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MULTIPLIERS OF DIRICHLET SUBSPACES OF THE BLOCH SPACE

CHRISTOS CHATZIFOUNTAS, DANIEL GIRELA, AND JOSÉ ÁNGEL PELÁEZ

Abstract. For 0 < p < ∞ we let Dp

p−1
denote the space of those functions f which

are analytic in the unit disc D and satisfy
∫
D
(1− |z|)p−1|f ′(z)|p dA(z) < ∞.

It is known that, whenever p 6= q, the only multiplier from Dp

p−1
to Dq

q−1
is the

trivial one. However, if X is a subspace of the Bloch space and 0 < p ≤ q < ∞,

then X ∩ Dp

p−1
⊂ X ∩ Dq

q−1
, a fact which implies that the space of multipliers

M(Dp

p−1
∩X,Dq

q−1
∩X) is non-trivial.

In this paper we study the spaces of multipliers M(Dp

p−1
∩ X,Dq

q−1
∩ X) (0 <

p, q < ∞) for distinct classical subspaces X of the Bloch space. Specifically, we shall

take X to be H∞, BMOA and the Bloch space B.

1. Introduction and main results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C and let

Hol(D) be the space of all analytic functions in D endowed with the topology of uniform

convergence in compact subsets.

If 0 < r < 1 and f ∈ Hol(D), we set

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reit)|p dt
)1/p

, 0 < p <∞,

M∞(r, f) = sup
|z|=r

|f(z)|.

Whenever 0 < p ≤ ∞ the Hardy space Hp consists of those f ∈ Hol(D) such that

‖f‖Hp
def
= sup0<r<1Mp(r, f) < ∞ (see [9] for the theory of Hp-spaces). If 0 < p < ∞

and α > −1, the weighted Bergman space Ap
α consists of those f ∈ Hol(D) such that

‖f‖Ap
α

def
=

(
(α+ 1)

∫

D

(1− |z|)α|f(z)|p dA(z)
)1/p

<∞.

The unweighted Bergman space Ap
0 is simply denoted by Ap. Here, dA(z) = 1

πdx dy

denotes the normalized Lebesgue area measure in D. We refer to [11], [23] and [40] for

the theory of these spaces.

The space Dp
α (0 < p < ∞, α > −1) consists of those f ∈ Hol(D) such that f ′ ∈ Ap

α.

Hence, if f is analytic in D, then f ∈ Dp
α if and only if

‖f‖p
Dp

α

def
= |f(0)|p + ‖f ′‖p

Ap
α
<∞.
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25502) and by a grant from la Junta de Andalućıa (P09-FQM-4468 and FQM-210). The third author is

supported also by the “Ramón y Cajal program”, Spain.
1

http://arxiv.org/abs/1211.5703v1


2 CH. CHATZIFOUNTAS, D. GIRELA, AND J. A. PELÁEZ

If p < α + 1 then it is well known that Dp
α = Ap

α−p (see, e. g. Theorem6 of [12]). On

the other hand, if p > α+ 2 then Dp
α ⊂ H∞. Therefore Dp

α becomes a “proper Dirichlet

space” when α+1 ≤ p ≤ α+2. The spaces Dp
p−1 are closely related with Hardy spaces.

Indeed, it is well known that D2
1 = H2. We have also [26]

(1.1) Hp ( Dp
p−1, for 2 ≤ p <∞,

and [12, 36]

(1.2) Dp
p−1 ( Hp, for 0 < p ≤ 2.

We remark that for p 6= q there is no relation of inclusion between Dp
p−1 and Dq

q−1 (see,

e. g., [5] and [19]).

We recall that the Bloch space B consists of those f ∈ Hol(D) such that

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2) |f ′(z)| <∞.

We refer to [2] for the theory of Bloch functions.

Next, we consider multiplication operators. For g ∈ Hol(D), the multiplication opera-

tor Mg is defined by

Mg(f)(z)
def
= g(z)f(z), f ∈ Hol(D), z ∈ D.

If X and Y are two normed (or Fréchet) spaces of analytic functions in D which are

continuously contained in Hol(D), M(X,Y ) will denote the space of multipliers from X

to Y ,

M(X,Y ) = {g ∈ Hol(D) : fg ∈ Y, for all f ∈ X},
and ||Mg||(X→Y ) will denote the norm of the operator Mg. If X = Y we simply write

M(X). These operators have been studied on the Dirichlet type spaces Dp
α in [20, 21, 15],

where among other results it is proved that

(1.3) M(Dp
p−1,Dq

q−1) = {0}, 0 < p, q <∞, p 6= q.

The following simple observation plays an important role in the motivation of this

work.

Lemma 1. Suppose that 0 < p < q <∞ and f ∈ Dp
p−1 ∩ B. Then f ∈ Dq

q−1.

Proof. Since f ∈ B we have that supz∈D
(1 − |z|)|f ′(z)| =M <∞. Using this we obtain

∫

D

(1− |z|)q−1|f ′(z)|q dA(z) =
∫
D
[(1− |z|)|f ′(z)|]q−p

(1− |z|)p−1|f ′(z)|p dA(z)

≤M q−p
∫
D
(1− |z|)p−1|f ′(z)|p dA(z) <∞.

Hence, f ∈ Dq
q−1. � �

Consequently, we have:

If X is a subspace of the Bloch space then

(1.4) X ∩ Dp
p−1 ⊂ X ∩ Dq

q−1, if 0 < p ≤ q <∞,

a fact which, contrary to (1.3), implies that whenever 0 < p ≤ q < ∞, the space of

multipliers M(Dp
p−1 ∩X,Dq

q−1 ∩X) is non-trivial.

If X ⊂ B, the space X ∩Dp
p−1 is equipped with the norm

‖f‖X∩Dp
p−1

def
= ‖f‖X + ‖f‖Dp

p−1
.
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Our aim is this paper is to obtain a characterization of the spacesM(Dp
p−1∩X,Dq

q−1∩X)

(0 < p, q <∞) for some important subspaces X of the Bloch space.

Let us start with X = B. For α > 0, the α-logarithmic-Bloch space Blog,α consists of

those g ∈ Hol(D) such that

ρα(f)
def
= sup

z∈D

(1− |z|2)|g′(z)|
(
log

e

1− |z|2
)α

<∞.

It is clear that

(1.5) Blog,α ⊂ Blog,β , α ≥ β.

For simplicity, the space Blog,1 will be denoted by Blog.

The multipliers of the Bloch space into itself were characterized independently by

several authors (see [3, 6, 39]). Namely, we have the following result:

(1.6) M(B) = Blog ∩H∞.

Let us turn our attention to the spaces M(Dp
p−1 ∩B,Dq

q−1 ∩B). Among other results,

we shall prove that, for p > 1, the space M(B ∩ Dp
p−1) coincides M(B). This is part of

the following result.

Theorem 1. Let 0 < p, q <∞ and g ∈ Hol(D).
(i) If 1 < q and 0 < p ≤ q <∞, then,

M(B ∩ Dp
p−1,B ∩ Dq

q−1) =M(B).
(ii) If 0 < q < p <∞, then

M(B ∩ Dp
p−1,B ∩ Dq

q−1) = {0}.

The question of obtaining a complete characterization of M(B ∩ Dp
p−1,B ∩ Dq

q−1) in

the case 0 < p ≤ q ≤ 1 remains open. However, we remark that the inclusion

M(B ∩ Dp
p−1,B ∩ Dq

q−1) ⊂M(B),
is true for any p, q (see the proof of Theorem 1 in Section 3). Using this, the fact that

M(B ∩ Dp
p−1,B ∩ Dq

q−1) ⊂ B ∩ Dq
q−1, and the following result we see that part (i) of

Theorem 1 does not remain true for 0 < q ≤ 1.

Theorem 2. If 0 < q ≤ 1, then M(B) \ Dq
q−1 6= {0}.

Let us now consider the spaces M(H∞ ∩ Dp
p−1, H

∞ ∩ Dq
q−1). It is easy to prove the

following result for the case p ≤ q.

Theorem 3. If 0 < p ≤ q <∞, then M(H∞ ∩Dp
p−1, H

∞ ∩ Dq
q−1) = H∞ ∩ Dq

q−1.

Regarding the case 0 < q < p, let us notice that if 2 ≤ q < p then H∞ ∩ Dp
p−1 =

H∞ ∩ Dq
q−1 = H∞. Hence we have

(1.7) M(H∞ ∩ Dp
p−1, H

∞ ∩ Dq
q−1) = H∞, 2 ≤ q < p.

When 0 < q < p and 0 < q < 2 the question is more complicated. It is well

known (see [17, Theorem1] and [36]) that, whenever 0 < q < 2, there exists a function

f ∈ H∞ \ Dq
q−1. We improve this result in our next theorem.
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Theorem 4. If 0 < q < min{p, 2}, then there exists a function f ∈
(
H∞ ∩ Dp

p−1

)
\(

H∞ ∩ Dq
q−1

)
.

The functions constructed in Theorem 4 are used in a basic way in the proof of part (a)

of our following result.

Theorem 5.

(a) If 0 < q < 1 and 0 < q < p <∞ then M(H∞ ∩ Dp
p−1, H

∞ ∩ Dq
q−1) = {0}.

(b) If 1 ≤ q < 2 ≤ p then M(H∞ ∩ Dp
p−1, H

∞ ∩Dq
q−1) = {0}.

In order to prove part (b), we use strongly [17, Theorem 1] which asserts that, whenever

0 < q < 2, there exists a function f ∈ H∞ such that

(1.8)

∫ 1

0

(1− r)q−1|f ′(reiθ)|q dr = ∞, for almost every θ ∈ R.

The case 1 ≤ q < p < 2 of Theorem 5 remains open. However, if the answer to the

following open question were affirmative then it would follow that the space M(H∞ ∩
Dp

p−1, H
∞ ∩ Dq

q−1) would be trivial also for this range of parameters. (See the proof of

Theorem5 (b)).

Question 1. Suppose that 0 < q < p < 2. Does there exist a function f ∈ H∞ ∩ Dp
p−1

satisfying (1.8)?

We end up taking X = BMOA, the space of those functions f ∈ H1 whose boundary

values have bounded mean oscillation on the unit circle ∂D as defined by John and

Nirenberg [24]. A lot of information about the space BMOA and can be found in

[4, 16, 18]. Let us recall here that

H∞ ( BMOA ( B, and H∞ ( BMOA ( ∩0<p<∞H
p.

We emphasize also that BMOA can be characterized in terms of Carleson measures. If

I ⊂ ∂D is an interval, |I| will denote the length of I. The Carleson box S(I) is defined

as S(I) = {reit : eit ∈ I, 1 − |I|
2π ≤ r < 1}. If µ is a positive Borel measure in D, we

shall say that µ is a Carleson measure if there exists a positive constant C such that

µ (S(I)) ≤ C|I|, for any interval I ⊂ ∂D.

We have (see, e .g. [18, Theorem6. 5]):

A function f ∈ Hol(D) belongs to BMOA if and only if the Borel measure µf in D
defined by dµf (z) = (1 − |z|2)|f ′(z)|2 dA(z) is a Carleson measure.

The multipliers of the space BMOA have been characterized in [28] (see also [34] and

[38]). Indeed, we have

(1.9) M(BMOA) = H∞ ∩BMOAlog.

Here, BMOAlog is the space of those functions g ∈ H1 for which there exists a positive

constant C such that
∫

S(I)

(1− |z|2)|g′(z)|2 dA(z) ≤ C|I|
(
log

2

|I|

)−2

, for any interval I ⊂ ∂D.

Let us mention that BMOAlog is called LMOA in [34]. Following the terminology of

[38], we have:
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BMOAlog is the space of those functions g ∈ H1 for which the Borel measure µg in

D defined by dµg(z) = (1− |z|2)|g′(z)|2 dA(z) is a 2-logarithmic Carleson measure.

In order to make a proper study of the spaces of multipliersM(Dp
p−1∩BMOA,Dq

q−1∩
BMOA), we shall present in sections 5 and 6 a series of results concerning the space

BMOAlog, some of which are of independent interest.

In section 5 we shall prove directly that BMOAlog ( Blog ( BMOA and we shall also

find some simple conditions on a function f ∈ Hol(D) which implies its membership to

BMOAlog. As a corollary we shall prove the following result about lacunary power series

in BMOAlog.

Proposition 1. Let f ∈ Hol(D) be given by a lacunary power series, i. ,e., f is of the

form

f(z) =
∑∞

k=0 akz
nk (z ∈ D) with nk+1 ≥ λnk for all k, for a certain λ > 1.

If
∑∞

k=0 |ak|2(log nk)
3 <∞, then f ∈ BMOAlog ∩H∞.

Section 6 deals with random power series of the form

ft(z) =
∞∑

n=0

rn(t)anz
n, z ∈ D, 0 ≤ t ≤ 1,

where f(z) =
∑∞

n=0 anz
n is analytic in D and {rn}∞n=0 is the sequence of Rademacher

function (see Section 2). Among other results, we establish a sharp condition on the

Taylor coefficients an of f which implies the almost sure membership of ft in BMOAlog.

Theorem 6. (i) If
∑∞

n=1 |an|2(logn)3 < ∞ then for almost every t ∈ [0, 1], the

function

ft(z) =

∞∑

n=1

rn(t)anz
n, z ∈ D,

belongs to BMOAlog ∩H∞.

(ii) Furthermore, (i) is sharp in a very strong sense: Given a decreasing sequence

of positive numbers {δn}∞n=1 with δn → 0, as n → ∞, there exists a sequence

of positive numbers {an}∞n=1 with
∑∞

n=1 a
2
nδn(logn)

3 < ∞ such that, for almost

every t the function ft defined by ft(z) =
∑∞

n=1 rn(t)anz
n (z ∈ D) does not

belong to Blog.

Now we pass properly to study the multipliers from Dp
p−1 ∩BMOA to Dq

q−1 ∩BMOA

(0 < p, q <∞).

If λ ≥ 2 then BMOA ⊂ Dλ
λ−1. Hence, trivially, we have

(1.10)

M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) =M(BMOA) = BMOAlog ∩H∞, 2 ≤ p, q <∞.

This remains true for other values of p and q.

Theorem 7. If 1 < q <∞ and 0 < p ≤ q <∞, then

M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) =M(BMOA) = BMOAlog ∩H∞.

When q < p then 0 is the only multiplier from Dp
p−1 ∩ BMOA to Dq

q−1 ∩ BMOA,

except in the cases covered by (1.10).
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Theorem 8. If 0 < q < p <∞ and q < 2, then

M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) = {0}.

To deal with the remaining case, 0 < p ≤ q ≤ 1, we shall use the above mentioned re-

sults about lacunary power series and random power series. Our main results concerning

random power series and multipliers are contained in the following theorem.

Theorem 9. Let {an}∞n=0 be a sequence of complex numbers satisfying

(1.11)

∞∑

n=1

|an|2(logn)3 <∞.

For t ∈ [0, 1] we set

(1.12) ft(z) =
∞∑

n=0

rn(t)anz
n, z ∈ D,

where the rn
′s are the Rademacher functions. Then, for almost every t ∈ [0, 1], the

function ft satisfies the following conditions:

(i)
∫ 1

0
(1− r)

(
log 1

1−r

)2 [
M∞(r, ft

′)
]2
dr <∞.

(ii) ft ∈ BMOAlog ∩H∞.

(iii) ft ∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) whenever 0 < p ≤ q and q > 1
2 .

Furthermore, if 0 < q < 1
2 then there exists a sequence {an} which satisfies (1.11) and

such that ft /∈ Dq
q−1, for almost every t. Thus, for this sequence {an} and for almost

every t we have:

(a) ft ∈M(BMOA).

(b) If 0 < p ≤ λ and λ > 1
2 then ft ∈M(Dp

p−1 ∩BMOA,Dλ
λ−1 ∩BMOA).

(c) ft /∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) whenever 0 < p ≤ q.

We remark that Theorem9 shows that Theorem7 does not remain true for q < 1/2.

Finally, we turn to consider multipliers in M(Dp
p−1 ∩ BMOA,Dq

q−1 ∩ BMOA) given

by power series with Hadamard gaps. We will show that whenever 0 < p ≤ q ≤ 1 the

power series with Hadamard gaps in M(Dp
p−1 ∩ BMOA,Dq

q−1 ∩BMOA) coincide with

those in Dq
q−1 ∩ BMOAlog and will obtain also the analogue of Theorem9 for lacunary

power series in Theorem14. This will give another proof of the impossibility of extending

Theorem7 to q < 1/2.

2. Preliminary results

As usual, a sequence of positive integers {nk}∞k=0 is said to be lacunar if there exists

λ > 1 such that nk+1 ≥ λnk, for all k. Also, by a lacunary power series (also called

power series with Hadamard gaps) we mean a power series of the form

f(z) =
∑∞

k=0 akz
nk (z ∈ D) with nk+1 ≥ λnk for all k, for a certain λ > 1.

For simplicity, we shall let L denote the class of all function f ∈ Hol(D) which are given

by a lacunary power series. Several known results on power series with Hadamard gaps

will be repeatedly used along the paper, we collect them in the following statement, (see

[7, 41, 2]).
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Proposition A. Suppose that 0 < p < ∞, α > −1 and f is an analytic function in D
which is given by a power series with Hadamard gaps,

f(z) =
∑∞

k=0 akz
nk (z ∈ D) with nk+1 ≥ λnk for all k (λ > 1).

Then:

(i) f ∈ Dp
α ⇐⇒ ∑∞

k=0 n
p−α−1
k |ak|p <∞, and

||f − f(0)||p
Dp

α
≍

∞∑

k=0

np−α−1
k |ak|p.

(ii) f ∈ H∞ if and only if
∑∞

k=0 |ak| <∞, and

||f ||H∞ ≍
∞∑

k=0

|ak|.

(iii) f ∈ B ⇐⇒ supn |an| <∞, and

‖f‖B ≍ sup
n

|an|.

It is also well known that L ∩Hp = L ∩H2 for any p ∈ (0,∞) but

H∞ ∩ L ( H2 ∩ L.
In spite of this, for any given lacunary sequence of positive integers {nk}∞k=1 and any

sequence of complex numbers {uk}∞k=1 ∈ ℓ2, Fournier constructed in [13] a function

f(z) =
∑∞

n=0 anz
n ∈ H∞ with ank

= uk, for all k. Some properties of the bounded

function f which were not stated in [13] will play an important role in the proof of some

of our results. Due to this fact and for sake the completeness we present a complete

proof of Fournier’s construction pointing out some extra properties of the constructed

function (for simplicity we shall restrict to sequences {nk} satisfying nk+1 ≥ 2nk).

Let start fixing some notation. The unit circle ∂D will be denoted by T. If g ∈ L1(T)
its Fourier coefficients ĝ(n) are defined by

ĝ(n) =
1

2π

∫ π

−π

g(eiθ)e−inθ dθ, n ∈ Z.

If n1 < n2 are integers we shall write ⌊n1, n2⌋ for the set of all integers n with n1 ≤
n ≤ n2. Also, for g(z) =

∑∞
k=0 bkz

k ∈ Hol(D) and n2 > n1 ≥ 0, we set

Sn1,n2
g(z) =

n2−1∑

k=n1

bkz
k.

Proposition 2. Assume that {uk}∞k=0 ∈ ℓ2 and let {nk}∞k=0 be a sequence of positive

integers such that nk+1 > 2nk, for all k. Then, there exists a function Ψ ∈ Hol(D) of

the form

Ψ(z) =

∞∑

n=0

anz
n, z ∈ D,

with the following properties:

(i) Ψ ∈ H∞.

(ii) ank
= uk, for all k.
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(iii) If we define Λ0 = {n0} and Λk = ⌊nk − nk−1, nk⌋ for k > 0, we have that the

sets Λk are pairwise disjoint and satisfy Λk ⊂ ⌊nk−1 + 1, nk⌋ for all k ≥ 1.

Furthermore, an = 0 if n 6∈ ∪∞
k=0Λk.

(iv) There is an absolute constant C such that
∥∥Snk+1,nk+1+1Ψ

∥∥
H∞ ≤ C|uk|, for all k.

Proof. The construction depends on the following equality [13, p. 402]

(2.1) |a+ vb|2 + |b− v̄a| = (1 + |v|2)(|a|2 + |b|2), a, b, v ∈ C.

Let us define inductively the following sequences of functions on T

(2.2) φ0(ζ) = u0ζ
n0 , h0(ζ) = 1, ζ ∈ T,

and, for k > 0,

(2.3) φk(ζ) = φk−1(ζ) + ukζ
nkhk−1(ζ), hk(ζ) = hk−1(ζ)− ukζ

−nkφk−1(ζ), (ζ ∈ T).

Since nk+1 > 2nk, it is clear that the sets Λk, k = 1, 2, . . . , are disjoint and that

Λk ⊂ ⌊nk−1 + 1, nk⌋ for all k ≥ 1.

We claim that that the sequences {φk} and {hk} satisfy the following properties

(2.4) φ̂k(n) = 0, whenever k ≥ 0 and n 6∈
k⋃

j=0

Λj

(2.5) ĥk(−n) = 0, whenever k ≥ 0 and n ≥ 1 and n 6∈
k⋃

j=1

Λj.

(2.6) φ̂k(n) = φ̂j(n), whenever k ≥ j and n ≤ nj ,

(2.7) φ̂k(nj) = uj, whenever k ≥ j .

It is clear that (2.4) and (2.5) hold for k = 0, 1. Arguing by induction, assume that

(2.4) and (2.5) are valid for some value of k ∈ N. Then,

(2.8) φk+1(ζ) = φk(ζ) + uk+1ζ
nk+1hk(ζ) =

k∑

j=0

∑

n∈Λj

φ̂k(n)ζ
n + fk(ζ),

where fk(ζ) = uk+1ζ
nk+1hk(ζ). By the induction hypotheses f̂k(n) = 0 if n /∈ Λk+1,

which gives (2.4) for k+1. The proof of (2.5) is analogous. Now, (2.6) follows from (2.3),

(2.4) and the fact that the sets Λk are disjoint and (2.5). Using again that the sets Λk

are disjoint, (2.6), (2.3) and (2.2), we deduce (2.7).

We have that

|φ0(ζ)|2 + |h0(ζ)|2 = 1 + |u0|2,
so if we assume that |φk(ζ)|2 + |hk(ζ)|2 =

∏k
j=0(1 + |uj|2), bearing in mind (2.1) and

(2.3), it follows that

|φk+1(ζ)|2 + |hk+1(ζ)|2 =
(
1 + |uk+1|2

) (
|φk(ζ)|2 + |hk(ζ)|2

)
=

k+1∏

j=0

(1 + |uj |2),
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hence we have proved by induction that

|φk(ζ)|2 + |hk(ζ)|2 =
k∏

j=0

(1 + |uj |2), ζ ∈ T, k = 0, 1, 2, . . . .

This and the fact that {uk}∞k=0 ∈ ℓ2 imply that {hk}∞k=0 and {φk}∞k=0 are uniformly

bounded sequences of functions in L∞(T). Then, using the Banach-Alaoglu theorem,

(2.4), (2.6) and (2.7), we deduce that a subsequence of {φk} converges in the weak star

topology of L∞(T) to a function φ ∈ L∞(T) with φ̂(n) = 0 for all n < 0, and φ̂(nk) = uk
for all k. Then if we set an = φ̂(n) (n ≥ 0) it follows that the function Ψ defined by

Ψ(z) =

∞∑

n=0

anz
n, z ∈ D,

is analytic in D and satisfies (i), (ii) and (iii).

Finally, we shall prove (iv). Using(2.6) and (2.8), we see that for any ζ ∈ T, we have

Snk+1,nk+1+1Ψ(ζ) =

nk+1∑

n=nk+1

Ψ̂(n)ζn =

nk+1∑

m=nk+1

(
lim

m→∞
φ̂m(n)

)
ζn

=

nk+1∑

n=nk+1

φ̂k+1(n)ζ
n = fk(ζ) = uk+1ζ

nk+1hk(ζ),

which, bearing in mind that supk ‖hk‖∞ = C <∞, implies

∥∥Snk+1,nk+1+1Ψ
∥∥
H∞ = |uk+1|||hk||L∞(T) ≤ C|uk+1|.

This finishes the proof. �

Our work will also make use of the Rademacher functions {rn(t)}∞n=0 which are are

defined by

r0(t) =





1, if 0 < t < 1/2

−1, if 1/2 < t < 1

0, if t = 0, 1/2, 1.

rn(t) = r0(2
nt), n = 1, 2, . . . .

See, e. g., [41, Chapter V, Vol. I] or [9, Appendix A] for the properties of these functions.

In particular, we shall use Khinchine’s inequality which we state as follows.

Proposition B (Khinchine’s inequality). If {ck}∞k=1 ∈ ℓ2 then the series
∑∞

k=1 ckrk(t)

converges almost everywhere. Furthermore, for 0 < p <∞ there exist positive constants

Ap, Bp such that for every sequence {ck}∞k=0 ∈ ℓ2 we have

Ap

(
∞∑

k=0

|ck|2
)p/2

≤
∫ 1

0

∣∣∣∣∣
∞∑

k=0

ckrk(t)

∣∣∣∣∣

p

dt ≤ Bp

(
∞∑

k=0

|ck|2
)p/2

.
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3. Multipliers on B ∩ Dp
p−1

Proof of Theorem 1. (i) Assume that g ∈ M(B ∩ Dp
p−1,B ∩ Dq

q−1). From now and

throughout the paper we shall denote by ϕa the Möbius transformation which inter-

changes the origin and a,

ϕa(z) =
a− z

1− az
, z ∈ D.

A simple calculation shows that

sup
a∈D

||ϕa||B∩Dp
p−1

<∞.

So, for any a, z ∈ D

(1− |z|2)|ϕ′
a(z)g(z)| = (1− |z|2)|(ϕa · g)′(z)− ϕa(z)g

′(z)|
≤ ‖ϕag‖B∩Dq

q−1
+ (1 − |z|2)|ϕa(z)g

′(z)| . ‖Mg‖(B∩Dp
p−1

→B∩Dq
q−1

) + ||g||B <∞.
(3.1)

Since (1− |a|2)|ϕ′
a(a)| = 1, taking z = a in (3.1) we obtain

|g(a)| . ‖Mg‖(B∩Dp
p−1

→B∩Dq
q−1

) + ||g||B <∞,

for any a ∈ D. Thus, g ∈ H∞.

Next consider the family of test functions, fθ(z) = log 1
1−ze−iθ , θ ∈ [0, 2π). A calcula-

tion shows that {fθ}θ∈[0,2π) is uniformly bounded in B ∩ Dp
p−1. Therefore,

A = sup
θ∈[0,2π)

‖gfθ‖B ≤ sup
θ∈[0,2π)

‖gfθ‖B∩Dq
q−1

≤ ‖Mg‖(B∩Dp
p−1

→B∩Dq
q−1

) sup
θ∈[0,2π)

‖fθ‖B∩Dp
p−1

<∞,

which implies that

(1− |z|2)|g′(z)fθ(z)| = (1− |z|2)|g′(z)fθ(z) + g(z)f ′
θ(z)− g(z)f ′

θ(z)|
≤ A+ (1 − |z|2)|g(z)f ′

θ(z)|
= A+ ||g||H∞ sup

θ∈[0,2π)

||fθ||B

<∞, for all z ∈ D and θ ∈ [0, 2π).

Finally, given z ∈ D choose eiθ = z
|z| to deduce that

sup
z∈D

|g′(z)|(1− |z|) log 1

1− |z| <∞,

which together the fact that g ∈ H∞ gives that g ∈M(B).

Suppose now that g ∈ M(B) and take f ∈ B ∩ Dp
p−1. Then fg ∈ B. Using Lemma 1

and the closed graph theorem, we obtain

(3.2)

∫

D

|(fg)′(z)|q(1− |z|2)q−1dA(z)

.

∫

D

|f ′(z)g(z)|q(1− |z|2)q−1dA(z) +

∫

D

|g′(z)f(z)|q(1− |z|2)q−1dA(z)

. ‖g‖qH∞‖f‖q
B∩Dp

p−1

+

∫

D

|f(z)g′(z)|q(1− |z|2)q−1dA(z).
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We shall distinguish two cases to deal with the last integral which appears in (3.2). First,

if 1 < q ≤ 2, bearing in mind (1.2) and the fact that g ∈ Blog, we see that

(3.3)

∫

D

|f(z)g′(z)|q(1− |z|2)q−1dA(z) .

∫ 1

0

1

(1− r)q logq e
1−r

M q
q (r, f)(1− r)q−1 dr

.‖f‖q
Dq

q−1

∫ 1

0

1

(1− r) logq e
1−r

dr

.‖f‖q
B∩Dp

p−1

.

On the other hand, if 2 < q < ∞, then using that g ∈ Blog and the well known fact

that

Mq(r, f) ≤ C||f ||B
(
log

1

1− r

)1/2

, 0 < r < 1,

(see, e. g., [8]) we get

(3.4)

∫

D

|f(z)g′(z)|q(1− |z|2)q−1dA(z) .

∫ 1

0

1

(1− r)q logq e
1−r

M q
q (r, f)(1− r)q−1 dr

.||f ||qB
∫ 1

0

1

(1− r) logq/2 e
1−r

dr <∞.

Joining (3.2) (3.3) and (3.4), we see that in any case we have fg ∈ Dq
q−1 and, hence,

fg ∈ B ∩ Dq
q−1. Thus, we have proved that g ∈ M(B ∩ Dp

p−1,B ∩ Dq
q−1) finishing the

proof.

(ii) We borrow ideas from [15, Theorem 12]. We shall distinguish three cases.

Case 1. 2 < q <∞. Assume that g ∈ M(B ∩ Dp
p−1,B ∩ Dq

q−1) and g 6≡ 0. By the

proof of [15, Theorem K] (see also the proofs of [19, Theorems 1.6 and 1.7]), it follows

that there exists a function f ∈ Dp
p−1, given by a lacunary power series, with f(0) 6= 0,

and such that its sequence of ordered zeros {zn} (that is, the z′ns are ordered so that

|z1| ≤ |z2| ≤ |z3| . . . ) satisfies
N∏

n=1

1

|zn|
6= o

(
logN

) 1
2
− 1

q

.

Since f is given by a lacunary power series, by Proposition A, the sequence of its Taylor

coefficients is in ℓp. This implies that f ∈ B ∩Dp
p−1. If {wn} is the sequence of non-zero

zeros of gf arranged so that |w1| ≤ |w2| ≤ |w3| . . . , we have that |wn| ≤ |zn|, for all n,

which gives that
N∏

n=1

1

|wn|
≥

N∏

n=1

1

|zn|
,

hence
N∏

n=1

1

|wn|
6= o

(
logN

) 1
2
− 1

q

.

This together with [19, Theorem 1.6] implies that fg /∈ Dq
q−1. This is a contradiction.

Thus, g ≡ 0.
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Case 2. 0 < q ≤ 2 < p. The proof is similar to that of the case 1. Suppose that

g 6≡ 0 and g ∈ M(B ∩ Dp
p−1,B ∩ Dq

q−1). Take γ ∈
(
0, 12 − 1

p

)
. Then, by the proof of

[15, Theorem K] and Proposition A, there is a function f ∈ B ∩ Dp
p−1, represented by a

lacunary series, with f(0) 6= 0 whose sequence of ordered zeros {zn} satisfies

(3.5)

N∏

n=1

1

|zn|
6= o

(
logN

)γ

.

Let {wn}∞n=1 be the sequence of ordered non-zero zeros of fg. Since fg ∈ Dq
q−1 and

q ≤ 2, it follows that fg ∈ Hq and, hence, {wn}∞n=1 satisfies the Blaschke condition

which is equivalent to saying that

N∏

k=1

1

|wk|
= O(1), as N → ∞.

This is in contradiction with (3.5), because any zero of f is also a zero of fg. Conse-

quently, g ≡ 0.

Case 3. 0 < p ≤ 2. Suppose that g 6≡ 0 and g ∈ M(B ∩ Dp
p−1,B ∩ Dq

q−1). Take

an = 1
n1/p+ε with 0 < ε < 1

q − 1
p and f(z) =

∑∞
n=1 anz

2n . Since
∑∞

n=1 a
p
n < ∞ and∑∞

n=1 a
q
n = ∞, then by Proposition A, f ∈ B ∩ Dp

p−1 \ Dq
q−1.

Let {rk(t)} be the Rademacher functions and let ft(z) =
∑∞

k=1 rk(t)akz
2k . By Propo-

sition A (iii)

‖f‖B ≍ sup
n

|an| ≍ ‖ft‖B, t ∈ [0, 1]

and

(3.6) ‖ft‖2pH2 =

(
∞∑

k=0

|ak|2
)p

≤
(

∞∑

k=0

|ak|p
)2

≍ ‖ft‖2pDp
p−1

≍ ‖f‖2p
Dp

p−1

, t ∈ [0, 1]

Then for any t ∈ [0, 1], it follows that

(3.7)

∫

D

|(gft)′(z)|q(1 − |z|2)q−1dA(z) . ‖ft‖qDp
p−1

+ ||ft||qB ≍ ‖f‖q
Dp

p−1

+ ||f ||qB <∞.

So, by Fubini’s theorem, Khinchine’s inequality and the fact that g ∈ Dq
q−1, we obtain

(3.8)

∫ 1

0

∫

D

|gf ′
t(z)|q(1 − |z|2)q−1dA(z)dt

.

∫ 1

0

∫

D

|(gft)′(z)|q(1− |z|2)q−1dA(z)dt+

∫ 1

0

∫

D

|ftg′(z)|q(1 − |z|2)q−1dA(z)dt

. ‖f‖q
B∩Dp

p−1

+

∫

D

|g′(z)|q
∫ 1

0

|ft(z)|q(1− |z|2)q−1dtdA(z)

. ‖f‖q
B∩Dp

p−1

+

∫

D

|g′(z)|qM q
2 (|z|, f)(1− |z|2)q−1dA(z)

. ‖f‖q
B∩Dp

p−1

+ ‖f‖q
Dp

p−1

∫

D

|g′(z)|q(1− |z|2)q−1dA(z)

. ‖f‖q
B∩Dp

p−1

.

On the other hand, since g 6≡ 0, there exists a positive constant C such thatM q
q (r, g) ≥ C,

1/2 < r < 1. Using Fubini’s theorem, Khinchine’s inequality and bearing in mind that
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f ′ is also given by a power series with Hadamard gaps (thus M2(r, f
′) ≍ Mq(r, f

′)) we

have that

(3.9)

∫ 1

0

∫

D

|gf ′
t(z)|q(1− |z|2)q−1dA(z)dt

=

∫

D

|g(z)|q(1− |z|2)q−1

(∫ 1

0

|f ′
t(z)|qdt

)
dA(z)

≍
∫

D

|g(z)|q(1− |z|2)q−1M q
2 (|z|, f ′)dA(z)

≥ C

∫ 1

1/2

M q
q (r, g)M

q
q (r, f

′)(1− r2)q−1dr

≥ C

∫ 1

1/2

M q
q (r, f

′)(1 − r2)q−1dr = +∞.

This is in contradiction with (3.8). It follows that g ≡ 0. �

We remark that the argument used to prove the inclusion M(B ∩ Dp
p−1,B ∩ Dq

q−1) ⊂
M(B) in the proof of Theorem 1 (i) works for any values of p and q, that is we have

M(B ∩ Dp
p−1,B ∩ Dq

q−1) ⊂M(B), 0 < p, q <∞.

We do not have a complete characterization of the space M(B ∩ Dp
p−1,B ∩ Dq

q−1) in the

case 0 < p ≤ q ≤ 1, however we find a sharp sufficient condition on a function g to lie

in this space of multipliers. We note that Theorem 2 is a byproduct of part (ii) of the

following stronger result.

Proposition 3. Let 0 < p ≤ q ≤ 1, α ∈
(

1
q ,∞

)
and g ∈ Hol(D). Then,

(i) If g ∈ Blog,α ∩H∞, then g ∈M(B ∩ Dp
p−1,B ∩ Dq

q−1).

(ii)
(
Blog, 1q

∩H∞
)
\ Dq

q−1 6= {0}.

Proof. Part (i) can be proved arguing as in (3.2) and (3.3), so we omit a detailed proof.

(ii) Assume first that 0 < q < 1. Consider the lacunary power series

g(z) =

∞∑

k=1

1

k1/q
z2

k

.

By Proposition A, g ∈ H∞ \ Dq
q−1. Since lim sup

k→∞

1
k1/q

(
log 2k

)1/q
<∞ (see [32, p. 20])

g ∈ Blog, 1q
.

Let us consider now the case q = 1. The proof in this case is a little bit more involved.

Set

uk =
1

k + 1
and nk = 4k, k = 0, 1, 2, . . . .

Let Ψ be the H∞-function associated to these sequences via Theorem 2. By [36, Lemma

1.6 (i)],

||Ψ||D1
0
& ‖{Ψ̂(4k}∞k=0‖ℓ1 =

∞∑

k=0

1

k + 1
= ∞.
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Finally, we shall see that Ψ ∈ Blog. Bearing in mind, [30, p. 113], [27, Lemma3. 1] and

Lemma 2 (iv), we deduce

M∞(r,Ψ′) ≤ |Ψ̂(1)|+
∞∑

k=0

M∞(r, Snk+1,nk+1
Ψ′)

. ||Ψ||H∞ +
∞∑

k=0

||Snk+1,nk+1
Ψ′||H∞r4

k

. ||Ψ||H∞ +
∞∑

k=0

4k||Snk+1,nk+1
Ψ||H∞r4

k

. ||Ψ||H∞ +
∞∑

k=0

4k

k + 1
r4

k

.

Since an standard calculation shows that
∞∑

k=0

4k

k + 1
r4

k

.
1

(1 − r) log e
1−r

, 0 ≤ r < 1,

this finishes the proof. �

Next we provide a sufficient condition, which involves Carleson measures, on a function

g to lie in this space of multipliers. It turns out to be also necessary if g is given by a

power series with Hadamard gaps.

Theorem 10. Assume that 0 < p ≤ q ≤ 1 and let g be an analytic function in D. Let

µg,q be the Borel measure in D defined by dµg,q(z) = |g′(z)|q(1− |z|2)q−1 dA(z).

(a) If g ∈ H∞ ∩ Blog and the measure µg,q is a Carleson measure, then g ∈ M(B ∩
Dp

p−1,B ∩ Dq
q−1).

(b) If g is given by a power series with Hadamard gaps, then g ∈ M(B ∩ Dp
p−1,B ∩

Dq
q−1) if and only if g ∈ H∞ ∩Blog and the measure µg,q is a Carleson measure.

Proof. Suppose that g ∈ H∞ ∩ Blog and the measure µg,q is a Carleson measure. Take

f ∈ B ∩ Dp
p−1.

• Using (1.6), we see that g ∈M(B) and, hence, fg ∈ B.
• Using [36, Theorem 2.1] we deduce that g ∈ M(Dp

p−1) and, then it follows that

fg ∈ Dp
p−1.

Since Dp
p−1 ∩ B ⊂ Dq

q−1 ∩ B, we have that fg ∈ B ∩ Dq
q−1. Thus, we have proved that

g ∈M(B ∩Dp
p−1,B ∩ Dq

q−1). This finishes the proof of part (a).

Suppose now that g is given by a power series with Hadamard gaps and g ∈ M(B ∩
Dp

p−1,B ∩ Dq
q−1). Then g ∈ Dq

q−1. Now, using Theorem3. 2 of [20], we see that this

implies that µg,q is a Carleson measure. � �

4. Multipliers on H∞ ∩ Dp
p−1

Proof of Theorem 3. Suppose that 0 < p ≤ q <∞.

If g ∈ M(H∞ ∩ Dp
p−1, H

∞ ∩ Dq
q−1) then, since H∞ ∩ Dp

p−1 contains the constant

functions, it follows trivially that g ∈ H∞ ∩ Dq
q−1.
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On the other hand, if g ∈ H∞ ∩ Dq
q−1 and f ∈ H∞ ∩ Dp

p−1, it is clear that gf ∈ H∞.

We also have∫

D

∣∣(g′f + gf ′)(z)
∣∣q(1− |z|2)q−1dA(z)

.

∫

D

|(g′f)(z)|q(1− |z|2)q−1 dA(z) +

∫

D

|g(z)f ′(z)|q(1 − |z|2)q−1dA(z)

. ‖f‖qH∞‖g‖q
Dq

q−1

+ ‖g‖qH∞‖f‖q−p
B ‖f‖q−p

Dp
p−1

<∞.

Thus, gf ∈ Dq
q−1 and, hence, gf ∈ H∞ ∩ Dq

q−1. Consequently, we have proved that

g ∈M(H∞ ∩ Dp
p−1, H

∞ ∩Dq
q−1). �

Proof of Theorem 4.

Let p̃ = min{p, 1} and p⋆ = min{p, 2}. We shall split the proof in two cases.

Case 1: 0 < q < 1. Take a sequence {uk}∞k=1 ∈ ℓp̃ \ ℓq and let f be defined by

f(z) =
∞∑

k=1

ukz
2k , z ∈ D.

Then, using Proposition A and the fact that p̃ ≤ 1, we see that f ∈
(
Dp

p−1 ∩H∞
)
\Dq

q−1.

Case 2: 1 ≤ q < 2. Let us consider a sequence {uk} such that {uk}∞k=1 ∈ ℓp
⋆ \ ℓq and

let choose nk = 4k. We claim that the function Φ ∈ H∞ associated to {uk} and {nk}
via Lemma 2 satisfies that Φ ∈ H∞ ∩ Dp

p−1 \H∞ ∩ Dq
q−1.

Arguing as in the proof of [36, Lemma 1.6 (i) ] and bearing in mind Lemma 2 (ii), we

deduce

||Φ||q
Dq

q−1

&

∞∑

k=0

∣∣∣Φ̂(nk)
∣∣∣
q

= ||{uk}||qℓq = ∞,

that is, Φ /∈ Dq
q−1.

By (1.1), if p ≥ 2 we are done. On the other hand, if 0 < p < 2 by [19, Theorem 1.1

(ii)], M. Riesz theorem and Lemma 2 (iv),

||Φ||q
Dp

p−1

≤
∫ 1

0

(1− r)p−1Mp
2 (r,Φ

′) dr

.

∞∑

k=0

(∥∥S2k,2k+1Φ
∥∥
H2

)p/2

.

∞∑

k=0

(∥∥S4k+1,4k+1+1Φ
∥∥
H2

)p/2
. ||{uk}||pℓp <∞,

which finishes the proof. �

Proof of Theorem 5 (a). Assume that 0 < q < 1, 0 < q < p and that g ∈ M(H∞ ∩
Dp

p−1, H
∞ ∩ Dq

q−1) and g 6≡ 0. Take

f(z) =

∞∑

k=1

z2
k

k
1
q

.

Then we use the Rademacher functions as in the proof of Case 3 of Theorem1 (ii) to get

a contradiction. Hence, g ≡ 0.

�
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Proof of Theorem 5 (b). Assume that 1 ≤ q < 2 ≤ p. By [17, Theorem 1] there is a

function f ∈ H∞ such that

∫ 1

0

(1− r2)q−1|f ′(reiθ)|q dr = ∞ for every θ ∈ B,

where B is a subset of [0, 2π] whose Lebesgue measure |B| is 2π.
Suppose that g ∈M(H∞∩Dp

p−1, H
∞∩Dq

q−1) and g 6≡ 0. Notice that g ∈ H∞∩Dq
q−1.

Since
∫

D

(1− |z|2)q−1|g′(z)f(z)|q dA(z) ≤ ‖f‖qH∞‖g‖q
H∞∩Dq

q−1

<∞,(4.1)

it follows that
∫

D

(1− |z|2)q−1|g(z)f ′(z)|q dA(z) <∞(4.2)

Since g ∈ H∞ and g 6≡ 0, there is a set A = A(g) ⊂ [0, 2π] with |A| > 0 and such that

limr→1− g(re
iθ) 6= 0 if θ ∈ A. Then, for every θ ∈ A ∩B there is r0(θ) ∈ (0, 1) such that

K = inf
r0<r<1

|g(reiθ)| > 0. Then

∫ 1

0

(1− r2)q−1|g(reiθ)|q|f ′(reiθ)|q dr ≥ Kq

∫ 1

r0

(1− r2)q−1|f ′(reiθ)|q dr = ∞,

since |A∩B| > 0, this is in contradiction with (4.2). Thus g must be identically 0. This

finishes the proof. �

5. Some basic results on the space BMOAlog

We shall start this section by proving some embedding relations between BMOAlog,

Blog and BMOA. With this aim, we recall that g ∈ BMOAlog if and only if

sup
a∈D

log2 2
1−|a|

1− |a|

∫

S(a)

|g′(z)|2(1− |z|2) dA(z) <∞,

where S(a) is the Carleson box associated to the interval

Ia =

{
eit ∈ T :

∣∣arg(ae−it)
∣∣ < 1− |a|

2

}
, a ∈ D \ {0}, I0 = T.

Proposition 4. If 1 > β > 1
2 , then BMOAlog ( Blog ( Blog,β ( BMOA.

Proof. First, we prove that BMOAlog ⊂ Blog. Take f ∈ BMOAlog. Let a ∈ D and

assume without loss of generality that |a| > 1
2 . Set a⋆ = 3|a|−1

2 ei arg a so that the disc

D
(
a, 1−|a|

2

)
of center a and radius 1−|a|

2 is contained in the Carleson box S(a⋆). This

inclusion together with the subharmonicity of |f ′|2 and the fact that (1− |z|) ≍ (1− |a|)
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for z ∈ D
(
a, 1−|a|

2

)
gives

(
log 2

1−|a|

)2
(1 − |a|)2|f ′(a)|2 .

(
log 2

1−|a|

)2 ∫
D(a, 1−|a|

2 ) |f
′(z)|2 dA(z)

≍ (log 2
1−|a| )

2

1−|a|

∫
D(a, 1−|a|

2 )(1 − |z|2)|f ′(z)|2 dA(z)

≍
(

log 2

1−|a⋆|

)

2

1−|a⋆|

∫
D(a, 1−|a|

2 )(1− |z|2)|f ′(z)|2 dA(z)

.

(

log 2

1−|a⋆|

)

2

1−|a⋆|

∫
S(a⋆)(1− |z|2)|f ′(z)|2 dA(z),

so f ∈ Blog.

Now, let us see that the inclusion is strict. We borrow ideas from [31, Proposition 5.1

(D)]. Assume on the contrary to the assertion that BMOAlog = Blog. By [22, Theorem

1] (see also [1]) there are g1, g2 ∈ Blog such that

|g′1(z)|+ |g′2(z)| &
1

(1− |z|) log 2
1−|z|

, z ∈ D.

Then, for any a ∈ D
∫

S(a)

1

(1− |z|) log2 2
1−|z|

dA(z) .

∫

S(a)

(|g′1(z)|+ |g′2(z)|)
2
(1− |z|2) dA(z)

.

∫

S(a)

|g′1(z)|2(1− |z|2) dA(z) +
∫

S(a)

|g′2(z)|2(1− |z|2) dA(z)

.
(1 − |a|)
log2 2

1−|a|

,

so bearing in mind that

∫

S(a)

1

(1− |z|) log2 2
1−|z|

dA(z) ≍ (1− |a|)
log 2

1−|a|

,

and letting |a| → 1−, we obtain a contradiction.

Assume now that β ∈
(
1
2 , 1
)
. Then it is clear that Blog ( Blog,β . Furthermore,

f(z) =
∑∞

k=1
z2k

kβ ∈ Blog,β \ Blog (see [32, p. 20])

The inclusion Blog,β ( BMOA, for β > 1
2 , follows easily using the characterization

of BMOA in terms of Carleson measures (see [14, p. 669]). Finally, we observe that

f(z) = log 1
1−z ∈ BMOA \ Blog,β for any β > 0. This concludes the proof. �

Next we find a simple sufficient condition for the membership a a function f ∈ Hol(D)
in the space BMOAlog.

Proposition 5. Let f be an analytic function in D. If

(5.1)

∫ 1

0

(1− r)

(
log

1

1− r

)2

[M∞(r, f ′)]
2
dr <∞

then f ∈ BMOAlog.
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Proof. Suppose that f satisfies (5.1) Let I be an interval in T of length h, say I = {eit :
θ0 < t < θ0 + h}. Then

(log 2

|I| )
2

|I|

∫
S(I)(1 − |z|2)|f ′(z)|2 dA(z) ≍ (log 2

h )
2

h

∫ 1

1−h

∫ θ0+h

θ0
(1− r)|f ′(reit)|2 dr

.
(
log 2

h

)2 ∫ 1

1−h(1− r) [M∞(r, f ′)]
2
dr ≤

∫ 1

1−h(1− r) [M∞(r, f ′)]
2
(
log 2

1−r

)2
dr

≤
∫ 1

0 (1− r) [M∞(r, f ′)]
2
(
log 2

1−r

)2
dr.

�

Now we turn to the question of finding conditions on the Taylor coefficients of a function

f ∈ Hol(D) enough to assert that f ∈ BMOAlog. We shall need two lemmas. The first

one estimates an integral which may be viewed as a generalization of the classical beta

function (compare with Lemma 2 of [10]) and we omit its proof.

Lemma 2. Whenever m = 1, 2, 3, . . . and α > 0, we have

(5.2)

∫ 1

0

xn(1− x)m
(
log

1

1− x

)α

dx ≍ (log n)α

nm+1
, as n→ ∞.

Lemma 3. Suppose that α > 0 and let g be an analytic function in D, g(z) =
∑∞

n=0 anz
n

(z ∈ D). The following two conditions are equivalent:

(i)
∫
D
(1− |z|2)|g′(z)|2

(
log 2

1−|z|

)α
dA(z) <∞.

(ii)
∑∞

n=1 |an|2[logn]α <∞.

Proof. We have
∫
D
(1− |z|2)|g′(z)|2

(
log 2

1−|z|

)α
dA(z) ≍

∫ 1

0
r(1 − r)M2(r, g

′)2
(
log 2

1−|z|

)α
dr

=
∑∞

n=1 n
2|an|2

∫ 1

0
(1− r)r2n−1

(
log 2

1−|z|

)α
dr

Now, using Lemma2 with m = 1 we see that
∫ 1

0
(1 − r)r2n−1

(
log 2

1−|z|

)α
dr ≍ [logn]α

n2 .

Then it follows that
∫
D
(1−|z|2)|g′(z)|2

(
log 2

1−|z|

)2
dA(z) ≍∑∞

n=1 |an|2[log(n+1)]α. �

We close this section proving Proposition1.

Proof of Proposition 1. Suppose that
∑∞

k=0 |ak|2(lognk)
3 <∞ and

f(z) =
∑∞

k=0 akz
nk (z ∈ D) with nk+1 ≥ λnk for all k, and λ > 1.

Using the Cauchy-Schwarz inequality and the fact that
∑∞

k=0 r
2nk . log 2

1−r (because

the function h given by h(z) =
∑
z2nk is a Bloch function), we see that

[rM∞(r, f ′)]2 ≤ (
∑∞

k=0 nk|ak|rnk)
2

≤
(∑∞

k=0 n
2
k|ak|2r2nk

) (∑∞
k=0 r

2nk
)
.
(
log 2

1−r

)∑∞
k=0 n

2
k|ak|2r2nk .

Then, using Lemma 2 with m = 1 and α = 3, we obtain

∫ 1

0
(1− r)

(
log 1

1−r

)2
[M∞(r, f ′)]

2
dr .

∫ 1

0
(1− r)

(
log 1

1−r

)3 (∑∞
k=0 n

2
k|ak|2r2nk

)
dr

=
∑∞

k=0 n
2
k|ak|2

∫ 1

0
r2nk (1− r)

(
log 1

1−r

)3
dr .

∑∞
k=0 |ak|2 (lognk)

3 <∞.

Then Proposition5 implies that f ∈ BMOAlog.
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To see that f ∈ H∞ observe that λk . nk and |ak|2 . (lognk)
−3. Then it follows that

|ak| = O
(
k−3/2

)
, as k → ∞ and the result follows. �

6. Random power series

In this section we shall consider random power series analytic in D of the form

∞∑

n=0

ǫnanz
n

where the ǫn’s are random signs. More precisely, if f ∈ Hol(D), f(z) =
∑∞

n=0 anz
n

(z ∈ D), we set

ft(z) =

∞∑

n=0

rn(t)anz
n, 0 ≤ t < 1, z ∈ D,

where the rn’s are the Rademacher functions. Each function ft is analytic in D. Little-

wood [25] (see also [9, AppendixA]) proved that if
∑∞

n=0 |an|2 <∞ then ft ∈ ∩0<p<∞H
p

almost surely (a. s.), that is, for almost every t. On the other hand, the condition∑∞
n=0 |an|2 = ∞ implies that for almost every t, ft has a radial limit almost nowhere.

Paley and Zygmund [29] gave an example of an f with

(6.1)
∞∑

n=1

|an|2 logn <∞

such that ft /∈ H∞ for every t.

Anderson, Clunie and Pommerenke [2] used a result of Salem and Zygmund [33] on

the behaviour of the maxima of the partial sums of random trigonometric series to prove

that (6.1) implies that ft ∈ B a. s. and that this condition is best possible. Later on,

Sledd [35] used also the Salem and Zygmund theorem to show that (6.1) actually implies

that ft ∈ BMOA a. s.

Duren proved in [10] the following result.

Theorem A. If 0 ≤ β ≤ 1 and
∑∞

n=1 |an|2(logn)β < ∞, then for almost every t ∈
[0, 1], the function

ft(z) =

∞∑

n=1

rn(t)anz
n, z ∈ D,

satisfies

(6.2)

∫ 1

0

(1− r)

(
log

1

1− r

)β−1

[M∞(r, f ′
t)]

2
dr <∞.

Using this, Duren gave in [10] a new proof of Sledd’s theorem. Next we prove an

analogue of Duren’s theorem for β = 3. This will allow us to obtain the analogue of

Sledd’s theorem for BMOAlog.

Theorem 11. If
∑∞

n=1 |an|2(logn)3 <∞ then for almost every t ∈ [0, 1], the function

ft(z) =

∞∑

n=1

rn(t)anz
n, z ∈ D,
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satisfies

(6.3)

∫ 1

0

(1− r)

(
log

1

1− r

)2

[M∞(r, f ′
t)]

2
dr <∞.

Another result of [33] implies that the condition
∑∞

n=1 |an|2[logn]β < ∞ for some

β > 1, implies for almost every t, ft has a continuous extension to the closed unit disc.

Using this, Proposition5, and Theorem11 we obtain the first part of Theorem 6. Part (ii)

of this theorem can be proved arguing as in section 3. 4 of [2], and we omit the proof.

The proof of Theorem11 follows the lines of that of TheoremA in [10]. We shall use the

result of Salem and Zygmund already mentioned (Lemma 1 of [10]), Hilbert’s inequality

(Lemma 2 of [10]) and Lemma 2 with m = 3 and α = 2.

Proof of Theorem 11. Set

B2
n =

∞∑

k=1

k2|ak|2, n = 1, 2, . . . ,

and ψ(r) = (1− r)
∑∞

n=1 Bn

√
lognrn (0 < r < 1). Just as in p. 84 of [10], we have

(6.4) |ft′(z)| ≤ Cψ(r), |z| = r, 0 < r < 1, almost surely.

Using Lemma2, the simple fact that log x
x3/2 decreases as x increases in [e2/3,∞), and

Hilbert’s inequality, we deduce
∫ 1

0

(1− r)

(
log

1

1− r

)2

[ψ(r)]2 dr

≍
∫ 1

0

(1 − r)3
(
log

1

1− r

)2
[

∞∑

n=1

Bn

√
log nrn

]2
dr

=
∞∑

n=1

∞∑

j=1

Bn

√
lognBj

√
log j

∫ 1

0

rn+j(1− r)3
(
log

1

1− r

)2

dr

.

∞∑

n=1

∞∑

j=1

Bn

√
lognBj

√
log j

(n+ j)4
[log(n+ j)]2(*)

≤
∞∑

n=1

∞∑

j=1

1

n+ j

Bn[logn]
3/2

n3/2

Bj [log j]
3/2

j3/2

.

∞∑

n=1

|Bn|2
[logn]3

n3
.

Now,
∞∑

n=1

|Bn|2
[logn]3

n3
=

∞∑

n=1

n∑

k=1

k2|ak|2
[logn]3

n3
(**)

=

∞∑

k=1

k2|ak|2
∞∑

n=k

[logn]3

n3
≍

∞∑

k=1

|ak|2[log k]3 <∞.

Then (6.4), (*) and (**) imply that (6.3) holds for almost every t, finishing the proof.

�
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7. Multipliers on Dp
p−1 ∩BMOA

In this section we shall prove our results concerning multipliers from Dp
p−1 ∩ BMOA

to Dq
q−1 ∩BMOA. Let start with the following result.

Theorem 12. For any p, q with 0 < p, q <∞ we have

M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) ⊂ BMOAlog ∩H∞ =M(BMOA).

Proof. The proof uses arguments similar to those in that of Theorem1 (i) and, hence, we

shall omit some details.

Using that the family {ϕa : a ∈ D} is bounded in Dλ
λ−1 ∩ BMOA for all λ > 0, we

deduce that

M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) ⊂ H∞, 0 < p, q <∞.

Suppose now that 0 < p, q < ∞ and g ∈ M(Dp
p−1 ∩ BMOA,Dq

q−1 ∩ BMOA). Let us

use the test functions fa (a ∈ D) defined by

fa(z) = log
1

1− āz
, z ∈ D.

It is easy to see that the family {fa : a ∈ D} is also bounded Dλ
λ−1 ∩ BMOA for all

λ > 0. On the other hand, there exists an absolute constant C > 0 such that for any arc

I ⊂ ∂D
1

C
log

2

|I| ≤ |fa(z)| ≤ C log
2

|I| , z ∈ S(I),

where a = (1− |I|
2π )ξ with ξ the center of I.

Then we have
log2 2

|I|

|I|

∫
S(I)(1− |z|2)|g′(z)|2 dA(z) ≤ C2

|I|

∫
S(I)(1− |z|2)|fa(z)|2|g′(z)|2 dA(z)

. C2

|I|

∫
S(I)

(1− |z|2)|(fag)′(z)|2 dA(z) + C2

|I|

∫
S(I)

(1− |z|2)|f ′
a(z)|2|g(z)|2 dA(z).

Since g ∈ M(Dp
p−1 ∩ BMOA,Dq

q−1 ∩ BMOA), the family {fag : a ∈ D} is bounded

in BMOA and hence supI
C2

|I|

∫
S(I)

(1 − |z|2)|(fag)′(z)|2 dA(z) < ∞. Also, using that

g ∈ H∞ and that the family {fa : a ∈ D} is bounded in BMOA, we deduce that

supI
C2

|I|

∫
S(I)(1 − |z|2)|f ′

a(z)|2|g(z)|2 dA(z) <∞. Consequently, we have that

sup
I

log2 2
|I|

|I|

∫

S(I)

(1− |z|2)|g′(z)|2 dA(z) <∞,

that is, g ∈ BMOAlog. �

Proof of Theorem 7. Suppose that 1 < q < ∞ and 0 < p ≤ q < ∞. In view of Theo-

rem12, we only have to prove that M(BMOA) ⊂M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA).

Take g ∈ M(BMOA) and f ∈ BMOA ∩ Dp
p−1. Then, clearly, fg ∈ BMOA. Using

Lemma 1 and the closed graph theorem, we obtain

(7.1)

∫

D

|(fg)′(z)|q(1− |z|2)q−1dA(z)

.

∫

D

|f ′(z)g(z)|q(1 − |z|2)q−1dA(z) +

∫

D

|g′(z)f(z)|q(1− |z|2)q−1dA(z)

. ‖g‖qH∞‖f‖q
Dp

p−1
∩BMOA

+

∫

D

|f(z)g′(z)|q(1− |z|2)q−1dA(z).
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Now, Proposition4 implies that g ∈ Blog. Also, since BMOA ⊂ Hq, we have that

f ∈ Hq. Then we see that the last integral in (7.1) is finite as in the proof of (3.3). Thus,

we have proved that g ∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) finishing the proof. �

Proof of Theorem 8. Suppose that 0 < q < p < ∞, q < 2 and g ∈ M(Dp
p−1 ∩

BMOA,Dq
q−1 ∩BMOA) with g 6≡ 0. Take an = 1

nλ (n = 1, 2, . . . ) with

max

(
1

2
,
1

p

)
< λ ≤ 1

q

and set f(z) =
∑∞

n=1 anz
2n (z ∈ D). We have that f ∈ Dp

p−1 ∩ BMOA \ Dq
q−1. Then

we use the Rademacher functions as in the proof of Case 3 of Theorem1 (ii) to get a

contradiction. Hence, g ≡ 0. �

Now we turn to prove Theorem 9. Let us notice that (i) follows from Theorem11 and

(ii) from Theorem6 (i). To prove (iii) we shall use the following lemma.

Lemma 4. Suppose that 0 < q < 2 and α > 0. Let f be an analytic function in D of the

form f(z) =
∑∞

n=0 anz
n (z ∈ D), with

∑∞
n=0 |an|2[logn]α <∞. If f ∈ BMOAlog ∩H∞

then

f ∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA), whenever 0 < p ≤ q and
qα

2− q
> 1.

For 0 < q ≤ 1, (iii) of Theorem 9 follows using (ii) and the lemma with α = 3, while,

for 1 < q <∞, it follows from Theorem 7.

Proof of Lemma4. Suppose that f is in the conditions of the lemma and that 0 < p ≤ q

and qα
2−q > 1.

Take h ∈ Dp
p−1 ∩ BMOA. Since BMOAlog ∩ H∞ = M(BMOA), it follows that

fh ∈ BMOA.

We have also
∫
D
(1− |z|)q−1|(fh)′(z)|q dA(z)

.
∫
D
(1− |z|)q−1|f(z)|q|h′(z)|q dA(z) +

∫
D
(1− |z|)q−1|f ′(z)|q|h(z)|q dA(z)

= I1 + I2.

The first summand I1 is finite because f ∈ H∞ and h ∈ Dp
p−1∩BMOA ⊂ Dq

q−1∩BMOA.

Let us estimate the second one I2. Using Hölder’s inequality with the exponents 2
q and

2
2−q , we obtain

I2 =
∫
D
(1− |z|)q−1|f ′(z)|q|h(z)|q dA(z)

=
∫
D
|f ′(z)|q(1− |z|)q/2

(
log e

1−|z|

) qα
2
(
log e

1−|z|

)− qα
2 |h(z)|q1− |z|) q

2
−1 dA(z)

≤
[∫

D
|f ′(z)|2(1− |z|)

(
log e

1−|z|

)α
dA(z)

]q/2 [∫
D

|h(z)|
2q

2−q

(log e
1−|z|)

qα
2−q (1−|z|)

dA(z)

](2−q)/q

.

Using Lemma3, it follows that the first integral in the last product is finite. Now, notice

that f ∈ Hλ for all λ <∞ to deduce
∫

D

|h(z)|
2q

2−q

(
log e

1−|z|

) qα
2−q

(1 − |z|)
dA(z) ≤ ‖f‖

2q
2−q

H
2q

2−q

∫ 1

0

1
(
log e

1−r

) qα
2−q

(1− r)

dr
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and this integral is finite because qα
2−q > 1. Thus I2 <∞. Then we have that fh ∈ Dq

q−1

and, hence, fh ∈ Dq
q−1 ∩ BMOA. Consequently, we have proved that f ∈ M(Dp

p−1 ∩
BMOA,Dq

q−1 ∩BMOA). �

To finish the proof of Theorem 9 take q ∈ (0, 1/2) and let {an} be defined as follows:

a2k = (k + 1)−1/q, k = 0, 1, . . .

and an = 0, if n is not a power of 2. Set

f(z) =

∞∑

n=0

anz
n =

∞∑

k=0

(k + 1)−1/qz2
k

, z ∈ D.

It is clear that {an} satisfies (1.11). Furthermore, for almost every t, ft is given by a

lacunary power series, ft(z) =
∑∞

k=0 r2k(t)a2kz
2k , which does not belong to Dq

q−1 because∑∞
k=0 |a2k |q = ∞.

Now turn to consider multipliers inM(Dp
p−1∩BMOA,Dq

q−1∩BMOA) given by power

series with Hadamard gaps. First we show that whenever 0 < p ≤ q ≤ 1 the power

series with Hadamard gaps in M(Dp
p−1 ∩ BMOA,Dq

q−1 ∩ BMOA) coincide with those

in Dq
q−1 ∩BMOAlog.

Theorem 13. Suppose that 0 < p ≤ q ≤ 1 and let g be an analytic function in D given

by a power series with Hadamard gaps. Then the following conditions are equivalent:

(a) g ∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA).

(b) g ∈ Dq
q−1 ∩BMOAlog.

Proof. Since Dp
p−1 ∩BMOA contains the constants functions, it is clear that M(Dp

p−1 ∩
BMOA,Dq

q−1 ∩BMOA) ⊂ Dq
q−1 and the inclusion

M(Dp
p−1 ∩ BMOA,Dq

q−1 ∩ BMOA) ⊂ BMOAlog follows from Theorem12. Hence, the

implication (a) ⇒ (b) holds.

Let us prove next the other implication. So take g ∈ Dq
q−1 ∩BMOAlog ∩ L,

g(z) =
∑∞

k=0 akz
nk (z ∈ D) with nk+1 ≥ λnk for all k, for a certain λ > 1.

We have
∑∞

k=0 |ak|q <∞ which, since q ≤ 1, implies that
∑∞

k=0 |ak| <∞. Thus g ∈ H∞.

Then g ∈ BMOAlog ∩H∞ =M(BMOA).

Take f ∈ Dp
p−1 ∩BMOA. Since g ∈M(BMOA), we have that gf ∈ BMOA. Now,

∫
D
|(gf)′(z)|q(1− |z|2)q−1 dA(z)

.
∫
D
|g(z)|q|f ′(z)|q(1− |z|2)q−1 dA(z) +

∫
D
|f(z)|q|g′(z)|q(1− |z|2)q−1 dA(z)

= I1 + I2.

The first summand I1 is finite because g ∈ H∞ and f ∈ Dq
q−1.

Let us estimate the second one. Using Theorem3. 2 of [20] we see that the measure

µg,q in D defined by dµg,q(z) = (1−|z|2)q−1|g′(z)|q dA(z) is a Carleson measure and (see,

e. g., [37, Theorem1] or [36, Theorem 2. 1]) this implies that µg,q is a Carleson measure

for Dq
q−1, that is, Dq

q−1 ⊂ Lq(dµg,q). Hence f ∈ Lq(dµg,q) which is equivalent to saying

that I2 <∞. Hence, gf ∈ Dq
q−1.

So, we have proved that gf ∈ Dq
q−1 ∩ BMOA for any f ∈ Dp

p−1 ∩ BMOA, that is,

g ∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA). �

Finally, we obtain also the analogue of Theorem9 for lacunary power series.
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Theorem 14. Let f ∈ Hol(D) be given by a lacunary power series, of the form

f(z) =
∑∞

k=0 akz
nk (z ∈ D) with nk+1 ≥ λnk for all k, for a certain λ > 1,

and suppose that the sequence of coefficients {ak}∞k=0 satisfies

(7.2)
∞∑

k=1

|ak|2(log nk)
3 <∞.

Then the function f satisfies the following conditions:

(i) f ∈M(BMOA)

(ii) f ∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) whenever 0 < p ≤ q and q > 1
2 .

Furthermore, if 0 < q < 1
2 then there exists a sequence {ak} which satisfies (7.2) and

such that f /∈ Dq
q−1. Thus for this sequence {ak} the function f satisfies:

(a) f ∈M(BMOA).

(b) If 0 < p ≤ λ and λ > 1/2 then f ∈M(Dp
p−1 ∩BMOA,Dλ

λ−1) whenever 0 < p ≤
λ.

(c) f /∈M(Dp
p−1 ∩BMOA,Dq

q−1 ∩BMOA) whenever 0 < p ≤ q.

Proof. Part (i) follows from Proposition 1. Part (ii) follows from Theorem 7 for q > 1

and from Lemma4 (with α = 3) whenever 0 < q ≤ 1.

Now, if 0 < q < 1
2 take

ak = k−1/q, k = 1, 2, . . .

and

f(z) =

∞∑

k=1

akz
2k , z ∈ D.

Clearly,
∞∑

k=1

|ak|2k3 <∞, and

∞∑

k=1

|ak|q = ∞.

Then f satisfies conditions (a), (b) and (c) of Theorem14. �

As we mentioned in Section 1, Theorem14 also shows that Theorem7 does not remain

true for q < 1/2.
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[20] D. Girela and J. A. Peláez, Carleson measures for spaces of Dirichlet type, Integral Equations and

Operator Theory 55 (2006), n. 3, 415–427.
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