
  

  
 Abstract— Study has showed that Greenhouse gases are the 

main contribution to global warming. Climate modeling is one 
of method to explain the influence of those gasses to global 
warming. Many climate modeling have been proposed to 
analyze global warming process. Among them, 
Zero-Dimensional model as the simple model is able to 
generally describe the influence factors of the climate process. It 
is important to know the characteristic of each parameter by 
re-examining the current model. The model derived by 
Boeker-Van Grondelle offers simple description of global 
climate processes occurred. The model is system equations 
consists of two equations and variables. The systems are being 
studied by using two numerical methods, namely: 
Multiple-Equation Newton-Raphson and Steepest Descent 
Method.  The accuracy of both methods was analyzed to obtain 
the best solution to the system equations. The proposed solution 
was verifying by the result that previously published. 

Index Terms—Climate modeling, numerical methods, 
Newton-Raphson and Steepest Descent.  
 

I. INTRODUCTION 
The Rise of earth temperature as the result of greenhouse 

gases (GHGs) effect resulted obviously uncomfortable to the 
human being.  This process is influenced by a few minor 
gases, namely: carbon dioxide (CO2), methane, water vapor 
and ozone. These minor gases trap energy from the sun. This 
process is shown on Figure 1. 

The presence of CO2, methane, water vapor and ozone in 
determined concentration are useful to warm the earth by 
about 33oC in order to be habitable for human being. Without 
these gases, Earth’s average temperature would be about 
60oF colder. So, increasing the amount of these gases should 
effect the average temperature overall. In 20th century, the 
global-average temperature has increased for 0.7oC [1]. The 
increasing of the temperature has shown relation to the 
increasing of GHGs especially CO2. Climate models have 
been developed in order to study the relation. 
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Some models have been proposed to give better 
description of the climate processes. The most complex 
models are not as best model since there are many restrictions 
regarding those models. Zero and one dimensional models 
are still considering to be solved in order to study although 
these models are categorized as the simple one. 

 

 
Fig. 1. The greenhouse effect simulation.[2] 

 
On the simple way they could give general explanation to 

the process occurred between atmosphere and surface of the 
earth[3]. On this condition, none of dimensional is use 
neither time nor zonal dimensional. This description is 
known as Zero-Dimensional model. 

Basically, the climate models were mathematical 
representation of physical processes. The equation developed 
based on Energy Balance Models (EBM). This model 
describes that the energy source of the earth is obtained by 
solar radiation. This energy influences the global temperature 
of the earth’s surface. On the steady state condition, the 
model is given as equation (1)[3]. 

 
(1 – a)πR2S = 4πR2σT4  (1) 

 
This equation shows the influence of solar radiation to the 

mean surface temperature of the earth.  
In this paper, two numerical methods were used to study 

the model, namely: Newton-Raphson and Steepest Descent 
methods. Both methods accuracy are evaluated to propose 
the best solution for the model. This is followed by 
comparing them with the previous works to verify the results.  

The remainder of the paper is structured as follows. 
Section 2 introduces climate model analysis. Section 3 
describes data collection for the model. Section 4 presents 
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numerical computation of system equations. Section 5 
discusses initial values selections. Section 6 reports and 
discusses the solutions for both Newton-Raphson and 
Steepest Descent methods. Finally, Section 7 contains the 
conclusions. 

 

II. CLIMATE MODEL ANALYSIS 
Climate model as on equation (1) was modified to 

accommodate the process occurred between the atmospheric 
zone and surface of the earth. This is assumed that 
atmosphere and surface of the earth as two layers that have 
heat transfer process. All types of the heat transfer process 
occurred among both layers. Simplified, the system is able to 
describe as Fig. 2. 

 

 
Fig. 2. A zero-dimensional GHG model scheme (Taken from [4]). 

  
The interaction between the atmospheric and surface’s 

earth as given on Fig. 2 could be modeled as system 
equations, where for the surface of the earth is described by 
equation (2) as given by Boeker-Van Grondelle [4]. 

 

( )( ) ( ) ( ) 01
4

1 4
aa

4
sasa =−′−+−+−− TaTTTcSas σστ  (2) 

 
where; 

( )( )
4

1 Sasa −−τ  = model for the absorption of surface 

of the earth 
( )as TTc −  = model for non-radiation interaction 

between the atmosphere and 
surface of the earth. 

( )as aT ′−14σ   = model for emitted radiation minus 
the backscattered 

4
aTσ  = model for the incoming heat 

radiation from atmosphere 
 
and mathematical modeling that describes process occurred 
on atmosphere layer is given on equation (3) [4]. 
 

( ) ( ) ( ) 021
4

1 4
aaa

4
sasasaa =+′−′−−−−+−−− TaTTTcSaa στσττ

 (3) 
 
where: 

( )
4

1 Saa asas ττ +−−−  = model for solar absorption of the 

atmosphere 
( )as TTc −−  = model for non-radiation interaction 

( )aas aT ′−′−− τσ 14  = model for absorption of radiation of 
the earth by the atmosphere 

42 aTσ  = model for atmospheric emission 
 
The objective of these system equations is to explain the 

influence of component of the model to variance surface 
temperature of the earth. This is caused that the components 
of this system equations give explanation to describe the 
correlation to the changing of temperature of surface of the 
earth. 

The above system equations called as system equations 
with Ts and Ta as the variable. Conditions of this system are 
system equation with two equations and two variables. 
Simplifying the system, equation (2) is named as u(Ts, Ta) and 
equation (3) is v(Ts, Ta). The system were able to be solved by 
numerical methods 

 

III. DATA COLLECTION  
The main objective of this work is to analyze numerical 

method to solve Zero-Dimensional model as proposed by 
Boeker-Van Grondelle. The model required data which 
described the average condition of earth processes. Data and 
sources that used in the calculation are given on Table I. 

 
TABLE I: THE USING DATA 

Component Source Data 
Solar radiation (S) McGuffie[3] 1370 W/m2 
Albedo of the atmosphere (aa) Boeker&Grondelle[4] 0.3 
Albedo of the earth (as) Boeker&Grondelle[4] 0.11 
Albedo of the Atmosphere for 
long-wavelength radiation aa′  Boeker&Grondelle[4] 0.31 

Transmission of the atmosphere 
(τ) for short-wavelength 
radiation 

Boeker&Grondolle[4] 0.53 

Transmission of the atmosphere 

for long-wavelength aτ ′  
Boeker&Grondelle[4] 0.06 

Interaction between the 
atmosphere and earth (c) Boeker&Grondelle[4] 3.2 W/m2-K

Stefan Boltzmann constant (σ) McGuffie[3] 5.67x10-8 
W/m2-K-4 

 
Some data as on Table I contain the average assumption of 

the average condition of the earth. This could result the 
solution quite far from the measured data. 

In this work, the coefficient of interaction between the 
atmosphere and the earth (τ) is preferred to use 3.2 W/m2-K-4 
than 2.7 W/m2-K-4. However, the ‘τ’ that equal to 2.7 
W/m2-K-4 is used to verifying the result. 

 

IV. NUMERICAL METHOD FOR SYSTEM EQUATIONS 
The zero dimensional models as given on equation (2) and 

(3) are system equations that consist of two stimulant 
equations. The solution for the system equations as this 
model can be obtained by numerical methods. Two numerical 
methods are used on this work. They are Newton-Raphson 
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method and Steepest Descent method. 
 

1) Newton-Raphson method 
Generally, this method could be described by the 

following steps[5]: 
a. Determine the initial value/guessing, ( )

ii as TT , . 

b. Determine matrix Jacobian of system equations for the 
initial value. Matrix Jacobian is developed as equation 
(4). 
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c. Calculate determinant of matrix Jacobian as on step 2. 

Adapted from Chapra and Canale [5], determinant of 
matrix Jacobian is formulated as equation (9). 
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d. Calculate the value of the function for both equations of 

the initial values as on step ‘a’, namely: ( )
ii as TTu ,  and 

( )
ii as TTv , . 

e. Compute the Newton-Raphson solution. Adapted from 
Capra and Canale [5], the formulas for new guessing 
Newton-Rapshon are given as equation (10) and 
equation (11). 
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f. Analyze the error. Finished the calculation when the 

error acceptable otherwise returns to step 1. 
2) Steepest Descent method 

This method used gradient form to bring to closer to the 
solution linearly. The procedure for this method can be 
described as follows[6]: 

a. Determine the initial value/ initial guessing. 
b. Calculate the value of the function for both equations, 

( )
ii as TTu ,  and ( )

ii as TTv , . 

c. Compute function of g at the initial values ( )
ii as TT , . 

Adapted from Faires and Burden [6], the formula for 
function g is written as on equation (12). 

 
( ) ( )[ ] ( )[ ]22 ,,,

iiiiii asasas TTvTTuTTg +=  (12) 

 
d. Analysis the gradient of the equation at the initial value. 

Adapted from Faires and Burden [6], It is able to present 
as on equation (13) ( g∇ ). 

 
( ) ( )( )

iiii asas TTvTTuJg ,,,2=∇  (13) 

 
e. Analyze alpha value, for α>0, near the initial value in 

order to obtain the right direction by using the values of 
z0 and z. z0 and z are formulated as on equation (14) to 
equation (16). 

( )[ ]20 ,
ii as TTgz ∇=  (14) 

 

( )
is sT Tg

z
z ∇=

0

1  (15) 

 

( )
ia aT Tg

z
z ∇=

0

1  (16) 

 
f. Define the new value that closer to the solution. 

Adapted from Faires and Burden [6], this is formulated 
as on equation (17) and equation (18). 

 

sii Tss zTT α−=
+1

 (17) 

 

aii Taa zTT α−=
+1

 (18) 

 
where α is the best α obtained on step ‘e’. 

g. Analyze function ‘g’ by using new value guessing by 
using equation (12). The result is used to analyze the 
new guessing by comparing to the value of function ‘g’ 
that uses the previous values as on step ‘c’. 

h. Do re-iteration whenever the step ‘g was not satisfied 
the condition. 

 

V. INITIAL VALUES SELECTION 
There are three probabilities of initial values that were 

selected on this work, namely as follows: 
a. Zero Kelvin. The unit temperature as on data collection 

based on Kelvin measurement. It should be the first 
priority to be selected as the first initial values on the 
numerical solution. This initial value is used too as the 
testing of the algorithms. 

b. Zero degree Celsius. In fact that Zero Kelvin is equal 
with -273.15 oC, the guessing value easily considers 
being located very far from the solution. This caused the 
zero degree Celsius should be considered as it is equal 

International Journal of Environmental Science and Development, Vol. 2, No. 3, June 2011

235



  

to 273.15 K.  
 
c. The average surface temperature of the earth. This is the 

nearest initial guessing to the solution. However, there 
is still a distance between them that need to be found. 

 

VI. RESULT AND DISCUSSION 

A. Algorithms of the Model 
Sample algorithms for both Newton-Raphson and 

Steepest-Descent methods are given as follows: 

a. Newton-Raphson Algorithms 
Few commands that used to solve the equations are list 
as follows: 
 

'Jacobian component determinant = partial derivative of the parametrics'; 
Ts2=Ts1+h 
Ts3=Ts2+h 
uTs1=(c*(Ts1-Ta1))+(sigma*(Ts1^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(taua
t*(1-aldoes)*(S/4)) 
uTs2=(c*(Ts2-Ta1))+(sigma*(Ts2^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(taua
t*(1-aldoes)*(S/4)) 
uTs3=(c*(Ts3-Ta1))+(sigma*(Ts3^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(taua
t*(1-aldoes)*(S/4)) 
deruTs=(-uTs3+(4*uTs2)-(3*uTs1))/(2*h) 
  . 
  . 
  'Jacobian determinant'; 
jdet=(deruTs*dervTa)-(deruTa*dervTs) 
u11=(c*(Ts1-Ta1))+(sigma*(Ts1^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(tauat
*(1-aldoes)*(S/4)) 
v11=-(c*(Ts1-Ta1))-(sigma*(Ts1^4)*(1-tauatlw-aldoatlw))-((1-aldoat-tauat
+(aldoes*tauat))*(S/4))+(2*sigma*(Ta1^4)) 
Ts1=Ts1-(((u11*dervTa)-(v11*deruTa))/jdet) 
Ta1= Ta1-(((v11*deruTs)-(u11*dervTs))/jdet) 

 
b. Steepest Descent Algorithms 

The samples of list command for Steepest Descent 
algorithms are given below: 
 

'Numerical calculation of partial derivative for all equations'; 
'initial condition'; 
Ts2=Ts1+h 
Ts3=Ts2+h 
Ta2=Ta1+h 
Ta3=Ta2+h 
'calculation for the derivative u on Ts'; 
uTs1=(c*(Ts1-Ta1))+(sigma*(Ts1^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(taua
t*(1-aldoes)*(S/4)) 
uTs2=(c*(Ts2-Ta1))+(sigma*(Ts2^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(taua
t*(1-aldoes)*(S/4)) 
uTs3=(c*(Ts3-Ta1))+(sigma*(Ts3^4)*(1-aldoatlw))-(sigma*(Ta1^4))-(taua
t*(1-aldoes)*(S/4)) 
deruTs=(-uTs3+(4*uTs2)-(3*uTs1))/(2*h) 
  . 
  .  .  
'calculating the new guessing'; 
Ts1=Ts1-(alpha*zTs) 
Ta1=Ta1-(alpha*zTa) 
 

B. Algorithms Testing 

The model is developed by using Matlab programming. It 
was tested by manual calculation. On this case, the initial 
values ( )

ii as TT ,  of zero Kelvin were used. The results for first 

iteration calculation from both manual calculation and result 
of algorithms are given as follows: 

a. Manual calculation 
1. Newton-Raphson :  

=
isT 5.3187x109 K ; =

iaT 5.3187x109 K 

2. Steepest Descent :  
=

isT  6.5125 K ; =
iaT – 6.5125 K 

b. The results of algorithms: 
1. Newton-Raphson :  

=
isT  5.3187x109 K ; =

iaT 5.3187x109 K 

 
2. Steepest Descent :  

=
isT  6.5125 K  ; =

iaT – 6.5125 K 

Results as shown on point ‘a’ and ‘b’ above showed that 
the developed algorithms have given the answers as it. This 
means that the algorithms should be running for all the initial 
values. 

Moreover, this results is showed that Steepest Descent 
method offer the better solution whenever the initial values is 
very far from the real solution itself. This is able to be seen 
that the Newton-Raphson gives unrealistic solution for this 
initial values where the Steepest Descent give acceptable 
answer to the solution. The worse results of Newton-Raphson 
on this point were caused by determinant of matrix Jacobian 
of the procedure was very small, near to zero. This brings the 
method to deviate far enough form the direction of the real 
solution. 

C. The Results of the Numerical Method for the 
Zero-Dimensional Model  
Result for initial values (273.15 K, 273.15 K) and initial 

values (288 K, 288K) 

a. Newton Raphson 
The results of this method for six iterations are given on 

Table 2 for initial value (273.15 K, 273.15 K) and Table 3 for 
initial values (288 K, 288 K). 

 
TABLE II: RESULTS FOR NEWTON-RAPHSON METHOD  

Step Initial values (273.15 K, 273.15 K) Initial values (288 K, 288 K)
 Ts Ta Ts Ta 
1. 287.5742 251.7691 288.8224 255.8830 
2. 285.6987 248.8045 285.8182 249.0358 
3. 285.6649 248.7521 285.6652 248.7526 
4. 285.6649 248.7521 285.6649 248.7521 

 
Newton-Raphson offered very fast of the iteration process 

to solve this system equations. Both solution with initial 
values (273.15 K, 273.15 K) and initial values (288 K, 288 K) 
could give exactly same direction for point of solution on Ts 
=285.6649 K and Ta = 248.7521 K. 

The solution of this method offer straight forward 
converge both the starting points of iteration process located 
smaller and bigger than the solution itself. As they are near to 
the real solution this method offer very fast solution. 

b. Steepest Descent 
As previously discussed the value of g∇ as equation (13) 

were the consideration point to determine the real solution 
that could be achieved by this method. Steps Iteration results 
as given by Table III showed that this method takes more 
steps compare to Newton-Raphson process. It takes almost 
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two times of iteration steps compare to Newton-Raphson 
procedures that used same initial values as given on Table II. 

 
TABLE III: RESULTS FOR STEEPEST DESCENT METHOD BY USING INITIAL 

VALUES (273.15 K,  273.15 K) 
Step α Ts(K) Ta(K) g∇  

1. 27.16 287.0171 249.7969 8.5206 
2. 1.2300 286.0979 248.9796 2.3522 
3. 0.0800 286.0447 249.0394 0.6605 
4. 0.0200 286.0247 249.0394 0.6268 
5. 0.0100 286.0249 249.0294 0.5971 
6 0.3500 285.7354 248.8327 0.1331 
7. 0.0200 285.7466 248.8161 0.0312 
8. 0.0100 285.7431 248.8067 0.0308 
9. 0 285.7431 248.8067 0.0310 

 
The solution of every iteration step describe that the 

Steepest Descent do not always go to the nearer point of the 
real solution. This is given by the result on step 4 and step 5 
for the Ts solution. The solution produced on the step 5 afield 
from the real solution. However, this process was not 
occurred on solution of Ta. This could be a signal that the 
gradient of the method used point Ta as the path or based 
point to find the real solution. 

Results of iteration steps by using initial values (288 K, 
288 K) are given on Table IV. 

 
 

TABLE IV: RESULTS FOR STEEPEST DESCENT METHOD BY USING INITIAL 
VALUES (288 K,  288 K) 

Step α Ta(K) Ts(K) g∇  

1. 30.0400 302.7406 261.8253 1.5588e+003 
2. 10.0400 294.0806 256.7453 796.2288 
3. 1.2300 294.7029 255.6843 406.3225 
4. 4.8500 290.5008 253.2626 227.6850 
5. 0.6400 290.8203 252.7081 127.6338 
6 2.2400 288.8538 251.6355 82.3760 
7 0.3500 289.0213 251.3282 53.2232 
8 1.3300 287.8466 250.7044 36.1435 
9 0.2200 287.9500 250.5102 24.4648 
10 1.8000 286.4341 249.5397 9.0708 
11 0.1600 286.5204 249.4050 3.3706 
12 0.0900 286.4334 249.3820 3.0677 
13 0.0400 286.4438 249.3434 2.7888 
14 0.0500 286.3940 249.3387 2.6259 
15 0.0300 286.3975 249.3089 2.4664 
16 0.0500 286.3479 249.3025 2.3127 
17 0.0300 286.3519 249.2728 2.1672 
18 0.0400 286.3120 249.2708 2.0495 
19 0.0300 286.3142 249.2409 1.9363 
20 0.0300 286.2844 249.2441 1.8431 
21 0.0200 286.2651 249.2194 1.6793 
22 0.0800 286.2223 249.1518 1.4962 
23 0.0300 286.1971 249.1682 1.3259 
24 0.0400 286.1805 249.1318 1.2349 
25 0.0200 286.1622 249.1398 1.1534 
26 0.0500 286.1374 249.0964 1.0485 
27 0.0200 286.1198 249.1059 0.9620 
28 0.0700 286.0801 249.0483 0.8375 
29 0.0200 286.0636 249.0595 0.7330 
30 0.4800 285.6769 248.7751 0.0297 
31 0.0100 285.6828 248.7670 0.0018 

 

Results given by Table IV showed that Steepest Descent 
methods walk with very slowly rate of convergence to obtain 
the point solution. This is analyzed from the value of g∇ for 
each iteration step. The value of g∇  reduced quite little from 
step to step of the iteration process. 

By using this initial value (288 K, 288 K), the Steepest 
Descent method required large number of step iteration. They 
are total 31 steps iteration to find solution with acceptable 
value of g∇ .  

As on results of using initial values (273.15 K, 273.15 K), 
the results of using initial values (288 K, 288 K) showed the 
trend to deviate from the path of real solution. 

D. Verifying the Solution  
Verification of the work is done by using the ‘τ’ is 2.7 

W/m2-K-4 as the coefficient of interaction between the 
atmosphere and the earth. Applying this number to the 
system equation and using the same method as discussed 
above, Newton-Raphson result Ts is equal to 288.3129 K. In 
other hand the suggested solution, given by Boeker and 
Van-Grondelle [4] for the same of ‘τ’ parameter, Ts is around 
288 K.  

The result of iteration procedure for this method is given as 
on Table V. 

 
TABLE V: RESULTS FOR NEWTON-RAPHSON METHOD FOR THE 
VERIFICATION BY USING INITIAL VALUES (273.15 K,  273.15 K)  

Step Ts(K) Ta(K) 
1. 290.4031 251.5994 
2. 288.3483 248.5630 
3. 288.3130 248.5078 
4. 288.3129 248.5077 

 
The solutions were obtained in four steps iteration. This is 

same as the previous procedure where the ‘τ’ parameter equal 
to 3.2 W/m2-K-4.  

Moreover, Table V shown that there is no changing for the 
temperature of atmosphere (Ta) compare to the result of the 
previous computational.  

 

VII. CONCLUSION 
Overall, Newton-Raphson method offer the fastest 

solution to solve Zero-Dimensional model as given by 
Boeker-Van Grondelle. This is considered of two main parts, 
namely: speed of convergence and consistency of the results. 
Newton-Raphson could solve the system equation using 4 to 
5 steps of iteration process. It could be done by using both 
initial values (273.15 K, 273.15 K) and initial values (288 K, 
288 K). On this case, Steepest Descent could only do the 
process twice of the process of Newton-Raphson methods. 
Moreover, consistency of the Newton-Raphson could be 
concluded by analyzing the solution offered from both initial 
values. By using two different initial values, the 
Newton-Raphson gave same point solution. In other case, 
Steepest Descent gave different solution from different initial 
values. 

By modifying the parameter of ‘τ’ and making comparison 
to the result published by Boeker and Grondelle [4], the 
solutions have been resulted by the method concluded as the 
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acceptable results. 
The results from this calculation describe the average of 

surface temperature of the earth (Ts) and average temperature 
of the atmosphere (Ta). This was caused by the parametric 
used on this system equations were the assumption of the 
average condition of the earth. In fact, some assumptions 
were clearly quite far from the real value[4].  

However, by comparing the result given on different ‘τ’, 
the model showed that it was able to describe the influence of 
the parameters to the changing of surface temperature. 
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