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Abstract
Summary—Feedback loops have been identified in a variety of regulatory systems and
organisms. While feedback loops of the same type (negative or positive) tend to have properties in
common, they can play distinctively diverse roles in different regulatory systems, where they can
affect virulence in a pathogenic bacterium, maturation patterns of vertebrate oocytes and
transitions through cell cycle phases in eukaryotic cells. This review focuses on the properties and
functions of positive feedback in biological systems, including bistability, hysteresis and
activation surges.

Introduction
A biochemical control system comprises a set of components (molecules, genes, etc), and a
set of regulatory interactions.(1–4) An interaction is designated positive if activation or
accumulation of a component leads to activation or accumulation of another component, and
negative if activation or accumulation of a component leads to deactivation or depletion of
another component.(1,4) If the structure of a system is such that a certain component
influences its own activity and/or levels, then this component is said to regulate itself via a
feedback loop (Fig. 1) (see Box 1 for a Glossary).

Box 1. Glossary

Feedback: the property of a control system to use its output as (a part of) its input.

Positive feedback: the type of feedback when a deviation in the controlled quantity is
further amplified by the control system.

Negative feedback: the type of feedback when a deviation in the controlled quantity is
counterbalanced by the control system.

Deterministic system: a system with exactly predictable (non-random) behavior; this
term is often applied to systems that can be described by differential equations.

Stable steady state: the state of a deterministic systems such that all trajectories that start
from a certain domain in the state space converge to this state.

Bistability: the property of a deterministic system to have two stable steady states.
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Bimodality: the property of a probability distribution to have two distinct maxima.

Signal–response curve: the curve reflecting the dependency of the output (response) of a
deterministic system on the incoming signal (represented by a parameter).

Hysteresis: dependency of the steady-state response curve of a deterministic system on
the direction of the parameter change (increase or decrease).

Ultrasensitivity: the property of a system to generate a sharp, switch-like response,
resembling that of a positively cooperative enzyme; this type of response is typically
described by a sigmoidal signal–response curve.

The notion of feedback was first introduced in cybernetics to denote the ability of a control
system to adjust itself using its output as (a part of) its input (Fig. 1A).(5,6) The output
constitutes the specific property that the system controls. In systems with negative feedback,
a deviation in the output results in changes in the direction opposite to the original deviation.
By contrast, in systems with positive feedback, a deviation in the output causes the output to
change even more in the direction of the original deviation.(5) As a result, negative feedback
generally serves to stabilize the state of the controlled system, whereas positive feedback
amplifies deviations and triggers state changes.(1)

Positive and negative feedback loops may consist of a single component that activates and
represses directly its own activity, respectively (Fig. 1B,C); or they may include several
components and involve indirect interactions (Fig. 1D–G). The overall sign of a complex
feedback loop (i.e. positive or negative) depends on the constituting elementary interactions
(Fig. 1D–G).(1) For example, two mutually repressing components form a positive feedback
loop (PFL, also termed “double-negative feedback loop”) (Fig. 1D). This is also true of
circular regulatory cascades consisting only of positive regulators or having an even number
of negative regulators. By contrast, a circular cascade consisting of an odd number of
negative regulators forms a negative feedback loop (NFL).

In this review, we discuss the behaviors promoted by positive feedback in the regulation of
cellular processes. Perhaps the earliest example of biological feedback control was end-
product inhibition in enzymatic pathways whereby the final product of a biochemical
pathway inhibits the activity of an enzyme operating early in the pathway. For example, the
biosynthesis of L-isoleucine requires L-threonine deaminase, the activity of which is
inhibited by L-isoleucine.(7) Later, it became evident that feedback also plays a critical role
in gene regulation.

The extensively investigated lac operon of Escherichia coli(8) and the lysis–lysogeny
decision circuit of phage lambda(9) exemplify systems with positive feedback. The main
component of the feedback circuit of the lac operon is the repressor LacI, which, upon
binding the inducer allolactose, loses the ability to bind to the lac operator and repress
transcription of the lacZYA operon. Accumulation of allolactose thus leads to elevated
expression of the transport protein LacY, which in turn increases the rate of lactose intake
and its conversion into allolactose. While this circuit constitutes a multi-component PFL,
there is also a NFL because LacZ metabolizes allolactose thus decreasing its availability to
LacI, which would eventually lead to repression of the lacZYA operon.(10) The circuit
governing the lysis–lysogeny decision of phage lambda includes the main regulator CI that
directly activates its own expression. However, at very high levels, CI represses its own
transcription, thus preventing CI over-expression.(9) CI also represses the cro gene, whose
product is a repressor of both the cI and cro genes, which results in additional feedback
loops.(9)
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The type of feedback in which proteins directly regulate their own expression—termed
“autogenous regulation”—received special attention in the mid-1970s.(11–13) A theoretical
study argued against the existence of positive autogenous regulation because such circuits
were expected to be disadvantageous with respect to a number of functional criteria.(12) To
provide empirical support for this argument, the study indicated that the only known
examples of self-regulating transcription factors in enteric bacteria were repressors.
However, as the information about bacterial control systems accumulated, it has become
clear that a considerable number of regulatory proteins directly activate transcription of their
own genes. Indeed, several of the 49 autoregulated transcription factors in E. coli promote
their own expression.(14) The wide occurrence of positive autoregulation raises questions of
the biological roles of this mode of control and of positive feedback in general.

Positive feedback can provide an efficient switching mechanism
Regulatory systems allow living cells to alter biochemical processes or gene expression
programs in response to changes in the intracellular and/or extracellular environments. Then,
what advantages does positive feedback provide in terms of a system's switching efficiency?
How does the presence of a PFL enhance the cell's ability to respond to environmental
signals?

Mathematical modeling demonstrates that positive feedback contributes to the efficiency of
a transcriptional regulatory system (Box 2; Fig. 2). Consider the case when the autogenous
regulator must be activated (e.g. phosphorylated) to exert its biological activity, such as the
ability to bind to a promoter and mediate gene transcription (Fig. 1G). This mode of positive
regulation is typical of a variety of bacterial signal transduction pathways,(15) such as those
governing sporulation in the Gram-positive Bacillus subtilis(16) and virulence in the Gram-
negative pathogen Salmonella enterica.(17) In the absence of an activating signal, the rate of
dephosphorylation of the regulatory protein will be higher than the phosphorylation rate so
that the existing regulator molecules will be largely unphosphorylated. The production rate
and, therefore, the levels of the regulatory protein are low, because there is very little
induction in the absence of phosphorylation (Fig. 2). Having more protein would not
increase a cell's capacity to activate genes, because the regulator molecules would still be
unphosphorylated and therefore inactive. Thus, by limiting the production of
unphosphorylated regulator, the cell avoids wasting its resources, and may also circumvent
the possibility of having the regulatory protein phosphorylated by a non-physiological
partner in response to a non-physiological signal.(18)

When a signal promotes phosphorylation of an autogenous regulator, the number of
phosphorylated regulator molecules goes up, which, due to positive feedback, leads to
further increases in the total regulator levels, as well as the levels of the phosphorylated
form (Fig. 2, solid lines). By contrast, if the inducible promoter is replaced by a constitutive
promoter, the total levels of the regulator will not depend on the phosphorylation or
dephosphorylation rates (Fig. 2, green dashed line). Therefore, under non-activating
conditions such a system will contain many unphosphorylated, and thus inactive, regulator
molecules. Indeed, under such conditions, the total regulator level (Fig. 2, green dashed line)
is significantly higher than the phosphorylated regulator level (Fig. 2, blue dashed line).
While the total regulator level would be lower in a system with a weaker constitutive
promoter, this would also decrease the level of phosphorylated regulator (Fig. 2, blue dash-
dotted line), which may limit the number of targets that the phosphorylated regulator can
control effectively.
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Box 2. Mathematical model of gene regulation with positive feedback

In a simple transcriptional regulatory circuit, a regulator in its activated (e.g.
phosphorylated) form directly induces transcription of its own gene (Fig. 1G). A
prototypical system of this type is the PhoP/PhoQ system of S. enterica, in which the
phoPQ operon has a constitutive promoter and a promoter that can be induced by
phosphorylated PhoP (Fig. 6).(93) The dynamics of gene regulation can be quantitatively
described using the formalism of ordinary differential equations.(63,101–103) Our model
consists of the following two equations:

In these equations, A and P are the concentrations of the active (phosphorylated) and
inactive (unphosphorylated) forms of the regulatory protein, respectively; ka and k−a are
the phosphorylation and dephosphorylation rates for the regulatory protein. The
parameter kd is its degradation/dilution rate for the unphosphorylated and phosphorylated
forms of the regulator. Whereas in the general case these two forms can decay at different
rates, here we make the simplifying assumption that these rates are equal. k1 is the rate of
protein synthesis due to the constitutive promoter (assumed to be weak), and k2 is the
protein synthesis rate due to the inducible promoter. ka and k−a are also the control
parameters for the circuit: by adjusting the cell regulates the levels of the active regulator.
The parameter K is the association constant for regulator–promoter interactions. H is the
so-called Hill coefficient;(65,70,102,104,105) it describes cooperativity of binding of the
regulator to its own promoter. If the regulator protein binds DNA as a dimer, which is
frequently the case in bacterial signal transduction, then H = 2.(106) The equations
describing the absence of feedback can be obtained in the limit K → ∞ : in this case,
there are two constitutive promoters with protein production rates k1 and k2. We can also
model feedback disruption by setting k2 = 0, which is equivalent to inactivation of the
inducible promoter.

The computed dynamics of the active form of the regulator, as well as its total levels, are
shown in Figs 2 and 3. Fig. 2 was generated with the following default parameter values:
ka=5 min−1, k−a=20 min−1, k1=0.01 μM·min−1, k2=0.3 μM·min−1, kd=0.08 min−1, K = 5
μM−2 H=2. These parameter values were chosen to be close to biologically significant
values. In the case of two constitutive promoters (K = ∞), the total regulator
concentration (Fig. 2, green dashed line) remains at a constant level that is close to the
steady-state level for the system with feedback (Fig. 2, blue dashed line). This agrees
with experimental observations for the transcriptional regulator PhoP of S. enterica.(17)
If the inducible promoter is disrupted (k2 = 0), then the modeling results show a
substantial decrease in the total regulator levels (Fig. 2, brown dash-dotted line), which
also agrees with experimental results for PhoP (D. Shin and E. A. Groisman,
unpublished). The ability of the model to reproduce the above experimental results is
robust with respect to parameter variations. Fig. 3A was generated with the following
default parameter values: ka=25 min−1, k−a=20 min−1, k1=0.001 μM·min−1, k2=0.3
μM·min−1, kd=0.08 min−1, K=5 μM−3, H=3. Fig. 3B was generated with the following
parameter values: ka=25 min−1, k−a=20 min−1, k1=0.01755 μM·min−1, k2=0.3 μM·−1,
kd=0.08 min−1, K=5 μM−3, H=3.

Systems with positive feedback can display a slower response to an environmental signal
when compared to those that produce a regulatory protein constitutively (Fig. 2).(12,19,20)
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Activation delays are due to the need to synthesize more regulator molecules upon
activation, while in the case of constitutive production, the molecules have already been
synthesized and just need to be phosphorylated. The extent of the activation delay, however,
will depend on the kinetic parameters of a system and may be negligible. On the other hand,
medium to large delays can sometimes be beneficial as they can provide a means to order in
time the action of cellular response mechanisms.(21–23)

Many eukaryotic cellular control systems contain a fast and a slow PFL.(24,25) The
presence of several interlinked feedback loops can enhance switching performance. While
single PFLs tend to amplify noise(19) and to slow down activation, a combination of a slow
and a fast PFL increases robustness of the ON-state in the presence of noise, and promotes a
quick turn-on and a slow turn-off.(24) Analysis of a systems having two (fast and slow)
PFLs and a slow NFL demonstrated that the two PFLs confer rapid activation, persistence of
the system's ON-state, and insensitivity to noise, whereas the NFL is responsible for
efficient deactivation in the absence of signal.(25) PFL cascades and combinations of PFLs
and NFLs can also promote excitability, which is the ability of a system to become activated
in response to relatively small perturbations in the input signal, and then exit the ON-state
spontaneously.(26,27) This behavior may be advantageous when it is desirable to limit the
time that the system spends in the ON-state; this is the case, for instance, in bacterial
competence control.(27–29)

Positive feedback can promote bistability and hysteresis
Perhaps the most-studied dynamic feature of control circuits with positive feedback is
bistability(1,16,30–59) (for reviews, see Refs 10,60), which is intrinsic to sporulation(16)
and competence(48,57) in the bacterium B. subtilis, the control of the eukaryotic cell
cycle(51–53) and the maturation of frog oocytes.(37,60) A system is called bistable if it has
two stable steady states. The term “bistability” is used to characterize a system that can be
described by a set of variables whose values change over time as deterministic (non-random)
functions. In a biochemical setting, such variables usually correspond to the concentrations
of the key molecular species in the system. Deterministic descriptions are valid for the
traditional “batch culture” biological experiments, where averaging over large populations
of cells masks random variations of intracellular concentrations of the relevant chemical
species. Typically, these concentrations converge to certain values over large periods of
time, as long as the system is not perturbed externally. The values that characterize the state
of the system “when nothing happens” correspond to stable steady states. Convergence to
one of the two stable steady states in a bistable system depends on the initial conditions
(Box 3; Fig. 3). One of the two steady states generally corresponds to low activity of the
system, and the other one to high activity. For example, in the E. coli lactose utilization
system (mediated by the lac operon), β-galactosidase activity can converge to one of two
steady states depending on the initial concentrations of the system's components.(61)
Likewise, the cell cycle control systems of eukaryotes has two stable states, interphase and
mitosis, that are characterized by low and high activity of the kinase Cdc2, respectively.
(53,62,63)

The property of bistability is closely associated with the property of distributional
bimodality for clonal cell populations. At the single-cell level, a biochemical system can be
described by the distributions of its biochemical components (Fig. 4). Such distributions
show how many cells in a population have a particular number of molecules (or a particular
concentration) of a biochemical component. If we average the distributions, we will obtain a
set of mean values that can be viewed as the state of a deterministic system (i.e. the batch-
culture approach). Such a system can possess the property of bistability. If it is bistable with
respect to a biochemical component, then the intracellular levels of this component in a
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clonal population are likely characterized by a bimodal distribution (Fig. 4B).(32,49,64)
Because bimodality is relatively easy to study experimentally, some researchers have
adopted the term “bistability” as a synonym for distributional bimodality of the biochemical
component of interest or relevant reporter molecules (Box 3).(10,35,48,57,58)

The strong connection between positive feedback and bistability arises from the fact that a
PFL is necessary, but not sufficient for bistability.(2,40,60) Therefore, it should be expected
that the key regulator(s) of a bistable circuit will be involved in a PFL. This principle can be
used as a guideline to identify candidate regulators for experimental studies when the
detailed architecture of the bistable control circuit is unknown.(4)

All bistable systems are expected to display some degree of hysteresis,(38,60) which is the
ability to produce different steady-state signal–response curves for the cases of increasing
and decreasing stimulus intensity (Fig. 5A,B).(10,60) Bistable systems are also
characterized by an abrupt transition from a low to a high steady state after the activating
signal passes a certain threshold value (Fig. 5A,B). Although a similar phenomenon can be
observed for monostable systems with very steep signal–response curves (Fig. 5C),(65)
monostable systems do not demonstrate hysteresis. An extreme manifestation of hysteresis
is irreversibility, which takes place when changing the signal intensity from high to low fails
to bring the system back to the initial inactive state (Fig. 5B).(60,66,67) This occurs when
two stable steady states, high and low, coexist for arbitrary small signal intensities. The
irreversibility implies that, after the stimulus has been removed, the system will be trapped
in the activated state, unable to return to the basal level of activity.

Box 3. Conditions and attributes of bistability

In addition to positive feedback (a necessary condition), requirements for bistability
usually include the presence of a functional element with a sigmoidal signal–response
curve within the feedback loop.(10,38,60) Sigmoidality guarantees a sharp, threshold-like
(“ultrasensitive”) response to the activating stimulus. In mathematical modeling studies,
sigmoidal functions are typically approximated using Hill functions with Hill coefficient
>1 (see Box 2).(65,70,102,104,105) Increases in the Hill coefficient tend to favor
bistability, but changes in other parameters can make the system monostable (Fig. 3A).
An example of molecular mechanism leading to sigmoidal response is cooperative
binding of a regulator protein to DNA, or binding in the form of a multimer.(106) It
should be noted, however, that other, not necessarily sigmoidal, signal–response curves
can result in bistability.(107) While a system with a PFL can have at most two stable
steady states, the presence of several PFLs can result in multistability.(4) Some
monostable systems can demonstrate quasi-bistable behavior: over large periods of time,
the system appears to be “stuck” in one of two states, and the convergence from these
states to the unique steady state is very slow (Fig. 3B). This seemingly bistable behavior
can have biological roles, because the true unique steady state might not be reachable
over biologically reasonable time scales.

If the concentrations of components in a biochemical system are low, stochastic
fluctuations in the concentration values cannot be neglected; this phenomenon is one of
the major factors contributing to physiological heterogeneity of populations of
genetically identical cells.(64,72,108,109) Bimodal distributions for (bio)chemical
systems are often associated with bistability of the deterministic model of the system,
which describes the temporal dynamics of average concentrations.(32,49,64) In rigorous
terms, bistability is not equivalent to distributional bimodality.(110) In relatively simple
chemical systems with mass action kinetics, bistability is neither necessary nor sufficient
for bimodality; however, when the system is large enough, the two properties tend to be
present simultaneously.(64) This raises the possibility that the same general rule will
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apply to complex biochemical systems. It should also be mentioned that, while bistability
characterizes steady states, experimentally observed bimodality does not necessarily
correspond to a steady state of the system.(48)

The best-characterized examples of a PFL promoting distributional bimodality are synthetic
transcriptional regulatory circuits implemented in model organisms.(32,39) A synthetic
system was engineered in Saccharomyces cerevisiae where the main component was the
tetracycline-responsive transactivator (rtTA), which assumes an active form and binds DNA
in the presence of doxycycline.(32) In this strain, rtTA was fused to the green fluorescent
protein (GFP), making it possible to monitor the levels of the regulator expressed from an
rtTA-activated promoter. For a range of doxycycline concentrations, the distribution of GFP
fluorescence in the system was bimodal, with the peak corresponding to high expression
being more pronounced for higher doxycycline concentrations.(32) Bistability has been
demonstrated not only for the relatively simple synthetic regulatory circuits, but also for the
well-studied lac operon of E. coli(49) and in the lysis–lysogeny circuit of phage lambda.
(46,68)

Biological roles of bistability and hysteresis
Genetic, metabolic and signaling regulatory systems with bistable behavior (or, more
precisely, bimodal distributions of reporter signal intensity) have been found both in
prokaryotes(10,16,35,48,69) and eukaryotes.(30,31,33,50,58,59,70,71) While all these
systems are known (or expected) to contain PFLs, they differ in the feedback loop structure,
regulatory elements and their overall complexity. Wide occurrence of bistability among
different types of biological regulatory systems raises the question of the biological
significance of bistability.

Cell population heterogeneity: bacterial sporulation and competence control
Heterogeneity of a clonal cell population, which is promoted by the intrinsic randomness of
molecular mechanisms of gene expression,(29,71,72) can often be attributed to bistable
regulation.(31,37,57,69,73) Therefore, whenever associated with survival advantages,
heterogeneity itself could be viewed as a biological role of positive feedback. This appears
to be the case in the complex sporulation control system of B. subtilis.(10,16,35) When this
soil bacterium experiences nutrient-limiting conditions, it undergoes dramatic morphological
and physiological changes to generate a dormant spore. Only a percentage of cells in a B.
subtilis population sporulate in response to nutrient limitation, which indicates bistable
behavior.(10) Commitment to sporulation is modulated by the master regulator Spo0A
which directly activates its own expression(16) and participates in a complex phosphorelay
that constitutes a multicomponent feedback loop promoting Spo0A activation. Positive
autogenous regulation of Spo0A is necessary for coexistence of two (sporulating and
nonsporulating) subpopulations.(16) Phenotypic heterogeneity may be a mechanism that
increases the chances of the population's survival in a randomly changing environment.(35)
Sporulation is an expensive and irreversible process; therefore, having only a subpopulation
of cells committed to sporulation appears to be a clever strategy in an environment where
harsh conditions can be reversed, thus alleviating the necessity to sporulate.(35)

Genetic competence is the property of bacterial cells to directly uptake DNA from their
surroundings.(28) The competence regulation circuit of B. subtilis displays characteristics of
bistable behavior; a cell population in the late exponential phase typically consists of
subpopulations of competent and non-competent cells.(10,48,57,74) Similarly to Spo0A, the
key regulator of competence, ComK, directly activates its own expression, and also
participates in additional feedback loops. Auto-activation of ComK is necessary for
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heterogeneity.(57) The size of the competent subpopulation is typically small: the proportion
of competent cells in laboratory strains is only ∼10%, and for wild isolates ∼1%.(35,48)
Although enriching the genome with foreign DNA can confer new traits to a population, the
prolonged semidormancy that accompanies the competent state can pose a challenge for
survival.(48,75) In addition, efficient genetic exchange can be detrimental, especially in the
case of interspecies exchange.(28) Thus, this heterogeneity-generating mechanism of B.
subtilis might have evolved in a way that maximizes benefit-to-risk ratio by triggering
competence only in a small subpopulation of cells.(48)

Eukaryotic cell fate determination
Bistability is used by eukaryotes as a mechanism of cell fate determination.
(37,45,47,54,59,60) For example, maturation of Xenopus laevis oocytes is controlled by a
protein kinase cascade (termed the Mos-Mek-MAPK cascade) which is activated by the
hormone progesterone, and demonstrates bistable behavior.(37,59,60) Treatment of
immature oocytes with progesterone causes sequential accumulation and/or activation of the
kinases Mos, MEK, and p42 MAPK. The MAPK promotes activation of the complex of
cyclin B with the cyclin-dependent kinase Cdc2, which in turn triggers maturation. MAPK
also stimulates Cdc2-mediated Mos accumulation; therefore, the cascade is a
multicomponent PFL. By probing individual progesterone-treated oocytes, it was
demonstrated that a group of oocytes consisted of a maturating subpopulation (high levels of
phosphorylated MAPK kinase, or MAPK-P) and a non-maturating subpopulation (with no
detectable MAPK-P).(37) For low concentrations of progesterone, the majority of the
oocytes did not maturate, whereas high progesterone caused most of the oocytes to maturate.
For intermediate concentrations of progesterone, the two sub-populations had comparable
size, but no oocyte had an intermediate MAPK-P level. The presence of distinct coexisting
oocyte subpopulations reflects the normal logic of cell fate determination: an oocyte should
either maturate or not. Notably, after the removal of progesterone, mature oocytes did not
de-mature, which is indicative of irreversible behavior.(59) Inhibition of protein synthesis
abrogated distributional bimodality of MAPK-P levels and irreversibility of oocyte
maturation by disrupting the protein synthesis-dependent multicomponent positive feedback
loop.(59,70)

Eukaryotic cell cycle oscillations
Hysteretic behavior is an aspect of bistable systems with particular significance for
biochemical oscillations.(51,52) As an inherent property of bistable systems, hysteresis can
be used to detect bistability. Thus, hysteresis was used to distinguish between two
alternative models of abrupt switching between high and low Cdc2 activity levels in the
course of mitosis in cell-free X. laevis egg extracts.(53) The protein kinase Cdc2 is a key
player in mitosis. The activity of Cdc2 is modulated by another protein, cyclin B, whose
concentration oscillates as the cell repeatedly goes through the phases of the cell cycle. The
basic mechanisms of Cdc2 activity control have been understood by studying a system
where the synthesis of endogenous cyclin B was blocked, and a non-degradable cyclin B
(Δcyclin B) was used instead (which ensured constant total cyclin B levels).(52,53,76) The
Δcyclin B–Cdc2 system did not exhibit sustained oscillations, but reached a steady state that
depended on the levels of Δcyclin B. Hysteretic behavior in the Δcyclin B–Cdc2 system
was predicted using a mathematical model of the cell cycle.(62,77) Hysteresis implies that
the cyclin B level threshold to enter mitosis is higher than the corresponding threshold to
exit mitosis.(53,78) Experimental measurements showed a notable difference between these
thresholds, thus confirming the hysteretic behavior of the system;(52,53) similar results have
been obtained for cell cycle control in budding yeast.(34,79)
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The role of a bistable circuit in mitosis control is efficient toggling between two distinct
states—interphase and early mitosis—excluding the possibility of the cell resting in an
intermediate state.(52,62) A central component of the mitosis control system is the positive
feedback loop in which the active Cdc2–cyclin B complex inactivates its inhibitors, but
there are also other positive feedback loops and a negative feedback loop in the system.
(51,52,60) The circuit thus exemplifies a regulatory design that promotes sustained
oscillations through a combination of positive and negative feedback.(51,52,60) Oscillators
of this type control a variety of cellular processes(34,79–81) (including circadian cycles),
(82–84) and possess advantageous features such as robustness, noise resistance and
synchronizability.(41,82,84,85)

Positive feedback in two-component signal transduction systems
Two-component systems constitute the most prevalent form of bacterial signal transduction.
(86,87) A two-component signal transduction system consists of two proteins, a sensor
kinase and a response regulator.(15) The sensor kinase is a transmembrane kinase (which
can also display phosphatase activity), and the response regulator is typically a transcription
factor. In response to an environmental signal, the sensor kinase autophosphorylates from
ATP and then transfers the phosphoryl group to the response regulator. This increases the
ability of the regulator to bind DNA and modulate gene expression. Besides eubacteria, two-
component systems are found in archaea and some cell-wall-containing eukaryotes.(15,88)
Positive feedback is a frequent property of two-component systems because many response
regulators activate their own expression.(17,22,89–92) There are several functional roles of
positive autoregulation in two-component signal transduction, including the generation of
activation surges, transcriptional memory and hierarchical organization of a regulon.

Insights into the possible roles of such regulation were obtained in the studies of the two-
component system PhoP/PhoQ, which is a critical regulator of S. enterica virulence.(17,93)
The phoP and phoQ genes are parts of a bi-cistronic operon, which is transcribed from a
constitutive promoter and from a PhoP-activated promoter; thus, the expression of PhoP is
regulated via a PFL. Shifting S. enterica from repressing to inducing conditions for the
PhoP/PhoQ system results in a transcription surge: the mRNA levels of PhoP-activated
genes peak at 20−30 minutes upon activation, and then decrease to reach a steady state by
∼60 minutes (Fig. 6).(17) This overshoot behavior is not due to PhoP synthesis and
subsequent decay because the total level of PhoP increases monotonically upon activation.
Temporal changes in the PhoP-dependent mRNA levels reflect the changes in the level of
phosphorylated PhoP, which is also characterized by a surge, and correlate with PhoP
binding to the promoters of PhoP-activated genes (Fig. 6). Although positive autoregulation
of the PhoP/PhoQ system is normally required for the surge observed in wild-type
Salmonella, a surge has also been observed when the phoPQ operon was expressed from a
heterologous promoter.(17)

The autoregulation-dependent surge is essential for S. enterica virulence, because the mutant
strain with disrupted PhoP autoregulation lost the ability to cause a lethal infection in mice
even though it produced the same steady-state levels of PhoP-activated mRNAs as the strain
with the wild-type autoregulated promoter.(17) The transient increase in the PhoP activity
may allow the establishment of a new phenotypic state, which enables the bacterium to react
adequately to the environment that triggered PhoP/PhoQ activation. The transition to this
new state might be promoted by the expression of PhoP-activated genes exceeding some
threshold value at their peak intensities. The steady-state expression levels would then
guarantee that the new phenotypic state is maintained as long as the PhoP/PhoQ system is
active.(17)
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Transient surge-like activation patterns have also been observed for several other two-
component systems that activate their own expression. These include the PmrA/PmrB
system of S. enterica,(17) the CusR/CusS(92) and KdpE/KdpE(91) systems of E. coli, the
VanR/VanS system of Streptomyces coelicolor(90) and the ComE/ComD system of
Streptococcus pneumoniae,(89) which control different physiological functions and include
Gram-positive and Gram-negative bacterial species. Thus, surge generation is not limited to
virulence activation in S. enterica and may characterize a large class of positive feedback
systems.

Positive autoregulation of the response regulator in a two-component system can lead to
“learning behavior” in gene regulation.(94,95) Activation of an autoregulated system will
result in increased levels of the sensor kinase and response regulator after the signal is
removed. Thus, subsequent reactivation of a system will be characterized by a shorter
activation time. This has been demonstrated for the PhoB/PhoR system of E. coli,(95) where
disruption of autoregulation abolished the activation speed-up.(95) A similar phenomenon of
“galactose memory” has been reported for the yeast GAL gene cluster, whose activation
system contains PFLs.(96) Transcriptional memory reflects the intrinsic activation delay that
characterizes positive feedback because the delays are caused by the need to synthesize
more regulator, pre-synthesis of the regulator abolishes the delay.

The hierarchical organization of expression is also determined by activation delays, but here
the delays correspond to the activation times of different genes co-regulated by a given
system.(94) These activation times are defined by the locations and affinities of the binding
sites for the response regulator. As a result of the differences in these promoter features,
different genes are activated at different regulator levels, which leads to a temporal pattern
of gene expression, such as the one observed for the bvg virulence regulon of Bordetella
pertussis.(97) Indeed, elimination of autoregulation in the BvgA/BvgS system leads to a
serious disruption in the sequence of phenotypic states associated with the expression
pattern displayed by wild-type B. pertussis.(22)

Conclusions
Positive feedback is a general control principle frequently encountered in the regulation of
molecular processes in living cells. It is found in both bacteria and eukaryotes organisms,
and controls diverse processes ranging from bacterial virulence to eukaryotic cell fate
determination. Positive feedback can be implemented at the level of transcriptional control,
as in bacterial two-component signal transduction, or at the level of protein–protein
interactions, as in the regulation of eukaryotic cell cycle. The complexity of systems
employing positive feedback ranges from single one-component PFLs to large systems
containing multiple interacting PFLs and NFLs.

The most-studied functional feature of positive feedback is promotion of bistability together
with the related properties of hysteresis and heterogeneity of clonal cell populations. While,
in a number of situations, bistability appears to be a desirable property, many positive
feedback systems do not demonstrate bistable (or quasi-bistable) behavior under usual
circumstances. In such cases, possible biological roles of positive feedback include efficient
switching behavior, robustness in the presence of noise, and tunability.

Bistability is essentially a steady-state property of regulatory systems. It is becoming
increasingly clear that positive feedback is crucial for intrinsically transient properties of
cellular control circuits, such as excitability and oscillations. These properties are frequently
found in multipart systems with more than one feedback loop. However, even the simplest
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single-PFL systems can display transient surge-like behavior that is critical for such an
important biological property as bacterial virulence.

The significant roles played by positive feedback, together with its ubiquity, make it one of
the major functional elements of regulatory pathways, along with negative feedback,
(5,13,65) feedforward control(19,98) and cascade-like regulation.(99,100) Combinations of
these elements often display qualities that the separate components do not possess, thus
providing the foundation for the diversity of cellular control processes. Understanding of the
properties of PFLs and their interactions with other regulatory elements will help to improve
our ability to predict the behavior of regulatory circuits in living cells and to construct
biomolecular systems with desired characteristics.
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Figure 1.
Regulatory circuits with feedback. A: General schematic of a system with feedback. B–G:
Possible architectures of circuits with feedback. Circles represent regulatory components,
arrows denote activation, and T-shaped pointers denote repression. B: Positive feedback
system with one component. C: Negative feedback system with one component. D: Double-
negative feedback loop. E: Positive feedback loop with two mutual activators. F:
Regulatory system containing a negative feedback loop (A–C–B) and a positive feedback
loop (D–G–F–E). G: Positive autogenous transcriptional regulation involving activation of
the regulator X by phosphorylation. The gene x encoding the regulator X is transcribed from
two promoters: P1, which is inducible by the phosphorylated form of the regulator X, and
P2, which is constitutive.
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Figure 2.
Activation dynamics for the positive autoregulation model described in Box 2. The model
reflects the presence of an inducible promoter, which gives rise to a positive feedback loop,
and a constitutive promoter (Fig. 1G). The assignment K = ∞ in the model renders the
inducible promoter constitutively active, whereas the assignment k2 = 0 makes the inducible
promoter inactive; both of these assignments result in constitutive synthesis of the regulator
(no feedback). Regardless of the presence of feedback, the initial (pre-activation) state of the
system is its steady state under non-activating conditions. This was implemented in the
simulations by solving the algebraic equations for the steady state of the model under non-
inducing conditions. These equations had a unique real solution which was used to define
the state of the system before and at the time of activation. When the system is activated (in
our example, at 0 minutes), it experiences an instantaneous 5-fold increase in the regulator
phosphorylation rate (ka). The post-activation temporal dynamics was simulated by
numerically solving the differential equations given in Box 2.
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Figure 3.
Dynamical regimes of the positive autoregulation model described in Box 2. A: System
dynamics in the monostable and bistable regimes. Hill coefficient reflects the degree of
cooperativity in binding of DNA by the activator (see Box 2). For Hill coefficient 3, the
model demonstrates bistable behavior (solid red lines): the system converges to a low-
activity steady state if the initial level of the active regulator is low, and it converges to a
high–activity steady state if the initial active regulator level is high. The system is
monostable for Hill coefficient 2 (blue lines) and Hill coefficient 3 after activation (dashed
and dash-dotted red lines). For the trajectories depicted by solid lines, the two distinct initial
states are (0.1, 0.1) and (4, 4), where the two numbers in parentheses represent the
concentrations of the phosphorylated and unphosphorylated regulator. The dashed and dash-
dotted lines illustrate the dynamics of activation, simulated in a similar way to the results
shown in Fig. 2. The initial state of the system is its steady state under non-inducing
conditions. The system is activated (in our example, at time 0) via an instantaneous 5-fold
increase in the regulator phosphorylation rate (ka; see Box 2), which can occur as a result of
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binding of an inducing ligand to the sensor kinase phosphorylating the regulator. B: Pseudo-
bistable behavior of the model (see Box 3); the initial states are (0.1, 0.1) and (4, 4).
Although the model possesses a unique steady state (evident from the large-time dynamics),
on biologically realistic time intervals (50−200 minutes) the model behaves like a bistable
system.
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Figure 4.
Schematic representations of distributional monomodality (A) and bimodality (B). Reporter
signal intensity is measured for every cell in a cell population. The signal intensity
represents the number of molecules of a chemical species present in a single cell.
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Figure 5.
Schematics showing the steady-state signal–response dependency for bistable and
monostable systems. A: Hysteresis in a bistable system. When the signal intensity is less
than S1 or greater than S2, there is only one stable steady state; two stable steady states
coexist when the signal intensity is in the interval (S1, S2). Depending on the direction of
change in the signal intensity (indicated by the arrows), the system will be characterized by
different signal–response curves (red and green). At S1 and S2, the system undergoes abrupt
transitions from the high response level state to the low response level state and vice versa,
respectively. B: Irreversibility in a bistable system. At S1, the system undergoes an abrupt
transition from the low response level state to the high response level state. However, when
the signal intensity shifts from high to low, the system remains in the high response level
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state. C: Sigmoidal signal–response curve of a monostable system. Regardless of the
direction of change in the signal intensity, the signal– response relationship is uniquely
defined.
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Figure 6.
The positive feedback loop of the phoPQ operon is necessary for the surge in activity of the
PhoP/PhoQ system in Salmonella enterica. A: Schematic representation of the phoPQ
promoter in two isogenic strains. One strain (top) harbors the wild-type P1 promoter, which
is positively autoregulated by the PhoP protein, and the constitutive P2 promoter. The other
strain (bottom) harbors a consensus −35 hexameric sequence (red square) in place of the
PhoP box (blue square). The black square indicates the “scar” sequence generated during the
construction of the strains. B: The levels of total PhoP protein in extracts from equivalent
numbers of the wild-type (top) and mutant (bottom) cells after switching from repressing
(high Mg2+) to inducing (low Mg2+) conditions. The levels of promoter occupancy by the
PhoP protein (C) and mRNA expression (D) of the PhoP-activated mgtA and pmrD genes
were determined in wild-type (blue) and mutant (red) strains that were shifted from
repressing to inducing conditions. (Reproduced from Ref. 17 with permission.)
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