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Abstract—In this paper, we proposed the Markov Chain 

Approach (MCA) to evaluate the average run length (ARL) of 

exponentially weighted moving average (EWMA) control chart 

when zero-inflated counted are observed in a negative binomial 

model. Furthermore, the efficiency of the MCA is compared 

with Monte Carlo Simulation via the CPU times which the 

former is much saving computational times used when 

compared with the latter method. 

 

Index Terms—Exponentially weighted moving average, 

zero-inflated negative binomial, average run length, markov 

chain, computational times. 

 

I. INTRODUCTION 

The statistical process control charts are commonly used 

for monitoring and improving quality of production. The 

control charts for variables, such as Shewhat X -R control 

charts, are used as quality characteristic measured on a 

numerical scale. However, in many quality characteristics 

cannot be conveniently represented numerically. The quality 

characteristics of this type are called attributes, for example, 

in counting the number of defective products or the number 

of nonconformities in a production process. In this situation, 

it is necessary to use attribute control charts. Montgomery [1] 

presented details of explanations and examples for the 

attribute control charts. 

The attribute control charts based on Poisson distribution 

is used when the observations from a process is a count data. 

The statistical properties of Poisson distribution have the 

same mean and variance values and this is not what happens 

in the real or simulated data. When the variance is greater 

than the mean, it is so called over-dispersion problem. Thus, 

the negative binomial distribution can be used instead of 

Poisson distribution when the data are overdispersed.  

Since, the technological advancement in manufacturing 

processes, more counts of zeros are observed. The excess of 

zeros under the negative binomial model is called 

zero-inflated negative binomial (ZINB) model. If we use the 

c chart for monitoring observation based on ZINB model, the 

control chart often is underestimated of the values of mean 

and variance and may lead to higher false alarm rate in 

detecting out-of-control signal. 

The Shewhart control chart has a high performance 

addition for detecting large shifts, an Exponentially 

Weighted Moving Average (EWMA) and a Cumulative Sum 

(CUSUM) control charts were designed to monitor small 

 
Manuscript received May 17, 2014; revised July 17, 2014. 

The authors are with the Department of Applied Statistics, King 

Mongkut’s University of Technology North Bangkok, Thailand (e-mail: 

chanaphunc@kmutnb.ac.th, swns@kmutnb.ac.th, 

yupaporna@kmutnb.ac.th).  

shifts. The CUSUM chart was initially presented by Page [2] 

and the EWMA chart was introduced by Roberts [3]. 

There are many literatures available on control charts 

based on count data. For example, Lucas [4] explained the 

design and implementation procedure for counted data for 

detecting of increasing in the count level. Gan [5] proposed a 

CUSUM chart for binomial counts based on the CUSUM 

statistics. Borror et al. [6] proposed the EWMA control chart 

for monitoring Poisson data. Khoo [7] proposed the moving 

average control chart for monitoring the fraction 

non-conforming. He et al. [8] presented the CUSUM chart 

for monitoring a zero-inflated Poisson process. Noorossana 

et al. [9] applied EWMA chart for monitoring rare health 

events when some rare health events are zero-inflated 

binomial distribution. 

The Average Run Length (ARL) is a mostly used to 

measure the performance of control chart. It is the 

expectation of the time before the control chart gives a false 

alarm that an in-control process going to out-of-control. The 

in-control ARL (ARL0) should be large for in-control 

situation, on the other hand, the process need to detect the 

shift as quickly as possible. Then, the out-of-control ARL 

(ARL1) should be small for out-of-control situation. Many 

methods for evaluating the ARL for control charts have been 

studied in many literatures [4]-[6]. A simple method as 

Monte Carlo simulation is often used to verity and accuracy. 

Roberts [3] studied the ARL for EWMA chart by using 

simulations for process base on a normal distribution and 

derived nomograms that can be used to calculate the ARL for 

a parameter. Brook and Evans [10] proposed the method to 

approximate the ARL by using the Markov Chain Approach 

(MCA) with finite state, and regard intervals of statistics as 

states of the Markov Chain. Crowder [11] used numerical 

quadrature methods to solve the exact Integral Equations for 

the ARL for the ARL for the normal distribution. 

Sukparungsee [12] have used the Martingale approach to 

derive an analytical formulas of the ARL when the process 

are Gaussian and some Non-Gaussian distributions. 

Areepong [13] derived the explicit formulas of ARL for 

EWMA control chart in the case of exponential distribution. 

In this research, we proposed the closed-form expression 

of ARL for EWMA chart when observations are from 

zero-inflated negative binomial model by using the Markov 

Chain Approach and compared the results obtained from 

Monte Carlo simulation. 

 

II. ZERO-INFLATED NEGATIVE BINOMIAL MODEL 

The zero-inflated negative binomial model is modeling for 

count data with combined zero inflation and the negative 

binomial distribution in inevitable. The appropriate 
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probability distribution function to model the condition under 

study is given in (1). They are the relation of random 

successful observation with probability p and random 

number of failure until the successful occur or X which a 

negative binomial distribution with parameters  ,  and r. 

We define ~ ( , , )X ZINB r   with the probability mass 

function (pmf) can be written as 
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where   is the probability of zero values,   is the mean of 

the underlying negative binomial distribution, 0  , and r  

is the over-dispersion parameter where r  . The 

zero-inflated negative binomial model reduces to 

zero-inflated Poisson model as r  . 

The mean and variance of the number of failures (X) are 

given by 

 

   1E X                                       (2) 

 

and  
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III. EWMA CONTROL CHART FOR ZINB MODEL 

The Exponentially Weighted Moving Average (EWMA) 

control chart was introduced by Roberts [3]. The EWMA 

statistics are defined as 
 

  11i i iZ X Z        i = 1,2,…,                 (4) 

 

where 0 1   is a smoothing parameter, Zi is the weighted 

average between current and previous observations at i. The 

starting value Z0 is the process target, so that 

0 0( )Z E X   . If the observations of Xi are independent 

random variables with mean 
0  and variance 

2 , then the 

variance of Zi can be shown as follows 
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The EWMA is constructed by plotting Zi versus the sample 

number i. The upper and lower control limits for the EWMA 

control chart can be shown as 
 

0 iZA  ,                                       (6) 

 

where A is the width of control limit. 

If the observations are from ZINB model, the expected 

value and variance of ZINB could be obtained from (6) 

approaches one as i gets larger. The control limits of ZINB 

EWMA control chart can be shown as 
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where the value A is determined based on a desired in-control 

ARL0. The ZINB EWMA will signal and out-of-control 

when 
iZ UCL  or 

iZ LCL . 

 

IV. ARL FOR ZINB EWMA CONTROL CHART BY MARKOV 

CHAIN APPROACH 

The Average Run Length (ARL) is average number of 

plotted points on a control chart before a point indicates an 

out-of-control condition [1]. Hence, the ARL is usually used 

to report the performance of control chart. If the process 

observations are independent then for any Shewhart control 

chart, the ARL can be calculated exactly from 
 

 
1
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ARL

P
 .                      (9) 

 

Since, the ZINB base on EWMA control chart the plotted 

points are correlated, the ARL cannot be calculated by (9). 

The Markov Chain Approach is the effective alternatives to 

evaluate the ARL which original was proposed by Brook and 

Evans [10]. Furthermore, it can be applied to ZINB process 

of EWMA control chart to calculate the ARL. According to 

this approach, the interval (hL, hU) in (7) and (8) are divided 

into N subintervals, so the subinterval’s width (W) is  

(hU- hL)/N . The middle point, Sj, of the jth subinterval can be 

written as 
 

 0.5j LS h j W   .                           (10) 
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Fig. 1. In-control area is divided into N subintervals. 

 

The statistic Zt in (4), is said to be in transient state j at time 

t if 0.5 0.5j t jS W Z S W     for j = 1, 2, …, N. If the 

statistic Zt does not belong to the control limits (hL, hU), it is 

said to be in the absorbing state. Hence, the ARL is the 

expected time to absorption of the Markov chain. The (N+1)th 

state represents the absorbing state, which is the 

out-of-control area below and above the control limits. The 

one-step transition probability, Pij, is the probability at a 

specific point in time t , t = 1, 2, … moving from state i at t-1 



  

to state j at t. This transition probability can be written as 
 

 

  

  

  

  

10.5 0.5 |

1
0.5 1

1
0.5 1

1
0.5 1

1
0.5 1

ij j t j t i

j i t

j i

ZINB j i

ZINB j i

P P S W Z S W Z S

P S W S X

S W S

S W S

S W S













     


     




   



 
      

 

 
    

 

           (11) 

 

where (.)ZINB  is the cumulative distribution function of a 

zero-inflated negative binomial random variable. An exact 

steady-state probability vector does not exist because the 

transition probability matrix is not ergodic [14]. 

Suppose R contains the probabilities of going from one 

transient state to another, I is the N × N identity matrix, and 1 

is a column vector of ones. The ARL based on t in-control 

states is given by (12). Fu et al. [15] proved that, 
 

 
1TARL


 p I - R 1                                 (12) 

 

where pT = (0, …, 0, 1, 0,…, 0)T, is initial state with 1 at the ith 

coordinate and zeros elsewhere. 

 

V. COMPARISON OF PERFORMANCE OF CONTROL CHART 

 

TABLE I: COMPARISON OF ARL OF ZINB EWMA WITH MCA AND MC 

WHEN PARAMETER OF ZINB IS  = 0.2,  = 0.5, AND r = 0.5 

  

MCA 

α=0.05, 

UCL=0.8101 

CPU time 

(seconds) 

MC 

with standard 

deviation 

CPU time 

(seconds) 

0.0 500.1096 21.41 502.7897±0.7202 11229.79 

0.1 199.8143 21.42 200.7955±0.2785 4698.30 

0.2 107.1837 21.38 108.1993±0.1444 2687.26 

0.3 68.6963 21.43 68.8023±0.0888 1847.28 

0.4 49.2279 21.39 48.9604±0.0615 1429.57 

0.5 37.9569 21.35 37.5461±0.0461 1192.70 

0.6 30.7749 21.45 30.1946±0.0364 1041.73 

0.7 25.8648 21.45 25.2435±0.0301 939.97 

0.8 22.3247 21.50 21.6489±0.0255 867.54 

0.9 19.6649 21.35 18.9366±0.0221 811.83 

1.0 17.6002 21.30 16.8270±0.0196 771.11 

1.5 11.7677 21.28 10.9272±0.0127 653.73 

2.0 9.0645 21.34 8.1884±0.0097 595.64 

3.0 6.5029 21.37 5.5796±0.0069 540.69 

4.0 5.2705 21.39 4.3385±0.0056 512.04 

 

To evaluate the performance of control charts, we compare 

the numerical results for ARL of EWMA control chart in (7) 

and (8) obtained from Markov Chain Approach (MCA) in (12) 

and Monte Carlo simulation (MC). We assume that 

observations are from ZINB model with parameter  = 0.2, 

 = 0.5, and r = 0.5 and 20. The smoothing constant of 

EWMA control chart is α = 0.05. The simulation is based on 

single sample, repeated 500,000 times for each case by using 

the R programming [16] and generate ZINB observations 

with package VGAM [17]. The performance evaluation of 

the control chart based on ARL0 = 500 for the in-control 

situation and ARL1 for the out-of-control situation, when the 

process mean shift move from (1 )   to 
1(1 )  , where 

1    ,  = 0.1, 0.2, …, 1.0, 1.5, 2.0, 3.0, and 4.0, 

respectively. We present the numerical results as shown in 

Table I and Table II. 

In Table I, we will consider the ZINB model with 

parameter  = 0.05,  = 0.5 and r = 0.5. The numerical 

results from MCA are in good agreement with the results 

obtained from MC, however, the MCA uses the CPU times 

are much less than the MC. 

In Table II, the numerical results from MCA are closed to 

MC and MCA used the CPU time are less than another when 

the over-dispersion parameter ZINB is increased as r = 20. 
 

TABLE II: COMPARISON OF ARL OF ZINB EWMA WITH MCA AND MC 

WHEN PARAMETER OF ZINB IS  =0.2, =0.5, AND r = 20 

  

MCA 

α=0.05, 

UCL=2.9599 

CPU time 

(second) 

MC 

with standard 

deviation 

CPU time 

(second) 

0.0 500.0063 1.77 499.8654±0.6983 11237.20 

0.1 211.5564 1.75 211.0042±0.2861 4915.30 

0.2 110.0596 1.71 109.1709±0.1411 2712.65 

0.3 67.9581 1.74 67.1224±0.0819 1808.99 

0.4 47.1543 1.70 46.2744±0.0537 1371.64 

0.5 35.4104 1.73 34.4868±0.0382 1124.10 

0.6 28.0925 1.70 27.1213±0.0288 971.71 

0.7 23.1819 1.73 22.2418±0.0228 872.72 

0.8 19.6952 1.70 18.7549±0.0187 798.91 

0.9 17.1081 1.72 16.1226±0.0156 743.64 

1.0 15.1206 1.71 14.1399±0.0135 702.50 

1.5 9.6124 1.72 8.6259±0.0078 587.47 

2.0 7.1191 1.73 6.1357±0.0055 544.49 

3.0 4.8007 1.71 3.8113±0.0035 485.92 

4.0 3.7096 1.71 2.7163±0.0026 470.25 

 

VI. CONCLUSION 

We proposed the Markov Chain Approach (MCA) for 

evaluate ARL of EWMA control chart when the observations 

are ZINB model. The numerical results obtained from MCA 

are in good agreement the results obtain from Monte Carlo 

(MC) simulation. Furthermore, the CPU times of MCA is 

much saving when compared with the MC. 
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