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ABSTRACT

Abnormalities in mitochondrial function have previously been shown in chronic fatigue
syndrome (CFS) patients, implying that mitochondrial dysfunction may contribute
to the pathogenesis of disease. This study builds on previous work showing that
mitochondrial respiratory parameters are impaired in whole cells from CFS patients
by investigating the activity of individual mitochondrial respiratory chain complexes.
Two different cell types were used in these studies in order to assess individual
complex activity locally in the skeletal muscle (myotubes) (n = 6) and systemically
(peripheral blood mononuclear cells (PBMCs)) (control n = 6; CFS n=13). Complex
I, IT and IV activity and respiratory activitysupported by fatty acid oxidation and
glutaminolysis were measured usingextracellular flux analysis. Cells were permeabilised
and combinations of substrates and inhibitors were added throughout the assays
to allow states of mitochondrial respiration to be calculated and the activity of
specific aspects of respiratory activity to be measured. Results showed there to be
no significant differences in individual mitochondrial complex activity or respiratory
activity supported by fatty acid oxidation or glutaminolysis between healthy control
and CFS cohorts in either skeletal muscle (p > 0.190) or PBMCs (p > 0.065). This is
the first study to use extracellular flux analysisto investigate individual mitochondrial
complex activity in permeabilised cells in the context of CFS. The lack of difference in
complex activity in CFS PBMCs suggests that the previously observed mitochondrial
dysfunction in whole PBMCs is due to causes upstream of the mitochondrial respiratory
chain.

Subjects Biochemistry, Immunology, Neurology, Metabolic Sciences

Keywords Myalgic encephalomyelitis, Mitochondrial, Peripheral blood mononuclear cells
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INTRODUCTION

Chronic fatigue syndrome (CFS), also known as Myalgic Encephalomyelitis (ME), is a
debilitating disease affecting 0.2-0.4% of the population in the UK (NICE, 2007). CFS
has a significant impact on the quality of life of patients with key symptoms including
severe fatigue and post-exertional malaise (Hvidberg et al., 2015; Winger et al., 2015). The
mechanisms behind the aetiopathogenesis of CFS are yet to be elucidated. The lack of
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knowledge of the mechanisms behind the disease contribute to difficulty in obtaining a
consensus on diagnostic criteria and the development of widely effective treatments.

Various aspects of mitochondrial dysfunction have previously been postulated as
contributing to CFS (Tomas et al., 2017; Booth, Myhill ¢ McLaren-Howard, 2012; Myhill,
Booth & McLaren-Howard, 2009; Myhill, Booth & McLaren-Howard, 2013; Lawson et al.,
2016; Behan, More ¢ Behan, 1991; Morris & Maes, 2014; Filler et al., 2014). Fatigue has
been shown to be common in patients with primary mitochondrial disease (Gorman
et al., 2015); however, it should be noted that patients with CES are not seen to harbour
primary mitochondrial mutations (Schoeman et al., 2017). Billing-Ross et al. (2016) showed
that certain changes in the mitochondrial genome increases the likelihood of specific
symptoms in CFS patients such as gastrointestinal, neurological, and inflammatory
symptoms, however, these genomic changes do not make patients more susceptible to
developing the disease. Previous studies have shown the energy production, including
mitochondrial activity, of whole PBMCs from CFS patients to be significantly impaired
compared to a healthy control cohort (Tomas et al., 2017; Fluge et al., 2016). One study,
using extracellular flux analysis in whole cells, showed CES PBMCs to have significantly
impaired mitochondrial functioning both under basal conditions and when maximally
stimulated to respire, under a number of experimental conditions (Tomas et al., 2017).
This suggested that CFS patients were unable to utilise mitochondrial energy production
to the same extent as healthy controls and implied that mitochondrial dysfunction may
contribute to the pathogenesis of the disease. The study presented here was conducted
in order to further investigate if the mitochondrial dysfunction seen in CFS PBMCs was
due to atypical activity of individual mitochondrial complexes using the same technique
as the previous study (extracellular flux analysis) but in permeabilsied cells rather than
whole cells. The use of permeabilised cells allows mitochondria to be directly accessed by
the substrates with no cellular interference in terms of substrate transport or intracellular
interactions. The permeabilisation of cells also allows the enzymatic activity of individual
respiratory chain complexes to be to be measured which cannot be done easily in whole
cells. This study investigates the activity of individual complexes and components of
the mitochondrial respiratory chain in myotubes and PBMCs—myotubes were used
to investigate mitochondrial activity locally in the skeletal muscle, while PBMCs were
used to investigate mitochondrial complex activity systemically. This was achieved by
permeabilising cells ensuring that the mitochondria remained intact and using extracellular
flux analysis to record oxygen consumption rate of cells following the serial injection of
mitochondrial activity altering compounds. Respiratory parameters were calculated and
compared between control and CFS derived muscle cells and PBMCs.

For this study, saponin was used to permeabilise the cell membrane. Saponin is a cell
permeabilser which acts by forming complexes with cholesterol leading to a reduction
in cell membrane integrity, while keeping mitochondrial membranes intact (Jamur
¢ Oliver, 2010). When mitochondria are isolated from cells, the architecture and
morphology of the mitochondria is altered (Bach et al., 2003; Mitra et al., 2009; Sarin et
al., 2013; Hagenbuchner et al., 2013), but permeabilisation of the cell membrane allows
the architecture and morphology of mitochondria to remain normal, an advantage
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over the use of isolated mitochondria as mitochondrial function has previously been
shown to have a strong relationship with structure (Saks et al., 1998; Picard et al., 2011).
Permeabilisation of the cell membrane allows the effect of substrates on mitochondrial
activity to be comprehensively assessed by allowing endogenous substrates to be delivered
to mitochondria (Clerc ¢ Polster, 2012). The addition of different substrates and inhibitors
alters mitochondrial respiration and allows the activity of individual components of
mitochondrial respiration to be measured (Salabei, Gibb ¢ Hill, 2014). Originally described
by Chance and Williams in 1955, mitochondrial respiratory activity can be measured in
terms of several respiratory ‘states’ (Charnce ¢ Williams, 1955). State 3 respiration, state 4
respiration and respiratory control ratio (RCR) are often used as markers for mitochondrial
respiratory activity. State 3 respiration is when mitochondria have a high concentration of
ADP externally, and a high oxygen consumption rate and ATP synthesis thus producing
a state whereby ADP stimulated respiration can be measured (Chance & Williams, 1955;
Chance & Williams, 1956). State 4 respiration, on the other hand, is when mitochondria
have a very low external ADP concentration, and little or no ATP synthesis due to the
complete phosphorylation of ADP to ATP. The respiratory control ratio (RCR) is a
measure of the coupling of ATP synthesis and electron flux and shows the capacity of
mitochondria to synthesise ATP via the oxidation of respiratory substrates (Hill et al.,
2012).

This work aimed to determine if the enzymatic activity of different complexes of the
mitochondrial respiratory chain differed between CFS patients and healthy controls either
locally, in the skeletal muscle, or systemically in PBMCs.

MATERIALS AND METHODS

Study participants

CFS and control derived primary myoblasts were obtained from muscle biopsies of the
vastus lateralis of CFS patients and healthy controls and processed and gifted by Dr Audrey
Brown, Newcastle University. All CFS patients fulfilled the Fukuda diagnostic criteria and
were recruited via the Newcastle NHS CFS Clinical Service at the Newcastle Hospitals NHS
Foundation Trust (Fukuda et al., 1994).

Blood samples were obtained from patients fulfilling the Fukuda Diagnostic criteria
for CFS after obtaining ethical approval from the National Research Ethics Committee
North East—Newcastle & North Tyneside 2 (Fukuda et al., 1994). Samples from healthy
controls were collected through the Institute of Cellular Medicine (Newcastle University)
blood study after obtaining ethical approval from the National Research Ethics Committee
North East—County Durham & Tees Valley. Samples were gathered after informed written
consent was obtained.

Reagents
All reagents were obtained from Sigma Aldrich, UK unless otherwise stated.
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Cell culture and preparation

Myotubes

Myoblasts were grown to passage 7 in Ham’s F10 medium (Scientific Laboratory Supplies,
Nottingham, UK) (supplemented with 20% fetal bovine serum (FBS) (Life Technologies,
UK), 2% chick embryo extract (Sera Labs International, Haywards Heath, UK), 2%
penicillin-streptomycin, 1% amphotericin B). Cells were then seeded at a density of

3 x 10° per well into a 96-well seahorse plate (Agilent Technologies, Wokingham,
UK) in quadruplicate, and differentiated into myotubes in differentiation medium
(minimal essential media supplemented with 2% FBS, 1% penicillin-streptomycin

and 1% amphotericin B). Experiments were performed after 7 days of differentiation.
Differentiation was confirmed by observing the formation of long, multinucleated
myotubes in alignment under the microscope.

PBMCs

PBMCs were separated using Histopaque(®) as described by Tomas et al. (2017). The PBMCs
used in these experiments were frozen at —80 °C in freezing medium (50% RPMI-1640,
40% FBS, 10% DMSO) and revived and plated the day before experiments. Wells of a
96-well seahorse plate were coated with poly-D-lysine, to aid in the attachment of cells,
and left to air-dry for 2 hours prior to the plating of cells. Following revival of cells, PBMCs
were seeded at a density of 5 x 10° cells per well in quadruplicate in the poly-D-lysine
coated 96-well seahorse plate and incubated overnight in RPMI-1640 (supplemented with
10% FBS and 1% penicillin-streptomycin) at 37 °C and 5% CO;.

Extracellular flux analysis

The XF®96 analyser (Agilent Technologies) was used to investigate the activity of individual
mitochondrial respiratory chain complexes using specific substrates. The protocol used in
this study is described by Salabei, Gibb ¢ Hill (2014) and the mix, wait and measure times
provided by Agilent Technologies (0.5 min/0.5 min/2 min) (Agilent Technologies, 2016).
Seeding densities for PBMCs and myotubes were used as described previously (7Tomas et
al., 2017; Rutherford, 2016). Myotubes were seeded at a density of 3 x 103 cells per well
while PBMCs were seeded at 5 x 10° per well. On the day of experiments, experimental
medium was prepared by supplementing DMEM with 1mM pyruvate, 2 mM L-glutamine
and 1 mM glucose. The pH of the media was adjusted to 7.4 with 0.1M NaOH and warmed
to 37 °C. One hour before running the experiment, media was removed from each well
of the XF¢96 and replaced with 180 .l of prepared medium and incubated for one hour
at 37 °C with no CO,. Mannitol and Sucrose (MAS) buffer (70 mM sucrose, 220 mM
mannitol, 10 mM potassium phosphate monobasic, 5 mM magnesium chloride, 2 mM
HEPES, 1 mM EGTA) was prepared. A 4 mg/ml fatty acid free bovine serum albumin (BSA)
solution was created by adding BSA to MAS to create MAS-BSA buffer. The medium on
the plate was replaced with 180 pl of MAS-BSA 10 min prior to the plate being loaded
into the machine. Oxygen consumption rate (OCR) of cells was measured at 12 points
throughout the assay. Three basal readings were made before the first injection containing
a mix of the substrate(s) of interest, ADP, FCCP and saponin. Three subsequent readings
were made and then the second injection, containing oligomycin, was added to the cells.
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Table 1 Table showing the compounds used to investigate mitochondrial complex activity.

Compound(s) 10x port solution Final in well Complex investigated
concentration concentration
Pyruvate/malate 50 mM/25 mM 5 mM/2.5 mM Complex I mediated respiration
Succinate 100 mM 10 mM Complex II mediated respiration
Tetamethylphenylendiamine 5 mM/20 mM 0.5 mM/2 mM Complex IV activity
(TMPD)/Ascorbate
Palmitoyl-l-carnitine 0.5 mM 50 uM Respiratory activity supported by fatty acid oxidation
Glutamine/malate 40 mM/5 mM 4 mM/0.5 mM Respiratory activity supported by glutaminolysis
ADP 10 mM 1 mM State 3 respiratory activity
Saponin 250 pg/ml 25 pg/ml Cell permeabilisation
FCCP 10 puM 1 uM Maximal respiratory activity
Oligomycin 10 wM 1 wM State 4 respiratory activity
Rotenone 10 M 1 wM Metabolic inhibitor
Potassium Azide 200 mM 20 mM Metabolic inhibitor

Another three readings of OCR were made and the final injection of either rotenone or
potassium azide was added to the cells, and a final three OCR readings recorded. Saponin
concentration was optimised independently for myotubes and PBMCs and the damage
to mitochondria caused by saponin was also assessed using cytochrome C (Data S1). The
optimal concentration of saponin for myotubes was determined to be 25 pg/ml, while
the optimum saponin concentration for PBMCs was 2.5 pg/ml. Data were normalised
for protein concentration following a bicinchoninic acid (BCA) assay (Fisher Scientific,
Loughborough, UK) conducted according to manufacturer’s instructions.

Compound preparation
Compounds and inhibitors used to investigate the activity of different complexes in the
mitochondrial respiratory chain are shown in Table 1.

Parameter calculations

For respiratory chain complex activity, state 3 respiration, state 4 respiration, respiratory
control ratio (RCR), basal respiration and maximal respiration were calculated as shown
below using the measurement numbers shown in Fig. 1.

State 3 respiration = (average of measurements 4—6) — (average of measurements 10-12)

State 4 respiration = (average of measurements 7-9) — (average of measurements 10-12)

RCR — State 3 respiration

state 4 respiration

Data analysis

Groups were compared using student’s ¢-tests after confirming equal variances using
Levene’s test for equality of variances. All statistical tests were carried out using IBM SPSS
Statistics 22. Graphs were created using Graphpad Prism 7.
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Figure 1 Profile of the parameters of mitochondrial respiration measured in isolated mitochondria.
Full-size Gal DOI: 10.7717/peer;j.6500/fig-1

RESULTS

Myotube respiratory chain complex activity
Myotube respiratory chain activity was analysed for state 3 respiration, state 4 respiration,
and RCR with the addition of various combinations of substrates and inhibitors. The results
for myotubes for complex II respiration (succinate), and complex IV activity (TMPD &
ascorbate) are shown in Fig. 2. There were no significant differences between control
(n=26) and CFS (n=6) cohorts for state 3 respiration, state 4 respiration, or RCR when
cohorts were compared with student’s t-tests (p > 0.190).

Attempts were made to measure complex I mediated respiration, using pyruvate
and malate; respiratory activity supported by fatty acid oxidation, with the addition
of palmitoyl-1-carnitine; and respiratory activity supported by glutaminolysis, with the
addition of glutamine and malate. Results for all three experiments consistently produced
negative values for OCR in both CFS (n=6) and control (n = 6) myotubes therefore we
were unable to calculate state 3, state 4, and RCR for these experiments (Fig. 3).

PBMC respiratory chain complex activity

PBMCs from healthy controls and CFS patients were used to investigate different aspects
of mitochondrial respiratory chain activity outlined in Table 1. Results showed there to
be no difference between state 3 respiration, state 4 respiration or RCR of PBMCs from
CFS (n=13) patients and healthy controls (n = 6; succinate controls n =4) for any of the
substrate/inhibitor combinations (p > 0.065) (Fig. 4).
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Figure 2 State 3 respiration, state 4 respiration, and RCR in control and CFS permeabilised myotubes.
Succinate was used to analyse complex II mediated respiration and (A) state 3 respiration, (B) state 4 res-
piration, and (C) RCR were measured. TMPD & ascorbate were added to investigate complex IV activity
and (D) state 3 respiration, (E) state 4 respiration, and (F). RCR were measured. Groups were compared
using student’s ¢-tests. Control n=6; CFS n=6.

Full-size & DOTI: 10.7717/peerj.6500/fig-2

DISCUSSION

The activity of different aspects of mitochondrial respiratory chain function were
investigated by adding various combination of substrates and inhibitors. The effect of
the different substrates on state 3 respiration, state 4 respiration and respiratory control
ratio (RCR) was measured.

Five different combinations of substrates were investigated for their effects on
myotubes and PBMCs—glutamine and malate; palmitoyl-1-carnitine; pyruvate and malate;
succinate; TMPD and ascorbate. These were added to investigate respiration supported by
glutaminolysis; respiration supported by fatty acid oxidation; complex I activity; complex
IT activity; and complex IV activity, respectively. Despite there being a lack of difference
in OXPHOS between control and CFS cohorts shown in whole myotubes (G Rutherford,
pers. obs., 2016) (Rutherford, 2016), these experiments aimed to investigate if more subtle
and specific differences occurred in individual complexes. PBMCs were used to see if the
specific location of abnormalities identified in whole cells reported previously could be
pinpointed to specific complexes or pathways (Tomas et al., 2017).

In myotubes only two of the substrate combinations produced viable results. The
addition of pyruvate and malate, palmitoyl-1-carnitine, and glutamine and malate produced
negative values for OCR in both CFS (n = 6) and control myotubes (n=6) (Fig. 3). The
addition of the injected compounds did appear to have an effect on the OCR, but not the
anticipated effect, and only achieved the result of producing more negative OCR readings
with the addition of each injection and not the expected increase after the first injection.
These experiments were repeated a number of times with similar traces produced each
time. This suggests that this technique for measuring mitochondrial complex activity in
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Full-size G4l DOI: 10.7717/peer;j.6500/fig-3

permeabilised cells may not be appropriate for use in myotubes. Successful recordings of the
effect of succinate, and TMPD and ascorbate were made in control and CFS myotubes. No
difference in state 3 respiration, state 4 respiration, or RCR were seen between the control
and CFS cohorts. This indicates that there are no abnormalities in respiratory activity
linked to glutaminolysis, or complex IV activity in CFS myotubes. This is in agreement
with previous research which, using 3 carboxyl-14C-labelled substrates, found there to be
no difference between CFS and control skeletal muscle cell complex I, complex IT + III,
complex III, or complex IV activity (Smits et al., 2011). However, given the inconsistency
of between substrate readings in this study, with some of the substrates giving successful
readings and some not, and the large error bars shown on the traces for each of the
substrates (including the substrates for which we could successfully derive state 3 & 4
respiration), the use of this technique to accurately record the activity of specific aspects
of mitochondrial respiration in permeabilised myotubes should be questioned. Other
techniques such as phosphorescence oxygen sensitive probes and spectrophotometric
enzyme assays should be used to analyse the same samples in future experiments in order
to determine if these techniques can provide more accurate results than those achieved
here with the XF®96 and to see the consistency between techniques. Very few studies have
previously been published using extracellular flux analysis to detect mitochondrial activity
in permeabilised myotubes. One study used extracellular flux analysis and high resolution
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Figure 4 State 3 respiration, state 4 respiration, and RCR in control and CFS permeabilised PBMCs.
Succinate was used to analyse complex II mediated respiration and (A) state 3 respiration, (B) state 4
respiration, and (C). RCR were measured. TMPD & ascorbate were added to investigate complex IV
activity and (D) state 3 respiration, (E) state 4 respiration, and (F) RCR were measured. Glutamine
& malate allowed respiratory activity supported by glutaminolysis to be measured and (G) state 3
respiration, (H) state 4 respiration, and (I) RCR were recorded. Pyruvate & malate were used to
investigate complex I mediated respiration and (J) state 3 respiration, (K) state 4 respiration, and (L)
RCR were measured. Palmitoyl-1-carnitine was added to assess respiratory activity supported by fatty acid
oxidation and (M) state 3 respiration, (N) state 4 respiration, and (O) RCR were recorded. Groups were
compared using student’s ¢-tests. Control n = 6; CFS n = 13.

Full-size G4l DOI: 10.7717/peerj.6500/fig-4
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respirometry to determine the differences between the techniques (Boyle et al., 2011). The
study showed traces from the Seahorse XF¢24 to have higher levels of variability for each
data point which supports the data reported here showing that extracellular flux analysis
may not be the most suitable technique for detecting changes in mitochondrial complex
activity in permeabilised myotubes.

In PBMCs, successful traces were recorded for all five combinations of substrates. State
3 respiration, state 4 respiration, and RCR of control (n = 6, succinate controls n =4) and
CFS (n=13) PBMCs were compared. No difference was seen between the two cohorts in
any of the substrates investigated. This suggests that the activity of complexes I, IT and IV,
and respiration supported by fatty acid oxidation or glutaminolysis do not differ in CFS
PBMCs compared with healthy controls. These results are in agreement with a study by
Lawson et al. (2016) who used spectrophotometric techniques to show that permeabilised
CFS PBMCs do not differ from healthy controls in terms of complex I, complex II-II1, or
complex IV activity. The consistency of results between the different research groups, using
different techniques, strengthens the evidence suggesting that there are no abnormalities
in individual mitochondrial complex activity in CFS PBMCs. The lack of differences in
PBMCs may suggest that the abnormalities found in whole cells shown previously is
not due to abnormalities in the mitochondrial respiratory chain complexes but rather
at different points of the respiration pathway such as movement of glucose into cells,
AMPK abnormalities, or altered functioning of other mitochondrial enzymes (Tomas et
al., 2017). However, caution must be used in interpreting these results on their own given
the differences in OXPHOS observed in whole PBMCs (Tomas et al., 2017), as the results
from whole cells reflect a more natural and physiologically relevant environment for the
mitochondria. While relatively small sample sizes were used in this study, the consistency
of the findings of this study with previous studies using different techniques to measure
mitochondrial complex activity in myotubes and PBMCs in CFS patients adds validity to
the results (Lawson et al., 2016; Smits et al., 2011).

CONCLUSIONS

This study investigated the activity of specific components of mitochondrial respiration
by looking at individual complex activity and pathways in myotubes and PBMCs in a
case-control study. A cell permeabilization protocol developed by Salabei et al. using the
XF€96 extracellular flux analyser was used to conduct these experiments. This is the first
study to use extracellular flux analysis to investigate individual mitochondrial complex
activity in permeabilised cells in the context of CFS. Ultimately, normal mitochondrial
function was recorded in CFS myotubes and PBMCs; however, relatively small sample sizes
were used therefore the results should be interpreted with caution. The finding of normal
mitochondrial functioning of CFS myotubes supports the results of unpublished data
from whole cells (Rutherford, 2016). The results showing no difference in mitochondrial
activity in permeabilised PBMCs were unexpected given that mitochondrial function

in PBMCs has previously been shown to be significantly lower in CFS (Tomas et al.,
2017). However, the lack of difference in complex activity in CFS PBMCs is in agreement
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with results reported by other groups who showed normal mitochondrial respiratory
chain complex activity (Lawson et al., 2016; Vermeulen et al., 2010), and postulated that
changes in mitochondrial ATP synthesis should be attributed to other causes such as
the transport capacity of oxygen (Vermeulen et al., 2010). Given the results here, the
future of bioenergetic studies in CFS should concentrate on mechanisms upstream of the
mitochondrial respiratory chain.
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