
 

 

 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/csc2.20275. 

 

This article is protected by copyright. All rights reserved. 

 

IDENTIFYING INBRED LINES WITH RESISTANCE TO ENDEMIC DISEASES IN EXOTIC MAIZE GERMPLASM 

Ezequiel A. Rossi, Marcos Ruiz, Natalia C. Bonamico and Mónica G. Balzarini 

 

E. A. Rossi – M. Ruiz – N. C. Bonamico 

Mejoramiento Genético, FAV, Universidad Nacional de Río Cuarto, Argentina 

Instituto de Investigaciones Agrobiotecnológicas, (UNRC-CONICET).  

M. G. Balzarini 

Estadística y Biometría, FCA, Universidad Nacional de Córdoba, Argentina 

Unidad de Fitopatología y Modelización Agrícola (INTA-CONICET). 

erossi@ayv.unrc.edu.ar 

Abstract 

Mal de Rio Cuarto (MRC) and common rust (CR), caused by Mal de Rio Cuarto virus 

(MRCV) and Puccinia sorghi, respectively, are endemic diseases affecting maize (Zea mays 

L.) production in Argentina. Exotic maize germplasm is an important source of resistance to 

these diseases. The aim of this work was to identify maize lines that exhibit MRC and CR 

resistance. A multi-environment trial was performed to phenotypically assess a diverse panel 

of inbred lines from the International Maize and Wheat Improvement Center (CIMMYT). 

The maize lines were evaluated using a disease severity index (DSI) for MRC and CR in the 

central area of Argentina. A multi-trait mixed linear model was used to identify the lines with 

the best performance for both diseases and estimate genetic parameters. No correlation of 

resistance between MRC and CR was found among the tested lines. Additionally, BLUPs of 

genotypic effects were used as response variable to perform a genome-wide association study 

(GWAS). The GWAS revealed promising alleles for maize breeding, two associated with 

MRC and three with CR. Lines with lower DSI for MRC and CR were identified as novel 

materials for incorporating resistance to the local germplasm.  
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Introduction 

Maize (Zea mays L.) accounts for 33% of the global cereal crop production, with Argentina 

ranking fourth in exports (OECD-FAO, 2018). The crop is affected by several pathogens that 

cause different diseases and reduce production worldwide (Yang et al. 2017). In Argentina, 

Mal de Rio Cuarto (MRC) and common rust (CR), caused by Mal de Rio Cuarto virus 

(MRCV) and Puccinia sorghi, respectively, are endemic diseases that affect maize 

production, causing severe yield losses with different intensities every year (Gimenez Pecci 

et al. 2012; Botta & Gonzalez 2015; Guerra et al. 2019). MRCV is classified as a member of 

the genus Fijivirus, family Reoviridae (Milne et al. 2005), and is transmitted in a persistent 

propagative manner by insect vectors, mainly Delphacodes kuscheli Fennah (Ornaghi et al. 

1993). Puccinia sorghi belongs to the Basidiomycota group and is a biotrophic, heteroecious 

macrocyclic fungus that has been found to have complete occurrence cycles in Argentina, 

with epidemiological implications (Guerra et al. 2019). 

Genetic resistance is the main strategy for reducing production losses caused by MRC in 

Argentina (Bonamico et al. 2012). It has also been documented as the tool for the control of 

damage produced by CR in USA (Olukolu et al. 2016). Resistance to MRC behaves as a 

quantitative trait; molecular markers for this trait have been identified associated with 

resistance loci in biparental populations evaluated in the area where the disease is endemic 

(Bonamico et al. 2012; Di Renzo et al. 2004; Rossi et al. 2015). In turn, resistance to CR in 

maize can be quantitative but also qualitative, and is conferred by dominant genes, with more 

than 25 major genes called Rp having been identified (Delaney et al. 1998; Hooker, 1985; 

Vanderplank, 1984). Works mapping genomic regions for MRC (Bonamico et al. 2012; Di 

Renzo et al. 2004; Rossi et al. 2015) and CR (Brown et al. 2001; Lübberstedt et al. 1998) 

have reported resistance alleles. 

The International Maize and Wheat Improvement Center (CIMMYT) is an important source 

of diverse germplasm for maize breeding programs worldwide. CIMMYT maize lines are 

carefully selected for their good combining ability and a significant number of value-added 

traits such as resistance to disease (Wu et al. 2016). Several mixed linear models used to test 

the effect of a particular genomic region on the phenotype have been proposed with the aim 

of determining genetic merit and selecting genotypes (Malosetti et al. 2008). Multivariate 

mixed models allow us to characterize genotypes considering more than one trait and 
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potential correlations among traits (Covarrubias-Pazaran, 2016). This model might provide 

information that can help identify materials with resistance to both MRC and CR. 

Additionally, a genome-wide association study (GWAS) on diverse panels of germplasm 

with high-density single nucleotide polymorphism (SNP) arrays can offer a valuable first 

insight into trait architecture for subsequent validation as a breeding tool (Korte and Farlow, 

2013). A systematic literature review identified 110 studies that mapped genomic regions for 

viral or fungal diseases in maize (Rossi et al. 2019). Chromosomes 1, 6 and 10 were reported 

as linkage groups that contain major-effect genomic regions for resistance to viral disease. In 

turn, chromosomes 2, 5 and 10 carried major-effect loci for fungal disease. Therefore, there 

might be regions conferring resistance to both viruses and fungi.  

An extensive molecular characterization of CIMMYT maize lines was carried out by Wu et 

al. (2016), suggesting high genetic diversity. These maize lines have been phenotypically 

evaluated for resistance to several diseases caused by fungi and viruses in different latitudes 

(Chen et al. 2015; Ding et al. 2015). The aim of this work was to identify CIMMYT maize 

lines that exhibit MRC and CR resistance and promising alleles for breeding programs. 

Materials and methods 

Plant material and field trial 

A diverse panel of 165 maize lines from CIMMYT (Supplementary Table 1) was evaluated 

for resistance to MRC and CR during the 2017-2018 and 2018-2019 crop seasons in three 

environments (Sampacho 2017-2018 (SA18), Río Cuarto 2017-2018 (RC18), and 2018-2019 

(RC19)) of the central area of Argentina. The trials were conducted under natural infection, 

with trial plots being established adjacent to winter grass crops, the natural reservoirs of 

MRCV and its vector insect (Rodriguez Pardina et al. 1998). Regarding common rust, since 

the inoculum is dispersed by wind (Botta and Gonzalez 2015), infestation is highly prevalent 

in the area. In each environment, a partially replicated (p-rep) design was used (Cullis et al. 

2006), with 25% of the genotypes with three replications and the remaining genotypes with 

one replication. Planting was performed at double density; three weeks after emergence, 

plants were thinned to 15 plants per plot. Hand weeding was performed as necessary in all 

plots. Each plot consisted of a single row, 3 m in length and 0.52 m in width. In each 

environment, maize lines Mo17 and B73 were planted in each block as susceptible checks 

and BLS14 as a resistant line. 
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Phenotypic data  

All plants in each plot were evaluated and scored for MRC and CR by observing symptoms at 

flowering stage. For MRC, each plant was classified by the degree of severity, according to 

the scale proposed by Ornaghi et al. (1999): 0 = no symptoms; 1 = presence of enations; 2 = 

presence of enations + shortened internode; 3 = maximum development of MRC disease (ears 

with no kernels). For CR, the ear leaf of each plant and the leaves immediately above and 

below the ear leaf were classified for severity following the diagrammatic scale proposed by 

Peterson et al. (1948): 0 = asymptomatic plant, 1 = up to 1% of foliar area affected, 2 = up to 

5% foliar area affected, 3 = up to 10% foliar area affected, 4 = up to 20% foliar area affected, 

and 5 = up to 50% foliar area affected. A disease severity index (DSI) based on disease 

degree was calculated for each plot and used to rate lines for their resistance to MRC and CR, 

according to Di Renzo et al. (2002). The DSI ranges between 0 (no diseased plants) and 100 

(severely diseased plants). 

    
∑                                 

                                              
      

Genomic data  

The line characterization used for this study was that performed using SNP markers (Wu et 

al. 2016) available from http://data.cimmyt.org/dvn. Of a total of 362,008 SNPs, 78,543 were 

selected, which were distributed in the 10 chromosomes. Selection was based on the quality 

of the marker. In a first step, minor SNP states and minor allele frequency <0.05 were 

removed. Only markers with low missing data rate (<35%) were kept. The genomic database 

used in this work is available from https://github.com/PlantbreedingUNRC/GWAS-MRC-

CR. 

Statistical analysis  

Phenotypic data were analyzed using a mixed linear model (MLM), following Malosetti et al. 

(2008), with the aim of adjusting a multi-trait model. Our multi-trait multi-environment data 

set consisted of I genotypes, evaluated in J environments with measurements on K traits (I = 

165, J = 3, K = 2). Since we are focused on the genetic variation within the population rather 

than on genotype variation, we assumed random genotypes and genotype-environment (GxE) 
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interactions. The trait-environment combination was considered as fixed. The MLM for the 

data was as follows: 

y = Xβ + Zu + ε  

where y is the vector of phenotypic observations, β is a vector of fixed effects due to the 

environment-trait combination, vector u collects the random genotypic effects per trait by 

environment combination. Random genetic effects are assumed to be normally distributed, 

N(0,   
 ); with G the genetic (co)variance matrix (vcovG). Finally, ε is a vector of non-

genetic residuals associated with each observation and normally distributed i.i.d. N(0,   
 ). 

We fitted models that assume the effects of genotypes to be independent (without genetic 

correlation) and models with correlated effects of genotypes expressed by a realized additive 

relationship matrix, which was estimated from SNPs, as proposed by Endelman (2011). The 

GxE effects were assumed to be normally distributed with zero mean and different variance-

covariance matrix structures (homogeneous variance model and heterogeneous variance 

model) (Covarrubias-Pazaran, 2018). The G and G×E random effects were assumed to be 

independent. The likelihood ratio test was used to determine the most suitable variance-

covariance matrix structure model. Then, the Akaike information criterion (AIC) was used to 

select between models with and without genetic correlation. The MLMs were fitted using 

‗mmer‘ function in ―sommer‖ package (Covarrubias-Pazaran, 2016), software R (R Core 

Team, 2016). The variance components (REML estimates) were used to calculate mean-basis 

heritability, as proposed by Hallauer and Miranda (1988).  

In each environment: 
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Where   
  is the genotypic variance,    

  is the variance of G×E interaction,   
  is the error 

variance,   is the number of environments, and   is a weighted mean of the number of 

replications per genotype in each environment and across environments. The weighting used 

was that proposed by Holland et al. (2003).  

After fitting the MLM for the phenotypic values, the BLUPs of genotypic effects were 

extracted to be used in the GWAS analysis as response variables that do not carry 

environment effects. Association tests for the 78,543 SNPs were performed using the 

software TASSEL 5.2.59 (Bradbury et al. 2007). Another MLM was used for GWAS using 

PCA + K model (Zhao et al. 2007) to control bias due to potential genetic structure in the 

panel of lines. For this model, the first five PCs and the kinship matrix obtained with a 

centered identity by state (IBS) coefficient were used. The multiple test correction for the 

GWAS was conducted following the methodology proposed by Li and Ji (2005). First, we 

determined the effective number of tests from the eigenvalue decomposition of the molecular 

data matrix using the ―eigen‖ function in R software (R Core team, 2016). Then, this 

effective number (almost half a total number of markers) was used to determine the 

significant level following the Bonferroni-type of adjustment. The putative candidate genes 

adjacent to each genomic region were identified in MaizeGDB (http://www.maizegdb.org). 

Results  

The frequency of the DSI values in both diseases showed a continuous distribution in each 

environment (Figure 1). The histograms show a normal distribution for DSI-MRC and a 

skewed distribution for DSI-CR. Logarithmic transformation was applied, but no differences 

were observed. Therefore, for simplicity, the analyses were carried out with the original 

scale. Mixed models for DSI data that included correlation among lines, measured through a 

matrix of additive genetic relationships estimated from SNPs, yielded better fits than the 

models that assumed lines to be independent (Table 1). The model with heterogeneous 

variance-covariance matrix for the G×E effects and genetic correlation between G effects was 

the most suitable for explaining variability of DSI-MRC and DSI-CR (Table 1).  

In all environments, the joint analysis of DSI-MRC and DSI-CR, from the selected model 

(HeVgc), revealed that average DSI in each environment was higher for CR than for MRC. 

The mean-basis heritability was similar for both traits in the RC-17-18 environment, whereas 

in RC-18-19 it was greater for MRC. Non-significant correlation was observed between DSI-
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MRC and DSI-CR. In the SA-17-18 environment, the susceptible lines showed a relatively 

low DSI level and the CIMMYT lines varied slightly (Table 2). Therefore, SA-17-18 was not 

included in further analyses. With the aim of obtaining a precise estimation of BLUPs of 

genotypes, a new linear mixed model was fitted with variance-covariance structure for the 

homogeneous G×E interaction, including only the environments RC-17-18 and RC-18-19. 

The mean-basis heritability estimate across environments was 0.54 for MRC and 0.58 for CR.  

Of the 165 lines evaluated, eight lines for MRC and eight lines for CR were selected, using 

the 5
th

 percentile of the BLUPs of genetic effects, as best performing lines across 

environments (Table 3). Lines derived from African mid-altitude/subtropical, lowland and 

subtropical breeding programs were the best among the lines selected for CR resistance. For 

MRC resistance, in addition to the above mentioned groups, South America LT breeding 

program is included. The lines CML509, belonging to the CIMMYT heterotic group A, and 

CML321, belonging to the CIMMYT heterotic group A, were selected among the best lines 

for both diseases (Table 3). 

Genome-wide association study  

Linkage disequilibrium (LD) for the entire panel and within chromosomes was measured 

(Figure 2). LD decay varied across the 10 chromosomes, as well as across different genetic 

regions within chromosomes. The average LD decay distance over all 10 chromosomes in the 

entire panel with r
2 

= 0.1 was 20 kb. The rapid LD breakdown proves that the panel studied 

was truly diverse. A Manhattan plot was obtained for each disease using the selected 78,543 

SNPs for GWAS (Figure 3). A total of two genomic regions for DSI-MRC and three for DSI-

CR were significantly associated at a threshold of -log10 (P-value) > 4 (P-value < 0.0001) 

(Table 4). The genomic regions of resistance to MRC were located in chromosomes 2 and 3. 

For CR, regions were identified in chromosomes 2, 8 and 9. Each selected genomic region 

explained 13–20% of the total genotypic variance, whereas together they explained 24% of 

the total proportion of genotypic variance for resistance to MRC and 19% for CR. Most of 

lines mentioned in Table 3 carry the resistant allele for genomic regions associated with DSI 

of both diseases. 

Discussion 

Mal de Río Cuarto disease is transmitted by insects; hence, natural disease pressure varies 

between environments (Presello, 1991). In CR, pathogen development largely depends on 



 

 

 
This article is protected by copyright. All rights reserved. 

8 
 

temperature and air humidity conditions, which are characteristic of each environment (Botta 

& Gonzalez, 2015). This fact might explain the observed heterogeneous variance-covariance 

structure in the G×E interaction. Such structure suggests that each environment has its own 

genetic variance and that there is no genetic correlation between environments. Plant breeders 

routinely deal with data involving collections of genotypes evaluated for multiple traits across 

multiple environments. Mixed models offer a suitable framework to jointly analyze such data 

without imposing unrealistic assumptions, like zero genetic correlations between 

environments and traits, and constant variance across environments (Malosetti et al. 2008). In 

our study, the correlation between DSI-MRC and DSI-CR was non-significant. However, the 

multi-trait model that obtains BLUPs of genotypes considering correlation between traits, 

such as the one used in this study, would be a powerful tool in cases of high genetic 

correlation between traits. 

In this work, a diverse population of maize lines was used, covering the different breeding 

programs and environments of origin present in the CIMMYT germplasm. The results 

indicate the wide genotypic variability in the mapped population. Heritability estimated for 

DSI-MRC was higher than that observed in previous studies that evaluated biparental 

populations (Bonamico et al. 2012; Di Renzo at al. 2004; Rossi et al. 2015). For the DSI- CR, 

the estimated heritability values were lower than those observed by Lübberstedt et al. (1998) 

and Olukolu et al. (2016), who evaluated four biparental populations and a diverse panel of 

maize lines, respectively. The values for the estimated mean-basis heritability across two 

environments reveal predominance of additive control of responses of maize inbred lines to 

both diseases and favor the power of QTL detection, as suggested by Yu et al. (2008). Precise 

phenotypic evaluation is very important to identify promising genotypes and increase the 

power to detect genomic regions of interest. Therefore, we estimated BLUPs of genotypes 

considering only two environments, where natural pressure of both diseases allowed us to 

observe the high genetic variability present in the germplasm and discriminate genotypes by 

their reaction to both diseases. The 5
th

 percentile of the BLUPs of genetic effects allowed us 

to select lines with the best performance for MRC and CR. The incorporation of these maize 

lines into local maize breeding programs will contribute to the increase of resistance to both 

diseases. 

Molecular characterization of CIMMYT maize lines was performed by Wu et al. (2016). 

These authors indicate that three major environmental adaptation groups were clearly present 
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in the collection of CIMMYT maize lines (CML). To consider this population structure in the 

GWAS, we used a mixed model with population structure inferred by principal component 

analysis, as fixed effect, and pairwise kinship coefficients matrix as random effect (Zhao et 

al. 2007). The lines selected by using the 5
th

 percentile of the BLUPs of genetic effects 

belong to Lowland Tropical and Subtropical/Mid-altitude subgroups.  

Using GWAS, we identified one region in bin 2.02 for DSI-MRC that coincides with 

previously reported virus resistance QTL. Redinbaugh et al. (2018) reported QTL cluster for 

virus-borne diseases in this bin. Specifically, the cluster reported in bin 2.02 contains a major 

QTL resistant to Mal de Río Cuarto virus and/or Maize Rough Dwarf virus, which was 

patented by Martin et al. (2010). In CR, specific resistance prevents pathogen dispersal in the 

plant via a hypersensitivity reaction, whereas general or quantitative resistance reduces the 

pathogen development rate in mature leaves and, therefore, is more durable (Vanderplank, 

1984). In our work, some of the identified genomic regions for resistance to CR were located 

in positions close to QTL identified by Lubberstedt et al. (1998), who evaluated four 

biparental populations of European flint maize.  

In our work, no genomic region reported for resistance to MRC disease is located on the 

same genomic regions as those with CR disease. The meta-analysis used by Rossi et al. 

(2019) to evaluate the consensus among QTL findings in the literature partially showed the 

same results. The low correlation between the DSI-MRC and DSI-CR traits and the absence 

of common regions to both traits is consistent with findings reported by Lisec et al. (2008), 

who indicated that the chance of sharing at least one QTL between traits increases with 

stronger correlations, and overall the correlation increases with the number of shared QTL.  

Several genes are probably involved in natural variation for plant disease resistance (Kump et 

al. 2011). We identified genes immediately adjacent to the five genomic regions here 

identified, which may function in known plant disease-resistance pathways. The putative 

candidate gene Zm00001d006775 codes for Protein PELPK, which is responsive to biotic 

factors, elicitors, and defense hormones (Rashid, 2016). The predicted function of candidate 

gene Zm00001d011628 is receptor-like protein kinase (RLK). Morris and Walker (2003) 

reported that the RLK gene family is involved in pathogen recognition, among other 

functions. Plant cytochrome P450 is also a predicted function of candidate gene: it 

participates in many modifications of plant molecules among which phytoalexin production 

and other defense responses could be found (Zhou et al. 1999). 
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Our results suggest that the studied population of maize lines have high genetic variability 

and reveal novel sources of resistance to MRC and CR diseases. Additionally, genomic 

regions of resistance to MRC and CR were identified. Further research is necessary to 

validate the effects of the identified candidate genes and confirm that they confer resistance 

to MRC and CR in maize. The incorporation of this exotic germplasm into local maize 

breeding programs will contribute to the formation of hybrids whose heterosis shows high 

degree of resistance to both diseases. 
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Figure 1. Frequency distribution of disease severity index for Mal de Rio Cuarto (left) and 

common rust (right) calculated in Rio Cuarto 2017-2018 (A), Sampacho 2017-2018 (B) 

and Rio Cuarto 2018-2019 (C). 

 

Figure 2. Linkage disequilibrium across the 10 maize chromosomes measured with 78,543 

SNPs. 
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Figure 3. Manhattan plots of GWAS results for resistance to Mal de Rio Cuarto (A) and 

common rust (B) across environments. 

 

Table 1. Comparison of models for disease severity index of Mal de Rio Cuarto and Common 

rust 

Models AIC BIC log likelihood LRT 

HoV 752.76 783.84 -370.38 

reference model 
HoVgc 725.63 756.70 -356.81 

HeV 635.94 667.02 -311.97 
Statistically different 

from reference model HeVgc 610.90 641.98 -299.45 

HoV: Homogeneous variance model without genetic correlation; HoVgc: Homogeneous variance model with genetic 

correlation; HeV: Heterogeneous variance model without genetic correlation; HeVgc: Heterogeneous variance model with 

genetic correlation.  

Genetic correlation was estimated using 78,543 SNPs and introduced to the models through realized additive relationship 

matrix. 

LRT: likelihood ratio test. LRT compares the maximized log-likelihoods of the reference model and the alternative models; 

if the associated p-value is lower than the predefined threshold (0.05), it means that the alternative model fits the data 

significantly better than the reference model. 

The optimal fitted model, with or without genetic correlation, is identified by the minimum value of AIC: Akaike 

Information Criterion and BIC: Bayesian Information Criterion. 
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Table 2. Means, genotypic variance components (  
 ) and mean-basis heritability (H

2
) of 

Disease severity index (DSI) for Mal de Rio Cuarto (DSI-MRC) and common rust (DSI-CR) 

estimated from 165 maize lines in a single environment and across environments of central 

Argentina. 

Environment 

DSI-MRC DSI-CR  

Mean
Ɨ   

  H
2 

Mean
Ɨ
   

  H
2
 rg 

SA-17-18 13.45±1.42 6.00
 

0.04 29.85±0.86 7.54 0.16 --- 

RC-17-18 19.25±1.87 162.97**
 

0.43 28.77±0.77 14.47** 0.46 0.10 

RC-18-19 35.56±2.24 255.73**
 

0.50 36.46±1.16 34.99** 0.32 -0.22 

Ɨ Mean±SE of DSI on a 0-100 scale.  

*Significant at P < 0.01 

rg genetic correlation 

 

Table 3. Selected lines with lower disease severity index to Mal de Rio Cuarto (DSI-MRC) 

and common rust (DSI-CR). 

Genoty

pe 

DSI

-

MR

C 

Heterot

ic 

group 

 

Seed 

color 

 

Breeding 

program 

Genoty

pe 

DSI

-CR 

Heterot

ic 

group 

 

Seed 

color 

 

Breeding 

program 

CML42

9 
6.32 -- 

Yello

w 

Asia 

Lowland 

CML50

9 

22.6

7 
A White 

Africa 

MA/ST 

CML39

1 
7.86 A White 

Africa 

MA/ST 

CML27

5 

22.8

5 
-- 

Yello

w 
Lowland 

CML50

9 
7.98 A White 

Africa 

MA/ST 

CML50

7 

22.9

8 
B White 

Africa 

MA/ST 

CML49

4 
8.32 AB White Lowland 

CML53

6 

23.0

8 
A White 

Africa 

MA/ST 
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CML42

8 
8.46 -- 

Yello

w 

Asia 

Lowland 

CML17

9 

23.3

1 
-- White 

Subtropic

al 

CML52

0 
9.04 A White 

Africa 

MA/ST 

CML32

1 

23.6

4 
B White 

Subtropic

al 

CML53

1 
9.04 -- White 

South 

America 

LT 

CML51

5 

23.7

2 
A White Lowland 

CML32

1 

10.3

9 
B White 

Subtropic

al 

CML38

3 

23.7

9 
B White 

Subtropic

al 

 

Table 4. Details of SNP markers associated with resistance to Mal de Rio Cuarto (MRC) and 

common rust (CR) identified in this study. 

Regio

n 

Trai

t 
Marker 

Chromos

ome 
Bin 

Allel

es 

p-

value 
R

2
 

Putative 

candidate 

gene 

Predicted 

function of 

candidate gene 

1 
MR

C 

S2_12441

430 
2 

2.0

2 
A/C 

3.56x1

0
-5

 

0.2

0 

Zm00001d0

02416 

Putative RING 

zinc finger 

domain 

superfamily 

protein  

2 CR 
S2_21655

7276 
2 

2.0

8 
A/G 

4.84x1

0
-5

 

0.1

6 

Zm00001d0

06775 
Protein PELPK 

3 
MR

C 

S3_12156

0333 
3 

3.0

4 
T/C 

5.61x1

0
-5

 

0.1

8 

Zm00001d0

41458 

Uncharacterized 

protein 

4 CR 
S8_15625

6057 
8 

8.0

6 
C/A 

8.93x1

0
-5

 

0.1

5 

Zm00001d0

11628 

Receptor-like 

protein kinase 

5 CR 
S9_13052

6232 
9 

9.0

5 
C/G 

3.65x1

0
-5

 

0.1

3 

Zm00001d0

47452 

Cytochrome 

P450  

The exact physical position of the SNP can be inferred from marker‘s name, for example, S9_130526232: chromosome 9; 

130,526,232 bp. R2: phenotypic variance explained. 

 

 


