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Abstract

Deterministic numerical schemes have been widely used for the solution of the diffu-

sive wave (DW) equation, however, these schemes are computationally costly and

suffer instability issues. This paper presents a stochastic random walk particle tracking

(RWPT) method to solve such an equation for a dam‐break flow problem. Three

different wave duration scenarios are presented for simulations of the DW for flood

flows in a hypothetical city. The hypothetical city is represented by a domain of size

2,000 m by 500 m in x and y directions, respectively. The domain is divided into

25 m by 25 m cells. A dam is located at the upstream of the hypothetical city. Each

scenario has a distinct propagation pattern after the dam is breached. Analysed and

presented are 18 different simulations, which are composed of three different

building configurations, two different bed slopes, and three different shapes of

hydrographs. In this method, the flood volume is divided into a large number of par-

ticles where each particle carries a fixed amount of the flood volume. These particles

undergo convective and diffusive movements, and their superposition represents

propagation of the DW in the flow domain. The solution algorithm of the RWPT‐

based equations is used to compute flood inundation depths in the hypothetical city.

Comparison is made among the simulated results from three different shapes of the

inflow hydrographs. The proposed stochastic method has two major advantages over

traditional deterministic schemes: (a) greater efficiency, thus lesser computational

costs, and (b) no instability issues.
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1 | INTRODUCTION

Floods are high stages of the river in which the flow overwhelms the

natural channel (Chow, 1959). They are natural catastrophic events

that have social and economic impacts. In the past, flood devastation

has been limited to local and regional scales, but damages from recent

flooding events have brought about the interest of researchers to

study the flood dynamics on a global scale. Flooding impacts are most

severe in densely populated urban areas. This led researchers to

develop mathematical methods or techniques for predicting the flood

inundations in such urban environments. Formulations of mathemati-

cal models are based on the combination of two conservation laws;

either the law of conservation of mass and the law of conservation

of momentum or the law of conservation of mass and the law of con-

servation of energy (Lax & Wendroff, 1960). Based on these laws,

wave equations have been derived for representing various wave

models. The hydrodynamic wave model derived from the Saint‐

Venant equations is used to represent flood wave propagation. The

diffusive wave (DW) model is an approximation of full hydrodynamic

wave model and has been widely used in many field applications
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(Ferrick, Bilmes, & Long, 1984; Moramarco, Pandolfo, & Singh, 2008;

Ponce, 1990; Ponce & Simons, 1977; Tsai, 2003).

Many modelling approaches are available in the literature to

predict the inundation areas that are caused by floods, but these

models are based on Eulerian formulation only. Different numerical

methods are used to solve high‐order non‐linear complex mathemati-

cal equations describing the flood propagation. Many researchers used

Eulerian formulation to obtain solutions of such equations (Fennema &

Chaudhry, 1987; Kazezyılmaz‐Alhan & Medina Jr, 2007; Moussa &

Bocquillon, 2009). Finite difference (Bates, Horritt, & Fewtrell, 2010;

Haltas, Tayfur, & Elci, 2016; O'brien, Julien, & Fullerton, 1993), finite

volume (Ali, Kimura, & Shimizu, 2016; Bradford & Sanders, 2002;

Liang et al., 2016), and finite element (Cobby, Mason, Horritt, & Bates,

2003; Yu & Lane, 2006; Zhang, Feng, Maksimović, & Bates, 2016)

schemes are well‐known numerical schemes, among many others.

Solutions of Eulerian equations for flood modelling are not always reli-

able because they often display numerical instabilities or numerical

oscillations and also produce artificial diffusions. Such problems lead

to erroneous results of the wave models (Schubert, Sanders, Smith,

& Wright, 2008). Numerical instabilities in such schemes are also

caused by the presence of dry areas with moving wet–dry fronts,

wherein very high velocities generate negative values of water depths

due to the simulation of small local depths of water (Horritt & Bates,

2002; Prestininzi, 2008). Thus, these schemes involve a high potential

of error for modelling of floods.

Stochastic schemes are different alternatives to deterministic

schemes for the solution of mathematical models. Considerable prog-

ress has occurred in the last three decades in stochastic modelling

techniques. The stochastic random walk particle tracking (RWPT)

method has been and is being used by many researchers for the solu-

tion of the advection–dispersion equation in the field of groundwater

hydrology (Banton, Delay, & Porel, 1997; Emmanuel & Berkowitz,

2007; Gjetvaj, 1997; Kinzelbach, 1988; Kinzelbach & Uffink, 1991;

Salamon, Fernàndez‐Garcia, & Gómez‐Hernández, 2006; Uffink,

1986). Although the literature on this method has been available for

a long time, particularly a notable progress in the field has been made

by Kinzelbach and Uffink (1991). They suggested the RWPT method

for solving the solute transport equation in groundwater domains. In

this method, the total mass of solute is represented by a finite number

of particles which move in the aquifer in two different types of

motion; (a) the advective movement of particles due to the flow veloc-

ity and (b) the dispersive movement of particles due to the dispersion

process. The same concept was used by Elfeki, Ewea, and Al‐Amri

(2011) for surface water transport but with some limitations.

This research paper presents an alternative approach for model-

ling of the DWs. The proposed approach utilizes the stochastic RWPT

technique for solving a two dimensional (2‐D) DW equation instead of

using the traditional Eulerian scheme. An algorithm based on the

RWPT technique is developed to simulate three different shapes of

the inflow flood hydrographs, flowing from a reservoir after the

breach of a dam towards the hypothetical city. Simulation results are

compared based on the shapes of the inflow flood hydrographs in

order to show the varying propagation impacts of a DW in the

hypothetical city. The three different shapes of the flood hydrographs

represent three different duration flood waves. This study shows

comparison of flood inundation depths resulting from three different

shapes of inflow hydrographs for selecting the best scenario when

handling situations of a real flood event. Simulated results corroborate

the potential of the newly developed RWPT‐based algorithm for

modelling flood events in cities.

2 | METHODOLOGY

The hydrodynamic wave model in 2‐D is described by the continuity

and momentum equations, represented by Equations (1), (2), and (3)

for unsteady flow (Chow, 1959).

∂h
∂t

þ ∂hu
∂x

þ ∂hv
∂y

¼ 0; (1)

∂hu
∂t

þ ∂ hu2
� �
∂x

þ ∂ uvð Þ
∂y

þ gh
∂h
∂x

þ g h
∂z
∂x
−Sfx

� �
¼ 0; (2)

∂hv
∂t

þ ∂ huvð Þ
∂x

þ ∂ hv2
� �
∂y

þ gh
∂h
∂y

þ g h
∂z
∂y

−Sfy

� �
¼ 0; (3)

where u, v = velocity of flow in x and y directions, respectively, h =

depth of water, g = gravitational acceleration, z = bed elevation, Sfx,

Sfy = friction slope in x and y directions, respectively (which can be

evaluated by Manning's equation), and x, y = spatial coordinate in x

and y direction, respectively.

The hydrodynamic wave model involves uncertainties of parame-

ters due to its high non‐linearity. In order to find alternatives for this

complex nature of the hydrodynamic wave model, researchers used

approximate versions of the full hydrodynamic wave model for their

investigations (Leandro, Chen, & Schumann, 2014; Liu, Gebremeskel,

De Smedt, Hoffmann, & Pfister, 2003; Moussa, 1996; Moussa &

Bocquillon, 2009; Noor & Elfeki, 2017). The DW model is an approx-

imation of the full hydrodynamic wave model in which the inertial

and local acceleration terms are ignored in the momentum equations.

It produces better results than its simplified version, kinematic wave

model. The momentum equations in x and y directions for the DW

model are given as follows:

∂h
∂x

þ ∂z
∂x

þ Sfx ¼ 0; (4)

∂h
∂y

þ ∂z
∂y

þ Sfy ¼ 0: (5)

By rearranging momentum equations of the DW model, the

frictional slopes (Sfx and Sfy) in x and y directions can be obtained, as

expressed in Equations (6) and (7), which are dependent on the water

surface gradients
∂h
∂x

and
∂h
∂y

� �
and ground surface gradients

∂z
∂x

and
∂z
∂y

� �
in x and y directions, respectively.

Sfx ¼ −
∂h
∂x

−
∂z
∂x
; (6)

Sfy ¼ −
∂h
∂y

−
∂z
∂y

: (7)
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For obtaining the 2‐D DW equation, first the continuity equation

(Equation (1)) is expanded to the form, represented by Equation (8)

and then using momentum equations (Equations (6) and (7)) for

representing the frictional slopes in terms of velocities, where veloci-

ties are function of water elevation, h, and the water surface gradient

∂h
∂x

and
∂h
∂y

, as expressed in Equations (9) and (10).

∂h
∂t

þ u
∂h
∂x

þ h
∂u
∂x

þ v
∂h
∂y

þ h
∂u
∂y

¼ 0; (8)

u ¼ u h;
∂h
∂x

� �
; (9)

v ¼ v h;
∂h
∂y

� �
: (10)

The continuity equation and the momentum equations of the 2‐D

DW model are solved using the principle of differentiation on the

continuity equation to produce the following 2‐D DW equation

(Equation (11)):

∂h
∂t

þ u
∂h
∂x

þ ∂ huð Þ
∂

∂h
∂x

� �∂2h
∂x2

þ v
∂h
∂y

þ ∂ hvð Þ
∂

∂h
∂y

� �∂2h
∂y2

¼ 0: (11)

Equation (11) can be expressed in the form of 2‐D advection–

diffusion equation, which is represented by Equation (12):

∂h
∂t

þ u
∂h
∂x

þ v
∂h
∂y

−Dxx
∂2h
∂x2

−Dyy
∂2h
∂y2

¼ 0; (12)

where Dxx and Dyy are diffusion coefficients in x and y directions,

respectively

Dxx ¼ −
∂ huð Þ
∂

∂h
∂x

� �; and Dyy ¼ −
∂ hvð Þ
∂

∂h
∂y

� �:

The diffusion coefficients are estimated by using Manning's

equation for velocities in both directions and assuming the overland

flood flow as the flow in a wide rectangular channel, where the

hydraulic radius, R, equals the water depth, h. For instance, the diffu-

sion coefficient in the x direction is given by Equation (13):

Dxx ¼ −
∂ huð Þ
∂

∂h
∂x

� � ¼
∂

1
n
h

5
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂z
∂x

þ ∂h
∂x

r !

∂
∂h
∂x

� � ¼
1
n
h

5
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂z
∂x

þ ∂h
∂x

r ! : (13)

After some manipulation, the final expression for the diffusion

coefficient in x direction, that is, Dxx, is given by Equation (14). The

expression for the diffusion coefficient in y direction, that is, Dyy, can

be obtained in the similar fashion, as represented by Equation (15):

Dxx ¼ hu

2
∂z
∂x

þ ∂h
∂x

� �; (14)

Dyy ¼ hv

2
∂z
∂y

þ ∂h
∂y

� �: (15)

Because the diffusion terms depend on the flow depth, and the

water surface gradients and the ground surface gradients are space

dependent, it is better to express Equation (12) in the form of

Equation (16), as given by:

∂h
∂t

þ u
∂h
∂x

þ v
∂h
∂y

−
∂

∂x
Dxx

∂h
∂x

� �
−

∂

∂y
Dyy

∂h
∂y

� �
¼ 0: (16)

Equation (16) is analogous to the form of a 2‐D advection–

diffusion equation for the solute transport in porous media, as repre-

sented by Equation (17), where the direction of flow is aligned with

the principal components of the diffusion tensor (Bear, 2013):

∂C
∂t

þ u
∂C
∂x

þ v
∂C
∂y

−
∂

∂x
Dxx

∂C
∂x

� �
−

∂

∂y
Dyy

∂C
∂y

� �
¼ 0; (17)

where C = solute concentration.

Many researchers solved advection–diffusion equation by the

random walk theory (Abulaban, Nieber, & Misra, 1998; Kinzelbach,

1988; Kinzelbach & Uffink, 1991). A similar approach is used in this

study for solving the 2‐D DW equation (i.e., Equation (16)).

2.1 | Analogy of the diffusion equation with the
random walk theory

The RWPT method does not directly solve the transport equation

for a DW. The method instead provides the solution for the Fokker–

Planck equation. This is because the Fokker–Planck equation is

not analogous to the transport equation in general. Typically, the

Fokker–Planck equation is a conservation equation describing the

particle density distribution function ( f ) for movement of particles

in a random field. The generalized forms of the Fokker–Planck

equation (Equation (18)) are given by Tompson (1993) and Abulaban

et al. (1998):

∂f
∂t

þ ∇ · Afð Þ − ∇2:
B :BT

2
f

" #
¼ 0; (18)

where A = drift vector, B = displacement matrix, representing the

dispersion tensor, f = particle density function, and colon (:) is used

for representing the outer product for multiplying two tensors.

The expanded form of the Fokker–Planck equation with the diffu-

sion terms is given by Equation (19):

∂f
∂t

þ u′
∂f
∂x

þ v′
∂f
∂y

−
∂2

∂x2
Dxxfð Þ − ∂2

∂y2
Dyyfð Þ ¼ 0; (19)

where u′ and v′ are the drift velocities in x and y directions,

respectively.

After expanding Equation (16) and rearranging the terms, the 2‐D

DW equation becomes

∂h
∂t

þ u −
∂Dxx

∂x

� �
∂h
∂x

þ v −
∂Dyy

∂x

� �
∂h
∂y

−Dxx
∂2h
∂x2

−Dyy
∂2h
∂y2

¼ 0: (20)
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The analogy between Equations (19) and (20) shows that

u′ ¼ u −
∂Dxx

∂x

v′ ¼ v −
∂Dyy

∂x
:

The corresponding solution in the form of the RWPT equation is

given by Equation (21):

Xp tþΔtð Þ ¼ Xp tð Þ þ A Xp; tð Þ þ B Xp; tð Þ · ξ tð Þ
ffiffiffiffiffiffi
Δt

p
; (21)

where Xp(t) = position vector (Xp(t) Yp(t))
T of a particle at time t,

Xp(t + Δt) = position vector (Xp(t + Δt) Yp(t + Δt))T of a particle at time

t + Δt, Δt = time step, and ξ(t) = vector of distributed random variables

with a zero mean and a unit variance.

The RWPT equation solves the Fokker–Planck equation. If a large

number of particles are moving sporadically in a flow field starting

from X0 and Y0 at t0, and the probability density of the particles f at

any time, t is calculated by finding the fraction of particles in the vicin-

ity of a small area around the points X and Y in the flow field. The form

of the extended solution of the Fokker–Planck by RWPT equations

are represented by Equations (22) and (23), respectively (Kinzelbach,

1986; Uffink, 1990):

Xp tþ Δtð Þ ¼ Xp tð Þ þ uΔtþ ∂Dxx

∂x

� �
Δt

þ u
Vj j Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αL Vj jΔt

p
−

v
Vj j Z′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αT Vj jΔt

p
;

(22)

Yp tþ Δtð Þ ¼ Yp tð Þ þ vΔtþ ∂Dyy

∂y

� �
Δt

þ u
Vj jZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αL Vj jΔt

p
−
v
Vj jZ′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αT Vj jΔt

p
;

(23)

where Xp = particle position in x direction, Yp = particle position in y

direction, Z and Z′ = random numbers with zero mean and unit vari-

ance, |V| = resultant velocity Vj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2

p	 

, αL = longitudinal diffu-

sivity, αT = transverse diffusivity, Dij = αL Vj j½ �δij þ αL−αT½ �uv
Vj j (diffusion

tensor), δij = delta function (if i = j, δ = 1 and if i ≠ j, δ = 0), and u, v

are overland flow velocities in x and y directions, respectively.

The derivatives of the diffusion coefficients in Equations (22) and

(23) are evaluated using the finite difference scheme between two

adjacent cells. These terms in the RWPT equations play a significant

role to overcome the unrealistic accumulation of particles in stagna-

tion zones.

Typically, Manning's formula is used for the velocity computations

in x and y directions, which are given by Equations (24) and (25):

u ¼ 1
n
Rh

2=3Sx
1=2; (24)

v ¼ 1
n
Rh

2=3Sy
1=2; (25)

where Rh = hydraulic radius, and Sx = ∂z/∂x and Sy = ∂z/∂y are ground

surface slopes of cells in x and y directions, respectively.

McCuen (1989) simplified Manning's formula for velocity compu-

tations by assuming the values for Rh and n. This forms a relationship

between the velocity and bed slope. His empirical equations for over-

land flow velocities are shown in Equations (26) and (27):

u ¼ k
3:281

Δz
Δx

100

� �0:5

; (26)

v ¼ k
3:281

Δz
Δy

100

� �0:5

; (27)

where k =
1
n
Rh

2=3 roughness coefficient which is tabulated in McCuen

(1989; the tabulated values for k are in FPS Q4system, therefore, these

values are converted to SI Q5system in the above equations), Δx and

Δy = cell dimensions in x and y directions, respectively, andΔz = (z2 − z1)

is the difference in the bed elevations between two adjacent cells.

Three different duration scenarios are used for the computation

of inundation depths. The inundation depths for a pulse with a very

short duration (considered as an instantaneous duration case in this

study) and for a pulse with an infinite duration in a given cell are com-

puted by using Equations (28) and (29), respectively:

h tð Þ ¼ n tð ÞVp

ΔxΔy
; (28)

h tð Þ ¼ h t−Δtð Þ þ n tð ÞVp

ΔxΔy
(29)

where Vp = volume of water per particle, h(t) = inundation depth at

time t, h(t − Δt) = inundation depth at time, t − Δt and n(t) = number

of particles at time, t. Equation (29) represents a convolution over

the time step, Δt.

In order to compute the inundation depths for a pulse with a finite

duration (the finite duration corresponds to the time base of a flood

hydrograph), Equations (29) and (30) are used:

h tð Þ ¼ h t−Δtð Þ þ n tð ÞVp

ΔxΔy
− h t−τð Þ: (30)

When there is an inflow of a flood from the location of a dam

(i.e., t ≤ τ), the inundation depth is calculated using the convolution for-

mula (represented by Equation (29)). When the inflow of flood is

stopped (i.e., t > τ), the deconvolution formula (represented by Equa-

tion (30)) is used for the computation of remaining inundation depths.

2.2 | Data used for the hypothetical city

In this study, a hypothetical city is represented by a domain of

2,000 m in x direction and 500 m in y direction (Figure F11). Three differ-

ent types of building configurations are considered: (a) single block of

buildings, (b) detached buildings, and (c) random buildings (Figure F22).

The domain of each building configuration is divided into a number

of cells, wherein each cell has the dimensions of 25 m by 25 m.

A dam is located at x = 300 m in the city with a width of 500 m. In

the example presented herein, it is assumed that the middle third

of the dam breaks, and the city is flooded. The flood is monitored at

different times to study the propagation of the flood wave and its

analysed impacts in the city. The area of a reservoir is 300 m by

500 m (see Figure 2). The number of particles is 100,000 that represent
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the volume of the hydrograph. The longitudinal diffusivity (αL) and the

transverse diffusivity (αT) are 5 m. The time step (Δt) is 1 min. Three dif-

ferent duration scenarios are used to represent the flood hydrographs

(FigureF3 3). For an instantaneous pulse, the duration, τ, is 1 min, for an

infinite pulse, τ is infinite, that is, ∝ min, and for a finite pulse, τ is

20 min. The time span for the simulations is 840 min. The parameters

are summarized inTableT1 1.

Two types of artificial digital elevation models (DEMs; FigureF4 4)

are considered in this study in which the flood flow is driven from

the left to the right direction, and the flow is prohibited from the

top and bottom boundaries. The first DEM is generated with a uniform

global slope (S1), and the second DEM is generated with randomly

variable local slopes but represented with an average global slope

(S2). The buildings act as barriers to the particle movement, wherein

the particles attain equal probabilities of 0.5 for moving in both direc-

tions (right and left of the building) while facing buildings.

3 | RESULTS

In this section, three cases are discussed; Case 1: a pulse of the flood

with an instantaneous duration, Case 2: a pulse of the flood with an

infinite duration, and Case 3: a pulse of the flood with a finite dura-

tion. In this paper, 18 different simulations based on the RWPT

FIGURE 1 TheQ6 domain of a hypothetical city (2,000 m by 500 m)

FIGURE 2 Three different types of building configurations are shown: (a) single block of buildings, (b) detached buildings, and (c) random
buildings with three chosen locations used for computing the depth hydrographs
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method are analysed for three different building configurations,

two different slopes, and three different shapes of hydrographs. All

figures in each case (Figures 5 F5�F10–10) represent three simulations

performed in three different types of building configurations. Two

earth surface profiles are used (one is the DEM with a uniform global

slope, whereas the other is the DEM with randomly variable local

slopes), representing six simulations for each case discussed herein.

Initially, the dam reservoir is full of water, and suddenly, the dam

breaks (the middle one third of the dam length is removed). The flow

is released immediately in the form of a flood. Three different shapes

of inflow hydrographs (in the form of pulses), as shown in Figure 3,

represent the propagation of a DW in the hypothetical city, where

pulses are discussed for three different cases. Simulated results show

the different propagating effects of DWs in the example city. The

flood propagations are presented temporally at 10, 100, 220, and

420 min. The same colour scale is used for all the three cases in order

to make comparison among the cases easier.

3.1 | Case 1: A pulse of flood with an instantaneous
duration

A pulse with a very short duration (considered as an instantaneous

duration, see Figure 3a) is a flood wave from the reservoir that lasts

for a very short time (τ = 1 min), occurring after the breach of a dam

(see Figure 2). The DW that has the duration of 1 min is considered

as an instantaneous DW. The occurrence of an instantaneous

duration pulse is not practically possible. However, the discussion of

such a short duration wave is presented as a reference case for the

comparisons.

Figure 5 represents simulations performed for the DEM with

a uniform global slope, whereas Figure 6 represents simulations

performed for the DEM with randomly variable local slopes. In Case

1, because the pulse is of an instantaneous duration (i.e., τ = 1 min),

corresponding depths are very small for both types of DEM. The max-

imum depth of 0.1 m (represented by the red colour) does not occur in

both of the figures (Figures 5 and 6) representing the downstream

FIGURE 3 Flood hydrographs representing three types of pulses:
(a) instantaneous pulse with a duration, τ = 1 min, (b) infinite pulse
with a duration, τ = ∝ min, and (c) finite pulse with a duration,
τ = 20 min

TABLE 1 Summary of the parameters and data used for the hypothetical city

S. no Parameters Instantaneous pulse Infinite pulse Finite pulse

1 Discharge, Q (m3/min) 150 150 150

2 Duration of a pulse, τ (min) 1 ∝ 20

3 Roughness coefficient, k 1 1 1

4 Number of particles, N 100,000 100,000 100,000

5 Area of a reservoir, A (m2) 300 × 500 300 × 500 300 × 500

6 Cell dimensions (m2) 25 × 25 25 × 25 25 × 25

7 Overall slope of a DEM (uniform global slope, Figure 4a) 0.0005 0.0005 0.0005

8 Overall slope of a DEM (randomly variable local slopes, Figure 4b) 0.0005 0.0005 0.0005

9 Time step, t (min) 1 1 1

10 Longitudinal diffusivity, αL (m) 5 5 5

11 Transverse diffusivity, αT (m) 5 5 5

12 Average velocity (DEM with a uniform global slope), Vavg (m/min) in x direction 4.09 4.09 4.09

13 Average velocity (DEM with randomly variable local slopes), Vavg (m/min) in x direction 4.09 4.09 4.09

Note. DEM: digital elevation model.
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hypothetical city, apart from Figure 6 where it occurs in the reservoir

at all temporal simulations. Because of the random changes in the local

slopes, some of the slopes are negative. Hence, the flood starts filling

the ditches or pits initially until it overwhelms these ditches or ponds,

thereby causing an increase in inundation depths.

In Figure 5, the DW surrounds the buildings at t = 220 min for the

first two types of building configurations (single block of buildings and

detached buildings) and at t = 100 min for the other type of building

configurations (random buildings), where particles have a probability

of 0.5 for drifts in opposite directions parallel to the fronts of buildings

FIGURE 4 Digital elevation models are
represented by two different types of
gradients: (a) uniform slope and (b) randomly
variable local slopes but with a uniform global
slope

FIGURE 5 Simulation of a pulse with an instantaneous duration of the diffusive wave for time periods of (i) t = 10 min, (ii) t = 100 min, (iii)
t = 220 min, and (iv) t = 420 min in a hypothetical city, consisting of (a) single block of buildings, (b) detached buildings, and (c) random
buildings (digital elevation model: uniform global slope)
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in order to move around them in the open spaces of streets or roads.

The algorithm works as intended, and the flood flow does not go

inside buildings but rather moves around them. The yellow colour

represents depths in the range of 0.01 to 0.1 m, which occur initially

after the flood starts flowing in the hypothetical city. After some

time, it starts to disappear (e.g., at t = 420 min, except in front of

buildings). The range of the blue colour depths is 0.0001 to 0.001

m, and the green colour depths is 0.001 to 0.01 m. These small

depths show that the instantaneous duration flood causes small

inundations in the flow domain. Simulations of the DW are shown

till 420 min of elapsed time.

In Figure 6, the pattern of DW propagation is different from the

pattern discussed in the last paragraph. For instance, the DW does

not surround the buildings at t = 220 min in the domains of single

block of buildings and detached buildings but surrounds them at

t = 420 min. Results for the domain of random buildings are similar

to the previous case where the flood surrounds the buildings at

t = 100 min.

FIGURE 6 Simulation of a pulse with an instantaneous duration of the diffusive wave for time periods of (i) t = 10 min, (ii) t = 100 min,
(iii) t = 220 min, and (iv) t = 420 min in a hypothetical city, consisting of (a) single block of buildings, (b) detached buildings, and (c) random
buildings (digital elevation model: randomly variable local slopes)

FIGURE 7 Simulation of a pulse with an infinite duration of the diffusive wave for time periods of (i) t = 10 min, (ii) t = 100 min, (iii) t = 220 min,
and (iv) t = 420 min in a hypothetical city, consisting of (a) single block of buildings, (b) detached buildings, and (c) random buildings (digital
elevation model: uniform global slope)
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The general order of depths in all types of building configura-

tions from large values to small values is random buildings, a single

block of buildings, and detached buildings (see TableT2 2). In some sce-

narios, depths are larger for the domain of single block of buildings

than the domain of random buildings (e.g., at t = 420 min and

t = 840 min) due to the fact that the flood inundation depths for

the former type of domain are accumulated just in front of the sin-

gle block of buildings, which has a large frontal area. Maximum

depths in Table 2 reflect the existence of many random buildings

and a large frontal area in the case of a single block of buildings,

which offers more resistance to the flow as compared with three

detached buildings.

3.2 | Case 2: A pulse of flood with an infinite
duration

An infinite duration pulse (see Figure 3b) implies that the flood keeps

coming from the reservoir at dam breach towards the downstream

FIGURE 8 Simulation of a pulse with an infinite duration of the diffusive wave for time periods of (i) t = 10 min, (ii) t = 100 min, (iii) t = 220 min,
and (iv) t = 420 min in a hypothetical city, consisting of (a) single block of buildings, (b) detached buildings, and (c) random buildings (digital
elevation model: randomly variable local slopes)

FIGURE 9 Simulation of a pulse with a finite duration of the diffusive wave for time periods of (i) t = 10 min, (ii) t = 100 min, (iii) t = 220 min, and
(iv) t = 420 min in a hypothetical city, consisting of (a) single block of buildings, (b) detached buildings, and (c) random buildings (digital elevation
model: uniform global slope)
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hypothetical city for an unlimited duration after the breach of the dam.

This condition is not practically possible because a flood has to stop

after a certain duration. However, this case is presented as the other

extreme case that is opposite to the Case 1. Figures 7 and 8 illustrate

six types of simulations for Case 2.

The maximum depth is represented by a red colour contour which

is initially visible in the reservoir. As time passes, the value of the depth

away from the reservoir starts to and keeps rising due to the accumula-

tion of pulses at every time step for an infinite duration.When the flood

flow faces the buildings, it starts moving around them by the diffusion

process. In the case of a DEM with a uniform global slope (Figure 7),

RWPT simulation results show that the DW keeps propagating and

surrounds the buildings at t = 220 min for the single block of buildings

and detached buildings and at t = 100 min for the random buildings.

FIGURE 10 Simulation of a pulse with a finite duration of the diffusive wave for time periods of (i) t = 10 min, (ii) t = 100 min, (iii) t = 220 min,
and (iv) t = 420 min in a hypothetical city, consisting of (a) single block of buildings, (b) detached buildings, and (c) random buildings (digital
elevation model: randomly variable local slopes)

TABLE 2 Summary of results, representing maximum depths for three cases under various scenarios

t = 10 min t = 20 min t = 100 min t = 220 min t = 420 min t = 840 min

Type of DEM Type of pulse
Type of building
configurations Max. depth (m)

DEM
(a single uniform
global slope)

Pulse with an
instantaneous
duration

(1) Single block of
buildings

0.0538 0.0609 0.0694 0.0683 0.0819 0.0783

(2) Detached buildings 0.0539 0.0609 0.0694 0.0565 0.0421 0.0385
(3) Random buildings 0.0539 0.0609 0.1026 0.0446 0.0408 0.0379

Pulse with an
infinite duration

(1) Single block of
buildings

0.5211 1.0121 2.6636 4.6705 20.257 53.462

(2) Detached buildings 0.5217 1.0132 2.6639 4.8861 10.872 13.778
(3) Random buildings 0.5213 1.0126 4.9096 11.487 15.130 18.504

Pulse with a finite
duration

(1) Single block of
buildings

0.5211 1.0121 0.6770 1.3303 1.6125 1.5339

(2) Detached buildings 0.5217 1.0132 0.6771 1.2376 0.2896 0.1073
(3) Random buildings 0.5213 1.0126 2.2669 0.8603 0.5717 0.7681

DEM
(Randomly variable
local slopes)

Pulse with an
instantaneous
duration

(1) Single block of
buildings

0.1636 0.1782 0.1230 0.0820 0.0858 0.0367

(2) Detached buildings 0.1636 0.1783 0.1231 0.0821 0.0859 0.0366
(3) Random buildings 0.1641 0.1779 0.1231 0.0679 0.0978 0.0634

Pulse with an
infinite duration

(1) Single block of
buildings

1.4418 2.9705 17.729 24.623 24.999 47.714

(2) Detached buildings 1.4420 2.9713 17.732 24.626 25.013 47.727
(3) Random buildings 1.4435 2.9772 17.738 24.617 23.399 57.037

Pulse with a finite
duration

(1) Single block of
buildings

1.4418 2.9705 2.8484 1.5865 1.7174 0.7388

(2) Detached buildings 1.4420 2.9713 2.8489 1.5884 1.7184 0.7461
(3) Random buildings 1.4435 2.9772 2.8500 1.2948 1.9456 1.2792

Note. DEM: digital elevation model.
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After surrounding the buildings, the particles change their tracks and

start moving around buildings. Buildings offer barriers to the propaga-

tion of the particles. Particles accumulate in front of the buildings,

thereby causing inundation depths to increase, which is the expected

behaviour in the real world situations. In the case of a DEM with ran-

domly variable local slopes (Figure 8), the diffusion of the wave starts

slowly in contrast to the former case where the diffusion is rapid. The

pattern of diffusion is also different, and the locations of maximum

depths are random. Simulated results show that maximum depths do

not occur continuously. This means that pulses accumulate continu-

ously due to the continuous feeding of the flood from the dam. The

difference in the pattern of the DW is due to the random changes in

local slopes of the DEM.

3.3 | Case 3: A pulse of flood with a finite duration

A finite duration of the pulse (see Figure 3c) represents a typical flood

in nature. For this case, the flood starts to propagate from the location

of the dam breach for a certain duration, where it is treated as a con-

tinuous pulse. When the pulse stops propagating from the reservoir

after the duration τ, the flood volume that has entered the hypothet-

ical city is propagated in the downstream direction.

At t = 10 min, contours of depths are initially distributed over a

small area and at t = 20 min, again starting from the same location,

the DW is propagated a little further covering more areas. This

happens because the DW has a duration of 20 min, and new depths

must be added to previous depths (convolution), and the pulse is

propagating from the reservoir location. Here, the DW has the same

propagation pattern as it has in the case of an infinite duration of a

pulse. But once the feeding of the DW is stopped after 20 min, the

algorithm is programmed to deconvolute the depths after 20 min. This

case is represented in Figures 9 and 10.

In the case of a DEM with a uniform global slope, the DW starts

to propagate around the single block of buildings and detached build-

ings at t = 220 min. The domain of random buildings is the most

realistic representation of a city. Until t = 20 min, depths continuously

increase due to the flood flow from the reservoir location. After

20 min, no more volume is added, and the flood starts moving in the

direction of flow through the streets and around the buildings.

The maximum depths occur around the buildings for some time

because buildings block movement of the particles. The propagation

of the DW does not reach the right boundary of the domain by

t = 420 min, in contrast to the other two types of domains because

of the presence of numerous randomly distributed buildings decelerat-

ing the wave propagation. The DW propagates slowly in the case of a

DEM with randomly variable local slopes because undulated surfaces

slow down the speed of the wave build‐up.

Table 2 summarizes flood inundation depths resulting from simu-

lations for the propagation of the DW in a hypothetical city. Two dif-

ferent types of DEM are used in order to encompass all types of

surface elevations. Simulated results show the robustness of the pro-

posed model, thereby, it can be used for all types of DEMs ranging

from the uniform slope to the randomly distributed slopes.

In Figure F1111, subfigures a–c, subfigures d–f, and subfigures g–i

represent depth hydrographs for three chosen locations in the hypo-

thetical city (viz., Locations 1, 2, and 3) computed for the single block

FIGURE 11 Computed the depth hydrographs for three locations in the domain of a hypothetical city, where points are located at Location 1
(350 m, −250 m), Location 2 (900 m, −250 m), and Location 3 (1,500 m, −250 m) for two different types of digital elevation models (DEMs),
where the DEM with a uniform global slope is represented by S1 and the DEM with randomly variable local slopes but with a uniform global slope
is represented by S2
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of buildings, detached buildings, and random buildings, respectively. In

the same Figure 11, subfigures a, d, and g, subfigures b, e, and h, and

subfigures c, f, and i represent depth hydrographs of a pulse with an

instantaneous duration, an infinite duration, and a finite duration,

respectively.

For a DEM with a uniform global slope, the plots of the depth

hydrographs for an instantaneous duration pulse and a finite duration

pulse end after a finite duration, but the difference between the two

lies in the depth magnitudes. In contrast, the depth hydrograph for

an infinite duration is continuous. For a DEM with randomly variable

slopes, the overall shape of the depth hydrographs for an instanta-

neous duration pulse, an infinite duration pulse, and a finite duration

pulse is similar to the ones discussed for the case of a DEM with a uni-

form global slope. The difference between the depth hydrographs for

the two different types of DEMs lies in the local shapes and the

maximum values of the depths.

4 | DISCUSSION

No numerical solution schemes exist that are exact and completely

error‐free. Although the RWPT simulation method has some short-

comings, it has significant advantages over traditional deterministic

schemes. Traditional solutions of the 2‐D Saint‐Venant equations

need massive computations in a short time in order to simulate flow

problems such as the dam break problem, flood waves, and so forth.

The main issues in the traditional techniques are (a) the computa-

tional time to solve the continuity equation and the two momentum

equations simultaneously and (b) the instability or the numerical dif-

fusion of the numerical schemes due to the chosen time step. A

detailed discussion regarding numerical schemes for free surface

flows is available in Abbott and Basco (1989). The RWPT method

solves the approximate version of the full Saint‐Venant equations,

which is called the DW model. It is simpler yet mathematically sound

in the sense that it is one equation that combines the continuity and

the two momentum equations. Due to its explicit nature, it does not

suffer from numerical diffusion and is therefore numerically stable. It

only suffers from noises on the edges of the water zones which can

be avoided by having a sufficient number of particles. In order to

avoid overshoot, the time step should be chosen small enough to

avoid such a problem (Kinzelbach & Uffink, 1991).

The RWPT method in the current study is different from the

smoothed particle hydrodynamics (SPH) method, which was intro-

duced by Gingold and Monaghan (1977). In the SPH method, the

variable under study is represented by particles, where each particle

has a spatial distance known as the, “smoothing length.” The variable

under study is smoothed by a kernel function over the smoothing

length. The physical quantity of any particle can be obtained by sum-

ming the relevant properties of all the particles which lie within the

range of the kernel. However, the RWPT method is a stochastic pro-

cess that is used to simulate Lévy flight and diffusion models such as

a Brownian motion. Similar to the SPH method, the variable under

study is represented by particles, but these particles have neither

kernel function nor size (smoothing length). Particles have to move

according to some rules and change their position in time.

One of the main limitations of the RWPT method is the random

fluctuations of computed volumes from the number of particles.

According to Kinzelbach (1988), these random fluctuations have an

inverse relationship with the square root of the particle count. There-

fore, increasing the number of particles can improve the accuracy of

the results obtained. This section presents a detail statistical analysis

of this limitation.

A sensitivity analysis was performed for selecting the appropriate

number of particles to represent the given volume of a hydrograph,

where 1,000, 2,500, 5,000, 7,500, 10,000, 25,000, 50,000, and

100,000 particles were chosen for the analysis. Flow hydrographs

were computed for comparison at three locations, as shown in

Figure 2 (represented by the purple colour stars). These locations are

the following: Location 1 (350 m, −250 m), Location 2 (900 m,

−250 m), and Location 3 (1,500 m, −250 m).

Figure F1212 shows that the overall shape of the hydrograph is not

affected by the number of particles. However, the statistical investiga-

tion shows that pronounced numerical fluctuations occur with a lesser

FIGURE 12 Sensitivity analysis for the number of particles for
simulation of a diffusive wave

12 NOOR AND ELFEKI1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114



number of particles, meaning the effect can be diminished by increas-

ing the particle number. Root mean square error (RMSE) analysis was

performed for the different numbers of particles tested. The case for

100,000 particles served as a reference case for the RMSE compari-

sons. InTableT3 3, the general trend of the RMSE values for the different

numbers of particles indicates that the error decreases as the number

of particles increases. The RMSE values converge from 0.046 m at

1,000 particles to 0.013 m at 50,000 particles, 0.025 m at 1,000

particles to 0.005 m at 50,000 particles, and 0.01 m at 1,000 particles

to 0.001 m at 50,000 particles for Locations 1, 2, and 3, respectively.

Thereby, statistical results indicate that selecting numerous particles

will smooth out the fluctuations in the flow hydrographs (as demon-

strated in Figure 12) and will produce plausible results.

The paper presents a stochastic RWPT technique to solve the

DW equation in 2‐D. Elfeki et al. (2011) solved Equation (20) by

using the RWPT model in which they represented the volume of a

hydrograph with particles moving in the given flow field. This paper

presents an improved algorithm for computing the inundation depths

from the propagation of a DW in a city. In this method, the volume

of the hydrograph is represented by a pulse with a certain duration.

The model is based on the particle tracking technique, thus, the

volume of hydrograph is represented by a finite number of particles

in which each particle carries a fixed amount of volume of the

hydrograph. The volume per particle is obtained by dividing the vol-

ume of the pulse by the number of particles. The superposition of

the convective movement and the diffusive movement of these parti-

cles in the flow field provide an analogy with the propagation of the

DW in the same flow field. The dispersion process allows the spread-

ing of particles laterally in front of the buildings. This is based on the

tracking algorithm which is aligned with the flow velocity directions.

The algorithm presented by Elfeki et al. (2011) has several

shortcomings. Their algorithm is based only on a continuous pulse

(an infinite duration pulse). This paper presents three different cases

in terms of the duration of the DW. Quantitative comparisons of

results for these cases (seeTable 2) show that simulations for an instan-

taneous duration and an infinite duration produce underestimated

and overestimated inundation depths, respectively, and the case of a

finite duration pulse produces reasonable results for flood inundation

depths. The finite duration case is the correct boundary condition

for the flood simulations. However, the comparison is essential to

establish a fact that Elfeki et al. (2011) used a wrong boundary condi-

tion for the RWPT based simulation. Therefore, this study presents an

improved RWPT algorithm with the emphasis on using correct bound-

ary conditions.

5 | CONCLUSIONS

This paper proposes an alternate way for modelling flash floods.

The DW is modelled stochastically as an equation solved by the

explicit random walk method. The proposed stochastic method has

two major advantages over the traditional deterministic numerical

schemes:

1. Lesser computational costs, and

2. No instability issues because of its efficiency.

A comparison is drawn among three cases in this study: (a) a pulse

with an instantaneous duration, (b) a pulse with an infinite duration,

and (c) a pulse with a finite duration. The three cases are simulated

in three different domains of building configurations: (a) single block

of buildings, (b) detached buildings, and (c) random buildings with

two different types of gradients: (a) a uniform global gradient and

(b) varying local gradients.

1. The three cases show the different patterns of the propagation of

DWs.

2. The DW propagates in the streets around the buildings, irrespec-

tive of the number of buildings present.

3. The DW moves rapidly as long as it does not face any building or

a block of buildings.

4. Greater depths occur in front of the buildings and smaller depths

occur away from the buildings.

5. For an instantaneous duration of the pulse, the depths are very

small because of the short duration of the flood wave at the loca-

tion of the dam breach.

6. For an infinite duration of the pulse, the depths are convoluted

over the time steps, and the propagation of the DW at any time

period always commences from the same reservoir location.

7. The case of the pulse with a finite duration is the most practical

representation of the DW propagation. The flood starts to prop-

agate from the same reservoir location for a certain duration by

the principle of the convolution over the time steps. After a

certain duration, the feeding of the pulse ends and the DW is

simulated in the city on the basis of the available flood flow by

the principle of the deconvolution over the time steps. The

simulation of the DW in this manner was found to be the most

reasonable representation of the flood.

TABLE 3 Representation of RMSE values of a different number of particles for three chosen locations (Locations 1, 2, and 3) in the hypothetical
city

Number of particles

1,000 2,500 5,000 7,500 10,000 25,000 50,000 100,000

RMSE (m)

Location 1 0.046 0.027 0.025 0.024 0.016 0.012 0.013 0.000

Location 2 0.025 0.018 0.014 0.007 0.010 0.006 0.005 0.000

Location 3 0.010 0.005 0.003 0.004 0.003 0.003 0.001 0.000

Note. RMSE: root mean square error.
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