctu-support-funding.htm
http://www.nihr.ac.uk/funding-and-support/funding-to-support-research/funding-to-support-research-in-the-nhs/ctu-support-funding.htm
https://doi.org/10.1002/14651858
https://doi.org/10.1002/14651858
http://practical.icr.ac.uk/blog/
https://core.ac.uk/download/pdf/73984079.pdf
https://core.ac.uk/download/pdf/73984079.pdf


36. Soininen P, Kangas AJ, Wurtz P, et al. Quantita-
tive serum nuclear magnetic resonance metabolo-
mics in cardiovascular epidemiology and genetics.
Circ Cardiovasc Genet 2015;8:192–206.

37. Gao X, Starmer J, Martin ER. A multiple testing
correction method for genetic association studies
using correlated single nucleotide polymorphisms.
Genet Epidemiol 2008;32:361–9.

38. Wang Q, Kangas AJ, Soininen P, et al. Sex
hormone-binding globulin associations with cir-
culating lipids and metabolites and the risk for
type 2 diabetes: observational and causal effect
estimates. Int J Epidemiol 2015;44:623–37.

39. Greenland S. An introduction to instrumental var-
iables for epidemiologists. Int J Epidemiol 2000;29:
1102.

40. Angrist JIG, Rubin D. Identification of causal
effects using instrumental variables. J Am Stat
Assoc 1996;91:444–55.

41. Didelez V, Sheehan N. Mendelian randomization
as an instrumental variable approach to causal
inference. Stat Methods Med Res 2007;16:309–30.

42. Bowden J, Davey Smith G, Burgess S. Mendelian
randomization with invalid instruments: effect
estimation and bias detection through egger
regression. Int J Epidemiol 2015;44:512–25.

43. Hanahan D, Weinberg RA. Hallmarks of cancer:
the next generation. Cell 2011;144:646–74.

44. Diers AR, Broniowska KA, Chang CF,
et al. Pyruvate fuels mitochondrial respiration and
proliferation of breast cancer cells: effect of mono-
carboxylate transporter inhibition. Biochem J
2012;444:561–71.

45. Liu Y. Fatty acid oxidation is a dominant bioener-
getic pathway in prostate cancer. Prostate Cancer
Prostatic Dis 2006;9:230–4.

46. Adeva-Andany M, Lopez-Ojen M, Funcasta-
Calderon R, et al. Comprehensive review on lac-
tate metabolism in human health. Mitochondrion
2014;17:76–100.

47. Pertega-Gomes N, Baltazar F. Lactate transporters
in the context of prostate cancer metabolism:
what do we know? Int J Mol Sci 2014;15:
18333–48.

48. Pertega-Gomes N, Vizcaino JR, Felisbino S,
et al. Epigenetic and oncogenic regulation of
SLC16A7 (MCT2) results in protein over-
expression, impacting on signalling and cellular
phenotypes in prostate cancer. Oncotarget 2015;6:
21675–84.

49. Pertega-Gomes N, Vizcaino JR, Gouveia C,
et al. Monocarboxylate transporter 2 (MCT2) as
putative biomarker in prostate cancer. Prostate
2013;73:763–9.

50. Ananieva EA, Wilkinson AC. Branched-chain
amino acid metabolism in cancer. Curr Opin Clin
Nutr Metab Care 2018;21:64–70.

51. Kamphorst JJ, Chung MK, Fan J, et al. Quantitative
analysis of acetyl-CoA production in hypoxic can-
cer cells reveals substantial contribution from ace-
tate. Cancer Metab 2014;2:23.

52. Alderton GK. Metabolism: acetate nourishes
stressed tumour cells. Nat Rev Cancer 2015;15:67.

53. Markley JL, Bruschweiler R, Edison AS, et al. The
future of NMR-based metabolomics. Curr Opin
Biotechnol 2017;43:34–40.

1928 Investigating the effects of lycopene and green tea on the metabolome of men at risk of prostate cancer

Int. J. Cancer: 144, 1918–1928 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

C
an

ce
r
E
pi
de
m
io
lo
gy


	 Investigating the effects of lycopene and green tea on the metabolome of men at risk of prostate cancer: The ProDiet rando...
	Introduction
	Materials and Methods
	Overview
	Effect of lycopene and green tea on serum metabolome
	Study population
	Study design
	Data collection
	Measurement of metabolites
	Statistical analysis

	Causal effect of altered metabolites on prostate cancer risk

	Results
	Baseline characteristics
	Difference in metabolite levels between intervention groups at six-month follow-up
	Correlation between metabolic profiles from lycopene dietary advice and supplement arms
	Lycopene effects
	Correlation between metabolic profiles from green tea diet and supplement arms
	Green tea effects

	IV estimates
	Mendelian randomisation
	Causal effects of metabolites on prostate cancer


	Discussion
	Study strengths and limitations

	Conclusions
	Acknowledgements
	References


