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Abstract We propose stochastic processes to be used to model the total electron content (TEC)
observation. Based on this, we model the rate of change of TEC (ROT) variation during ionospheric
quiet conditions with stationary processes. During ionospheric disturbed conditions, for example, when
irregularity in ionospheric electron density distribution occurs, stationarity assumption over long time
periods is no longer valid. In these cases, we make the parameter estimation for short time scales, during
which we can assume stationarity. We show the relationship between the new method and commonly
used TEC characterization parameters ROT and the ROT Index (ROTI). We construct our parametric model
within the framework of Bayesian statistical inverse problems and hence give the solution as an a posteriori
probability distribution. Bayesian framework allows us to model measurement errors systematically.
Similarly, we mitigate variation of TEC due to factors which are not of ionospheric origin, like due to the
motion of satellites relative to the receiver, by incorporating a priori knowledge in the Bayesian model.
In practical computations, we draw the so-called maximum a posteriori estimates, which are our ROT and
ROTI estimates, from the posterior distribution. Because the algorithm allows to estimate ROTI at each
observation time, the estimator does not depend on the period of time for ROTI computation. We verify
the method by analyzing TEC data recorded by GPS receiver located in Ethiopia (11.6∘N, 37.4∘E). The results
indicate that the TEC fluctuations caused by the ionospheric irregularity can be effectively detected and
quantified from the estimated ROT and ROTI values.

1. Introduction

The Global Positioning System (GPS) has been used as a remote sensing system for ionosphere by measur-
ing Total Electron Content (TEC). The TEC, which is expressed in TEC unit (1 TECU = 1016 electrons per m2 ), is
defined as the integral of electron density along the GPS signal path from GPS satellites to the receiver. The
method of probing the ionosphere remotely using the GPS system has become popular among the space
physics community, because it is low cost and observation using a single GPS receiver can cover a wide
ionospheric region.

One of the objectives of measuring TEC values using GPS receivers is to probe the irregularities in the iono-
spheric electron density that cause TEC fluctuations and radio signal scintillations. This can be done by
characterizing the temporal variation of GPS TEC measurements. Mostly, the root-mean-square deviation of
TEC (𝜎TEC), ROT, and the standard deviation of ROT (ROTI) are used to characterize the TEC fluctuation. However,
from the point of view of detecting TEC fluctuations due to ionospheric irregularity only, using ROT and ROTI
are found to be advantageous over 𝜎TEC. This is because the algorithms to calculate ROT and ROTI are easily
implemented, and taking the derivative of GPS TEC while computing ROT mitigates the effect of background
trend [Beach and Kintner, 1999]. Despite the fact that calculating ROT is straightforward, differentiation may
amplify the effects of glitches and measurement noise [Beach and Kintner, 1999; Carrano and Groves, 2007].

Recently, several studies have been done using ROTI to characterize the observed TEC fluctuations and to
estimate the measure of the amplitude scintillation of radio wave (S4) from the TEC fluctuation [e.g., Pi et al.,
1997; Basu et al., 1999; Beach and Kintner, 1999; Li et al., 2007; Du et al., 2000; Carrano and Groves, 2007].
A comparison of S4 with ROTI was made by Pi et al. [1997], Basu et al. [1999], Beach and Kintner [1999], and
Li et al. [2007]. In these studies the algorithms implemented to calculate ROT and ROTI are the same, but the
sample rate of the TEC data used and the time interval over which a value of ROTI is calculated vary among
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some of the studies. In spite of these differences, all of the studies stated that the ROTI values could be used
to identify the presence of ionospheric irregularities causing TEC fluctuation and signal scintillation.

In this paper, we model ROT as a continuous derivative of the time-sampled TEC data. For practical compu-
tations we discretize this model and cast the ROT estimation to the framework of Bayesian statistical inverse
problems. In this way, we can freely choose the ROT sampling interval. For the estimation algorithm, we need
to add some a priori information in order to obtain results when we have dense discretization. For this, we use
Gaussian white noise prior. Given this approach, we can guarantee that the inverse problems reconstruction
are essentially independent of TEC or ROT sampling interval.

Therefore, in this paper, we propose the maximum a posteriori (MAP) estimation technique in Bayesian statisti-
cal inverse problems to estimate ROT and ROTI. From the point of view of mitigating the effect of measurement
noise, the MAP estimation approach is similar to estimation with regularization in classical approach, which
is commonly used as an estimation technique for ill-posed problems. In classical regularization methods,
mitigating the instability of the solution due to the measurement noise is done by introducing a slight modi-
fication of the original problem. When solving inverse problems using the framework of Bayesian probability
theory, regularization of a problem is done by using prior information about the unknown random variable
in the form of a probability distribution called the a priori distribution [e.g., Roininen et al., 2011].

The rest of this paper is organized as follows: In section 2, we present methods for ROTI computation.
Specifically, we remark the mathematical formula of the existing methods for ROT and ROTI computation. Sub-
section 2.1 describes the formulation of the proposed method for ROT and ROTI estimation. We first construct
a linear stochastic measurement model that relates the realizations of TEC measurement with the random
variables ROT. Then we construct the solution, i.e., the posterior distribution which consists of likelihood, a pri-
ori, and hyperprior distributions. We use optimization technique to find the MAP estimates of ROT and ROTI.
Finally, in section 3 we demonstrate the new method by analyzing GPS TEC data recorded by a dual-frequency
GPS receiver located at Bahir Dar (11.6∘N, 37.4∘E), Ethiopia.

2. Methodology

The rate of change of TEC (ROT) is defined as rate of change of TEC over the sampling time interval, and ROTI
is defined as the standard deviation of the ROT over some time.

Traditionally, ROT (in TECU/min) is defined as [e.g., Pi et al., 1997]

ROT(tj) =
TEC(tj) − TEC(tj−1)

tj − tj−1
, (1)

where tj are the discrete TEC measurement times. ROTI is calculated over N successive ROT samples as
[e.g., Carrano and Groves, 2007]

ROTI =
√⟨ROT2⟩ − ⟨ROT⟩2, (2)

where ROT is the vector of N successive ROT samples and ⟨⋅⟩ denotes the mean. As mentioned in section 1,
in the traditional approach the noise is enhanced by differentiation and ROTI values depend on calculation
period of time. Therefore, we introduce a new method.

2.1. Stochastic Estimation of ROT and ROTI
We know that in practice all measurements are noisy. Hence, it is natural to model the measurements as
stochastic processes. In this section, we construct a stochastic model for ROT and ROTI. Given the noisy TEC
measurements, the solution of the Bayesian inverse problem; i.e., the a posteriori probability distribution is
constructed. Then we consider how to draw estimators from the posterior distribution. The discretized TEC
measurement is modelled in continuous time as

M(t) = TEC(t) + E(t), (3)

where M(t), TEC(t), and E(t) are the continuous-time noisy TEC measurements, unknown noiseless TEC, and E
measurement noise, respectively. We are interested in studying the statistical properties of the rate of change
of TEC. For the continuous-time measurement equation (1) is given by

ROT(t) = d
dt

TEC(t). (4)
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We write this equation equivalently as

TEC(t) = ∫ H(t − t′)X(t′)dt′, (5)

where H(t − t′) is the Heaviside step function and X(t′) = ROT(t′). Substituting equation (5) into equation (3),
the continuous-time measurement model becomes

M(t) = ∫ H(t − t′)X(t′)dt′ + E(t). (6)

However, GPS TEC measurements are discrete. Thus, for a temporally sampled measurement we rewrite
equation (6) as

M(tj) = ∫ H(tj − t′)X(t′)dt′ + E(tj). (7)

For numerical computation, we discretize the integral and obtain a matrix presentation

M = AX + E, (8)

where A is a known matrix, M is the measurement vector of observed GPS TEC values, X is the unknown
vector of ROT values, and E is the measurement noise vector. In the Bayesian statistical inverse theory, all the
variables included in the measurement model are considered as random variables. The degree of information
concerning their realizations is coded in probability densities. Given the stochastic measurement model in
equation (8), the task is to extract information about X from the measurements M. This task of extracting
information is called an inverse problem or a statistical inverse problem.

As the measurement model contains random variables, a natural framework for studying the inverse prob-
lem is probability theory. In this paper, we choose the Bayesian framework for statistical inverse problems to
extract information about X. This framework allows the extraction of information by inspecting the a posteriori
probability distribution of the parameters X, given the observed measurements M.

The a posteriori distribution of the unknown parameters X conditioned on the measurements M is obtained
by using Bayes’s formula [e.g., Doicu et al., 2010],

Dps(x|m) ∝ Dpr(x)D(m|x), (9)

where the terms D(m|x) and Dpr(x), respectively, are called the likelihood and the a priori probability density.
The a posteriori probability density Dps(x|m) contains all the information of the unknown random variables X.
2.1.1. The Likelihood Density
The likelihood density D(m|x) is the probability density of the measurements, given the unknown parame-
ters. The construction of the likelihood density depends on the noise E assumption [Doicu et al., 2010]. In this
paper, we model the measurement noise E by Gaussian density with zero-mean and known covariance matrix
Γe = 𝜎2I

E ∼  (0, 𝜎2I) (10)

Assuming that E is independent of X, the probability density D(e) of it remains unchanged when conditioned
on X = x. In this case, the measurements M conditioned on X = x are distributed like E [Doicu et al., 2010]. We
write the likelihood density as

D(m|x) ∝ exp
[
−1

2
(m − Ax)TΓ−1

e (m − Ax)
]
. (11)

Given the measurements M and the measurement noise variance 𝜎2, we can extract information about the
unknown variable X from likelihood density. Assuming that the density has only one strong peak, it is often
practical to inspect the maxima of D(m|x), which is called the maximum likelihood (ML) estimate

xML = arg max
x

D(m|x). (12)
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Thus, D(m|x) has maximum at the point

xML =
(

ATΓ−1
e A

)−1
ATΓ−1

e m. (13)

This is our first estimate of ROT which is computed without incorporating the a priori information. We can use
this estimator when A is a square or overdetermined matrix and we have low noise. When the noise increases,
and we have underdetermined A matrix, this estimator does not necessarily exist. If matrix A ∈ j×k and k > j,
then A is ill-posed and the problem has infinitely many solutions. In this case, unique solution can be found by
regularizing the problem. In this study, we use our prior information about the unknown in the form of a priori
probability density to regularize the problem. The construction of a priori probability density is presented in
the next section.
2.1.2. A Priori Information
The TEC observations include a deterministic part (such as a trend due to motion of GPS satellites relative to
GPS receivers on the ground) and a stochastic part due to the ionospheric variations. As suggested by Zhang
et al. [2005], taking the higher-order (usually second-order) differences of TEC may reduce the deterministic
part. This means that ROT which is defined from the first-order difference of TEC can also include both the
deterministic and stochastic parts.

Based on this fact, we assume a priori that the random variable X is composed of a stochastic part and a
deterministic part, and we write a stochastic model for it as

X = Xs + T, (14)

where Xs is a stochastic part and T is the deterministic part. We model the trend part by a two-sided moving
average of X, and the stochastic part is modeled as a Gaussian random process with zero expectation value.

Let z be a positive integer and consider the two-sided moving average,

T̂t =
j=z∑

j=−z

ajXt−j, (15)

where t = z + 1, z + 2,… , n − z and aj are the moving average weights. Assuming that Xt was generated by
the process in equation (14) and that Tt is approximately linear over the interval [t − z, t + z] and the average
of the stochastic terms over this interval is zero, then ‚Tt will be close to Tt. Equation (15) can be interpreted as
a low-pass filter since it takes X and removes from it the rapidly fluctuating (or high-frequency) component
Xs, and leaves the relatively slowly varying trend ‚Tt . The matrix representation of equation (15) is given by

T̂ = PX, (16)

where P ∈ n×n is a banded Toeplitz matrix which has the appearance of equation (17):

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 … a−z

a1 a0

⋮ 0
⋱ ⋱

az

⋱
az … a1 a0 a−1 … a−z

⋱
⋱ a−z

0 ⋱ ⋮
a0 a−1

az … a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Now, the stochastic part is obtained by subtracting the estimated trend from X as

X − ‚T ≈ Xs. (18)
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Substituting equation (16) into this, the model for the stochastic part becomes

Xs = (I − P)X ≡ P̃X. (19)

When random disturbances of the ionospheric electron density happen, their effects on TEC will destroy the
steady state of Xs. During these kinds of circumstances, we model the stochastic parts Xs,j by a Gaussian
random process with zero expectation value

Xs,j ∼  (0, 𝛽2
j ). (20)

Assuming mutually independent random variables Xs, the joint probability density of Xs conditioned the
variance 𝛽2 = [𝛽2

1 , 𝛽
2
2 ,… , 𝛽2

n ] is given by

D(xs|𝛽2) = 1

(2𝜋)
n
2 |Γs| 1

2

exp
(
−1

2
xT

s Γ
−1
s xs

)
, (21)

where fjs ∈ n×n is a diagonal covariance matrix given by

fjs =

⎡⎢⎢⎢⎢⎢⎣

𝛽2
1 0 0 · · · 0

0 𝛽2
2 0 · · · 0

0 0 𝛽2
3 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 · · · 0 𝛽2

n

⎤⎥⎥⎥⎥⎥⎦
. (22)

Combining this and equation (19), we write a stochastic model as

P̃X = Xs,%Xs ∼  (0,Γs). (23)

The joint a priori probability density of X conditioned the variance of Xs is given by

D(x|𝛽2) =
|P̃TΓ−1

s P̃| 1
2

(2𝜋)
n
2

exp
(
−1

2
xT P̃TΓ−1

s P̃x
)
, (24)

where | • | stands for determinant operator. This a priori model accepts different rates of TECs (Xs,j) which are
assumed to be due to ionospheric activity. The value of the variance 𝛽2

j of Xs,j , which is the same as ROTI2
j , is

a reflection of how large a rate of change we expect the stochastic part of TEC could have in the time interval
[tj−1, tj]. A small value of 𝛽2

j may indicate undisturbed condition while a large value may indicate disturbed
condition.

In equation (24), the a priori density of X depends on the variance of Xs,j and its estimate will contain both the
deterministic and stochastic parts. However, our interest is to study the stochastic part which is assumed to be
due to ionospheric activity. Hence, for this goal a priori density should be given in terms of Xs. The immediate
consequence of this observation is that, from the point of view of information, it does not make any difference
whether we express the prior belief in terms of the X or in terms of its stochastic part Xs. However, writing the X
in terms of the Xs allows us to study the effect of ionospheric activity directly from the fluctuating component
(=ROT). For this reason, we make the stochastic part Xs the unknowns of primary interest as explained below.

In equation (23) matrix P̃ is invertible and hence Xs can be transformed to X as

X = P̃−1Xs = B̃Xs, (25)

where B̃ = P̃−1. Then, substituting equation (25) into equation (8), the stochastic measurement model
becomes

M = AB̃Xs + E = ÃXs + E, (26)

where Ã = AB̃. In this case the stochastic part Xs becomes the unknown of primary interest.

The next issue that we need to address is what we believed of the prior for the variances 𝛽2
j or ROTI that will

be treated themselves as random variables. The construction of their probability density will be discussed in
the next section.
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2.1.3. A Hyperpriori Information
In equation (24), the a priori density Dpr(xs) of Xs is conditioned on the variances 𝛽2

j . These kinds of parame-
ters which are used for describing the a priori density are also part of estimation. We consider the parameters
𝛽2

j as unknown parameters and include them in the estimation process. Therefore, we need to construct
a probability distribution that conveys our prior beliefs about the parameters 𝛽2

j . Commonly, the prob-
ability density model of the parameters is known as hierarchical or hyperpriori model [e.g., Kaipio and
Somersalo, 2005].

The fact that Xs might contain some fluctuations with different magnitude leads us to choose a hyperprior
that allows some of the 𝛽j to deviate strongly from the average. A probability density that allows outliers can
be the exponential distribution [Calvetti and Somersalo, 2007]. In this paper, an inverse gamma probability
density is used as a hyperprior probability density. The hyperprior density is given by

Dhp(𝛽) ∝ exp

(
− 1
𝜇

n∑
j=1

1
𝛽2

j

− 3
2

n∑
j=1

ln 𝛽2
j

)
, (27)

where 𝜇 > 0, which is assumed to be fixed, is the center point of the hyperprior density. The joint prior
probability density of Xs and 𝛽 is

D(xs, 𝛽
2) = Dpr(xs|𝛽2)Dhp(𝛽). (28)

Substituting equations (24) and (27) into equation (28) gives

D
(

xs, 𝛽
2
)
∝ exp

(
−1

2
||Γ− 1

2
s xs||2 + ln |Γ− 1

2
s | − 1

𝜇

∑n

j=1
𝛽−2

j − 3
2

n∑
j=1

ln 𝛽2
j

)
. (29)

Now, we have two unknown random variables Xs and 𝛽2 (ROT and ROTI, respectively) with their joint prior
probability density given by equation (29). Thus, from the Bayes’s formula it follows that the posterior
distribution is of the form

Dps(xs, 𝛽
2|m) ∝ D(m|xs)D(xs, 𝛽

2). (30)

2.1.4. The A Posteriori Density and MAP Estimate
The posterior distribution Dps(xs, 𝛽

2|m) defined by equation (30) is considered to be the complete solution of
the inverse problem.

Substituting equations (11) and (29) into equation (30), the a posteriori distribution becomes

Dps

(
xs, 𝛽

2|m)
∝ exp

(
−1

2
||Γ− 1

2
e

(
m − Ãxs

) ||2 − 1
2
||fj− 1

2
s xs||2 − 2

n∑
j=1

ln 𝛽2
j − 1

𝜇

n∑
j=1

1
𝛽2

j

)
. (31)

The knowledge of the a posteriori density in equation (31) gives information about Xs and 𝛽2 (that is, ROT
and ROTI) in terms of probability density. The probabilities encoded in Dps(xs, 𝛽

2|m) are difficult to visualize;
however, since both Xs and 𝛽2 ranges in n-dimensional space, it is possible to compute some point estimates
from the posterior density. A popular point estimator is the maximum a posteriori (MAP) estimator(

xs,map,𝜷
2
map

)
= arg max

(xs ,𝛽
2)

Dps(xs, 𝛽
2|m). (32)

We found the MAP estimates for Xs and 𝛽2 by alternatingly maximizing the a posteriori distribution as
described in Appendix A.

3. Results

The method described in the previous section has been demonstrated by analyzing TEC data obtained on
1 February 2008 and 13 April 2012 from a GPS station found in Bahir Dar (11.6∘N, 37.4∘E), Ethiopia. The TEC
and S4 data used in this paper are computed over each minute interval from dual-frequency GPS receiver
observables using the standard methods described by, e.g., Carrano and Groves [2007b].
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Figure 1. The Local Time variation of elevation angle, slant TEC (sTEC), S4 index, ROT, and ROTI on 1 Februar2008 from three GPS satellites (PRNs), (a, d, g, and j)
PRN 13, (b, e, h, and k) PRN 20, and (c, f, i, and l) PRN 23. The curves of ROTold and ROTMAP (Figures 1g, 1h, and 1i) are calculated using the old method and the
new method, respectively. The ROTI values calculated using the traditional method (ROTIold) and the new method (ROTIMAP) are shown on Figures 1j, 1k, and 1l.
Local Time (LT) = Universal Time (UT) + 3, 1 TECU = 1016 el m−2.

Figures 1 and 2 show the Local Time (LT) variations of TEC, satellite elevation angle, S4 index, ROT, and ROTI
from three GPS satellites each (Figure 1: PRNs 13, 20, and 23, and Figure 2: PRNs 15, 26, and 27 ). In Figures 1a,
1b, and 1c the blue smooth curve is for the measured TEC values and the red dotted curve is for elevation
angles of the GPS satellites. The values of measured TEC and elevation angles, respectively, are shown on the
left and right vertical axes. Both Figures 1d–1f, 1g–1i, and 1j–1l and Figures 2d–2f, 2g–2i, and 2j–2l show
the time variation of S4, ROT, and ROTI, respectively.

Rapid fluctuations in TEC are clearly seen in both figures. In Figure 1, the irregularity in the ionospheric elec-
tron density causes fluctuation of the TEC values (Figures 1a–1c between 21:00 and 22:30 LT, between 21:00
and 22:30 LT, and between 21:00 and 22:30 LT, respectively) and increase in the values of S4 (Figures 1d–1f )
between 21:00 and 22:30 LT, between 21:00 and 22:00 LT, and between 21:00 and 22:30 LT, respectively) when
a bubble passes between the receiver and the satellite. Similarly, in Figure 2 the effect of ionospheric irreg-
ularity on TEC is clearly seen on ROT values (Figures 2g–2i) and ROTI values (Figures 2j–2l). This variation is
accompanied with an increase in the values of S4.

The S4 enhancement seen simultaneously with the TEC fluctuation suggests the coexistence of ionospheric
irregularities causing phase and amplitude scintillations. In Figure 1, the S4 has two noticeable peaks in the
line of sight of PRN 13 and PRN 23 (correspond to the patch of the ionospheric irregularity which has two
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Figure 2. Same as Figure 1 but with data observed on 13 April 2012 using satellites PRN 15, 26, and 27.

noticeable scintillating regions in the line of sight of PRN 13 and PRN 23), and a single S4 peak (one scintillating
region) is seen in the line of sight of PRN 20. In Figure 2, the S4 has more than two noticeable peaks in the
line of sight of PRN 15 and PRN 27 (correspond to the patch of the ionospheric irregularity which has more
than two noticeable scintillating regions in the line of sight of PRN 15 and PRN 27), and a single S4 peak
(one scintillating region) is seen in the line of sight of PRN 26. In particular, the S4 value of PRN 15 shows signif-
icant enhancement in between 22 and 22:30 LT. But during this time the effect on TEC is not that pronounced
(as seen from ROT and ROTI values). This suggests the presence of ionospheric irregularities that cause signal
amplitude scintillation without affecting the phase.

Figures 1g–1i and 2g–2i show the local time variation of ROT computed at each minute interval. Here the two
curves, ROTold and ROTMAP, correspond to estimates using the old method and new method or equations (1)
and (A9), respectively. It is clearly seen that both ROTold and ROTMAP capture fluctuation in TEC and the S4

enhancement. However, the background trend imposed by the solar zenith angle and satellite elevation angle
variation is seen as a linear increase in the ROTold values only (in Figure 1, between 19:00 and 20:00 LT for PRN
13, between ≈18:30 and 21:00 LT for PRN 20, and between 17:00 and 19:00 LT for PRN 23, and in Figure 2,
20:10–21:10 LT for PRN 15, 20:00–21:40 LT for PRN 26, and 20:10–22:20 LT for PRN 27). The results show that
the new method effectively eliminates deterministic component in the estimated ROTMAP values.

Figures 1j–1l and 2j–2l show local time variation of ROTI. The ROTIold and ROTIMAP, respectively, are calculated
using the old and new methods or equations (2) and (A7). The ROTIMAP is estimated at each minute interval
using the new method while the ROTIold values are calculated at 3 min interval using the traditional method.
The ROTIold values depicted in this figure capture only the major fluctuation structures seen on the TEC and S4

BIRES ET AL. TEC FLUCTUATION VIA STOCHASTIC MODELS 1779
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Figure 3. Comparison of ROT and ROTI values calculated from both noisy and noiseless TEC measurements. The curves of (a) ROTold and (c) ROTmap are
calculated using the old method and the new method, respectively. The ROTI values calculated using the (b) existing method (ROTIold) and (c) the new method
(ROTImap ) are shown. In all panels the red curves (nROTold, nROTmap, nROTIold, and nROTImap) and blue curves (ROTold, ROTmap, ROTIold, and ROTImap) represent
results from TEC with noise and without noise, respectively.

data, while the ROTIMAP values capture both the fine and major fluctuations. The magnitude of ROTIMAP values
have shown difference among the satellites. At the time where there is an irregularity which causes both TEC
oscillation and amplitude scintillation, the ratio of ROTI to S4 values are related to the phase scintillation index.
In this study, we calculate the ratio ROTIMAP/S4 and ROTIold/S4 for each satellite. The ratio is calculated by taking
the maximum of ROTI and S4 values. For the event on 1 February 2008 we found ROTIMAP/S4 ≈ 5.9, 5.4, 5.0,
and ROTIold/S4 ≈ 5.8, 8.3, and 6.4 for PRNs 13, 20, and 23, respectively. In the same way for the event on day
13 April 2012, ROTIMAP/S4 ≈ 4.9, 4.2, 3.7, and ROTIold/S4 ≈ 5.1, 3.1, and 5 for PRNs 13, 20, and 23, respectively.
The magnitude of the S4 values measured by the six satellites lies between 0.12 and 0.38. For these ranges of
S4 values, the corresponding ROTIMAP/S4 varies between 3.7 and 6.2, and ROTIold/S4 lies between 3.1 and 8.3.
The narrow range of the ratio ROTIMAP/S4 is more consistent to the range of S4 values, indicating that the new
method captures the variations more reliably than the standard ROTIold estimate.

Finally, we have demonstrated the effect of noisy measurement on the estimates of both the new and old
methods in Figure 3. As a noisy measurement, we use the TEC measurement with additive random noise
having constant variance of magnitude equal to 1% of the maximum of error-free TEC. From this noisy TEC,
both ROT and ROTI values are calculated using both the new (nROTmap and nROTImap) and old (nROTold and
nROTIold). The nROTmap and nROTImap values are estimated using white noise prior with constant variance 𝜎2

e I.
Figures 3a and 3b show ROT and ROTI values estimated using the old method. It is clearly seen that there is
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significant difference among estimates from noisy TEC and noiseless TEC, i.e, between nROTold and ROTold,
and between nROTIold and ROTIold. Figures 3c and 3d, respectively, show ROT and ROTI values estimated using
the new method. The MAP estimators look essentially the same for both noisy and noiseless measurements.

4. Conclusion

The change of state of the ionosphere from its quiet to disturbed conditions is reflected in the F region elec-
tron density and leads to changes in the statistical parameters of the TEC time series. This means that if
accurately estimated, values of the statistical parameters of the ionospheric TEC can be used to monitor and
quantify ionospheric activity in real time. Monitoring and detecting the ionospheric disturbances is important
for prediction of the space weather, GPS surveying, and satellite navigation and communication.

In this paper, we have presented an improved method for the computation of ROT and ROTI based on max-
imum a posteriori (MAP) estimation in Bayesian statistical inverse problems. The new method provides a
powerful and convenient way of mitigating the effect of a slowly varying background trend and measurement
noise by incorporating a priori information in the form of probability density. The new method is demon-
strated by analyzing the dual-frequency GPS TEC data from a receiver in Bahir Dar during 2 days. The results
indicate that the estimated ROTMAP and ROTIMAP values capture both the major and fine fluctuation structures
in the TEC and S4 better than the traditional estimates. Most importantly, the new method is better than the
old method in controlling the effect of measurement noise on the estimates. The result also shows that the
estimates are free from the effects imposed by variations of satellite elevation and solar zenith angles.

Appendix A: Optimization Steps

The joint a posteriori distribution of Xs and 𝛽2 conditioned on the realizations of the measurement vector M is

Dps(xs, 𝛽
2|m) ∝ exp(−F(xs, 𝛽

2), (A1)

where the function F(xs, 𝛽
2) is defined by

F
(

xs, 𝛽
2
)
= 1

2

‖‖‖‖‖‖‖
⎡⎢⎢⎣
Γ
− 1

2
e Ã

Γ
− 1

2
s

⎤⎥⎥⎦ xs −

[
Γ
− 1

2
e m
0

]‖‖‖‖‖‖‖
2

+ 1
𝜇

n∑
j=1

𝛽−2
j + 2

n∑
j=1

ln 𝛽2
j . (A2)

The MAP estimates for Xs and 𝛽2 can also be found by minimizing the functional F(xs, 𝛽
2) as(

xs,map, 𝛽
2
map

)
= arg min

(xs ,𝛽
2)

F(xs, 𝛽
2). (A3)

In this paper, the MAP estimates for the pair (Xs, 𝛽2) are computed by solving two minimization problems
alternatingly. The scheme for computation is briefly described as follows:

1. Initialize the value of 𝜇. As initial point for the estimation, begin by initializing 𝜇. As shown in equation (A6),
1
𝜇

bounds 𝛽2
map from below. Therefore, the initial value of 𝜇 should be set to make the initial values of 𝛽2 a

minimum (that is normal ionospheric condition).
2. Estimate Xs,map. The MAP estimate of Xs is the minimizer of F(xs, 𝛽

2) conditioned on 𝛽2 = 1
𝜇
[1, 1,… , 1]T .

This means that the value of xs,map is the solution of the equation ∇xs
F(xs, 𝛽

2) = 0, that is,

xs,map =
(

ÃTΓ−1
e Ã + Γ−1

s

)−1
ÃTΓ−1

e m. (A4)

3. Estimate 𝜷2
map. Having the xs,map values, the 𝜷2

map is obtained by minimizing the function F(xs, 𝛽
2) condi-

tioned on xs,map. The current value of 𝛽2 is the solution of equation

∇𝛽2
𝜆

F
(

xs,map, 𝛽
2
)
= 0. (A5)

We found a formula for the solution

𝜷2
map,c =

1
2𝜇

U + 1
4
|| (ÃTΓ−1

e Ã + Γ−1
s

)−1
ÃTΓ−1

e m||2 (A6)
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and

ROTImap =
[

1
2𝜇

U + 1
4
|| (ÃTΓ−1

e Ã + Γ−1
s

)−1
ÃTΓ−1

e m||2

] 1
2

, (A7)

where U ∈ n is a vector with U(j, 1) = 1, 1 ≤ j ≤ n. The diagonal covariance matrix Γs is updated as

𝚪s,map = diag
(
𝛽2

map,c

)
. (A8)

4. Update xs,map. Having the current MAP estimate 𝜷2
map,c, the xs,map is updated by using the formula

xs,map =
(

ÃTΓ−1
e Ã + Γ−1

s,map

)−1
ÃTΓ−1

e m. (A9)

At this step, first reconstruct TEC (TECrec) by using the formula

TECrec = Ãxs,map (A10)

and then calculate the root-mean-square error (RMSE) between the TECrec and the observed TEC (TECobs)
values via

RMSE =

√√√√1
n

n∑
j=1

(
TECobs(tj) − TECrec(tj)

)2
. (A11)

We allow the total number of iteration steps to reduce the RMSE value below a tolerance value of 10−3. If
this criteria is not met, repeat steps 3 and 4.
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