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ABSTRACT
Eggplant (Solanum melongena L.) is an important vegetable cultivated in Asia, Africa
and southern Europe and, following tomato and pepper, ranks as the third most
important solanaceous vegetable crop. TheDof (DNA-binding with one finger) family
is a group of plant-specific transcription factors that play important roles in plant
growth, development, and response to biotic and abiotic stresses. The genes in the Dof
family have been identified and analysed in many plant species, but the information
remains lacking for eggplant. In the present study, we identified 29 SmeDof members
from the eggplant genome database, which were classifed into nine subgroups. The
phylogeny, gene structure, conserved motifs and homologous genes of SmeDof genes
were comprehensively investigated. Subsequently, we analysed the expression patterns
of SmeDof genes in six different eggplant subspecies. The results provide novel insights
into the family of SmeDof genes and will promote the understanding of the structure
and function of Dof genes in eggplant, and the role of Dof expression during stress.
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INTRODUCTION
Eggplant (Solanum melongena) is an economically important vegetable crop in the large
family Solanaceae, which contains other widespread crops including tobacco, potato,
tomato and pepper. Endemic to the Old World, eggplant was domesticated in the region
of India and southeast China and is now cultivated worldwide (Doganlar et al., 2002).
However, eggplant is susceptible to many abiotic stresses and diseases such as Fusarium
wilt (caused by Fusarium oxysporum) and Verticillium wilt (caused by Verticillium dahlia),
thus pose a substantial threat to production and food security. The availability of genome
sequences and development of bioinformatics approaches provide a good opportunity to
characterize a family of stress resistance-related genes from a whole-genome perspective.

The Dof (DNA-binding with one finger) proteins are a set of plant-specific transcription
factors (TFs) that typically have 200–400 amino acids and twomajor domains: a C-terminal
domain for transcriptional activation and a highly conserved N-terminal DNA-binding
domain (also referred to as the Dof domain).The Dof domain is composed of 52 amino
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acid residues and features a C2C2-type zinc finger motif, some of which could recognize
the specific regulatory elements of AAAG or CTTT in the promoters of target genes
(Plesch, Ehrhardt & Mueller-Roeber, 2001; Wray et al., 2003; Yanagisawa, 2004; Chen et
al., 2014; Mehrotra et al., 2014), although the pumpkin Dof protein AOBP recognizes an
AGTA repeat (Shimofurutani et al., 1998). Similar to other zinc fingers, the Dof domain
plays a bi-functional role in DNA-binding and protein-protein interactions (Yanagisawa,
2002). The Dof family may have evolved from a common ancestor: a single gene in the
green unicellular alga Chlamydomonas reinhardtii, with the family then expanding into
mosses, ferns and vascular plants by consecutive gene duplications (Moreno-Risueno et al.,
2007). Yanagisawa (2002) first identified 37 putative Dof genes in Arabidopsis, which were
classified into eight groups. Lijavetzky, Carbonero & Vicente-Carbajosa (2003) classified
Dof genes into classes A, B1, B2, C1, C2.1, C2.2, C3, D1 and D2, which is the classification
system adopted in the analysis ofDof genes of Chinese cabbage (Ma et al., 2015) and carrot
(Huang et al., 2016) or modified such as in tomato (Cai et al., 2013).

Dof transcription factors are associated with a variety of biological processes in plant
growth and development, including the responses to light and those in defence (Park et al.,
2003; Shaw et al., 2009; Zhang et al., 1995), germination and development of seeds (Papi
et al., 2002; Dong et al., 2007; Gabriele et al., 2010; Zou et al., 2013), control of flowering
(Imaizumi et al., 2005; Fornara et al., 2009), branching of shoots, and development of
pollen, fruit and vascular tissues (Konishi & Yanagisawa, 2007; Chen et al., 2012; Da Silva
et al., 2016; Wu et al., 2016). Dof TFs also participate in carbon metabolism (Yanagisawa,
2000) and various physiological processes such as nitrogen assimilation, phytochrome and
cytochrome signalling, plant hormonal signalling, and biotic and abiotic stress tolerance
(Park et al., 2003; Ward et al., 2005; Kurai et al., 2011; Cai et al., 2013; Corrales et al., 2014;
Wen et al., 2016). For example, the newly found Dof protein MaDof23 in banana functions
as a transcriptional repressor and interacts with the transcriptional activatorMaERF29. The
two proteins are suggested to control banana fruit ripening by working antagonistically to
regulate 10 ripening-related genes involved in cell wall degradation and aroma formation
(Feng et al., 2016). In Arabidopsis, Dof6 acts as an opponent of TCP14, which is a positive
regulator of seed germination, to regulate ABA biosynthesis pathway-related genes, and
therefore, seed germination is negatively affected (Rueda-Romero et al., 2012).

Dof TFs have been functionally characterized in many plant species and crops such as
Arabidopsis, tomato, rice, cucumber and soybean (Papi et al., 2000; Gualberti et al., 2002;
Washio, 2003; Cai et al., 2013; Guo & Qiu, 2013; Wen et al., 2016). However, information
on Dof genes continues to be lacking for eggplant. The aim of the present study was to
conduct a genome-wide analysis of the Dof family of genes in eggplant. We identified 29
SmeDof members in the eggplant genome and classified these proteins into nine subgroups.
The physical and chemical characteristics, gene structure, motifs and evolutionary patterns
of the SmeDof family of genes were investigated. We also analysed the expression patterns
of SmeDof members in different types of eggplant. Based on this study, our understanding
of the structure and function of the SmeDof family of genes in eggplants has increased, and
the results will contribute to futher understanding the role of SmeDof genes in tolerance
mechanism and the interaction networks of these genes.
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MATERIALS AND METHODS
Identification and characterization of the Dof transcription factors
The genome, genes and corresponding protein sequences of eggplant were downloaded
from the Eggplant Genome Database (http://eggplant.kazusa.or.jp). The latest Markov
model for the Dof transcription factors named PF02701.13 was downloaded from the Pfam
database (http://pfam.xfam.org/) (Eddy, 2011; Finn et al., 2014). The HMMER program
was used to search for Dof proteins in all eggplant proteins with a cutoff E-value of 1e−4

using PF02701.13 as a query. After a comprehensive check, the candidate proteins that only
contained fragmental Dof domains were eliminated.

The Dof transcription factor search was also conducted for five other representative
species in the plant kingdom and for the family Solanaceae. The annotated proteins of an
alga (C. reinhardtii), moss ( Physcomitrella patens), lycophyte (Selaginella moellendorffii),
Arabidopsis thaliana, grape (Vitis vinifera), poplar (Populus trichocarpa) and rice (Oryza
sativa) were downloaded from the Pfam database (v10) (Goodstein et al., 2012). The
genomic information of the gymnospermNorway spruce (Picea abies) (Nystedt et al., 2013)
was collected from the CongenieWebsite (http://congenie.org/). The annotated proteins of
petunia (Petunia axillaris), tomato (Solanum lycopersicum), potato (Solanum tuberosum),
pepper (Capsicum annuum), and tobacco (Nicotiana tabacum) were downloaded from the
SGN Database FTP Server (ftp://ftp.solgenomics.net/genomes/).

Phylogenetic analysis of the Dof genes
The Dof proteins of C. reinhardtii, P. patens, A. thaliana, O. sativa and eggplant were
selected for phylogenetic analysis in planta. The ClustalX2 program was used to align Dof
protein sequences with the Gonnet protein weight matrix (Larkin et al., 2007). The MEGA
program (v6.06) was used to construct a neighbour-joining phylogenetic tree using the
Jones-Taylor-Thornton (JTT) model with 500 bootstrap replicates (Tamura et al., 2013).
The uniform rates and homogeneous lineages were adopted, whereas the partial deletion
with a site coverage cutoff of 70% was used for gaps/missing data treatment. To clearly
distinguish the genes in this phylogenetic tree, the term ‘Nta|’ was added as a prefix to
indicate the genes were from tobacco. The MEGA program was also used to construct
a neighbour-joining phylogenetic tree of Dof proteins in plants of Solanaceae, following
previous methods. The frequency of each divergent branch was displayed when the value
was higher than 50%. Adobe Illustrator software was used to clearly show the Dof branches
after classification of all proteins based on the known background information.

Gene structure and motif analyses
The Gene Structure Display Server tool (http://gsds.cbi.pku.edu.cn/, v2.0) (Hu et al., 2015)
was used to analyse gene structure. MEME software (http://meme-suite.org/meme_4.11.0/,
v4.11.0) was used to search for motifs in all 29 eggplant Dof proteins with a motif window
length from 8 to 100 bp (Bailey et al., 2009). The default number of motifs to be found
was set to 15, resulting in identification of 14 motifs with an E-value smaller than the 0.05
significance level. The motifs were displayed following a pattern with the most statistically
significant (lowest E-value) motifs displayed first.
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Identification of orthologous and paralogous genes
OrthoMCL (v2.0.3) (Li, Stoeckert Jr & Roos, 2003) was used to search for orthologous,
co-orthologous and paralogous genes in eggplant, tomato, Arabidopsis, and rice using
the entire Dof protein sequence data set. The E-value cutoff of 1.0e−5 was used for the
all-against-all BLASTP alignment process, and a match cutoff value of 50 was adopted. The
orthologous and paralogous relationships were gathered and displayed using Cytoscape
software (http://www.cytoscape.org, v2.8.3) (Smoot et al., 2011).

Analysis of Dof gene expression in different eggplants
The genome-wide digital gene expression of SmeDof genes in eggplant varieties and close
species was assessed as described by Tan et al. (2015). We used RNA-seq transcriptiomes
with the related FPKM (fragments per kilobase per million measure) values to study
SmeDof gene expression patterns in six eggplants. Illumina sequencing reads from
RNA-seq data of six types of eggplants with different morphological traits were used
(raw data is avalible at NCBI, SRP127743), including two cultivated eggplants Solanum
melongena L. (MEL_HZHQ and MEL_LYQ), three closest wild relatives S. Aethiopicum, S.
sisymbriifolium and S. integrifolium (AET_SG, SIS_2007 and INT_2006) and a semi-wild
relative S. melongena (MEL_S58). Seeds (10 per species) from six types of eggplant were
germinated. The leaf tissue was collected from the seedlings with three true leaves when
14 days post germination. Total RNA of each sample was extracted using an RNAprep
Pure Plant Kit (DP432, TIANGEN, China. http://www.tiangene.com) according to the
manufacturer’s protocol. Illumina sequencing was performed at Novogene Bioinformatics
Technology Co., Ltd., Beijing, China (http://www.novogene.cn). The library preparations
were sequenced on an Illumina Hiseq 2000 platform and 90 bp paired-end reads were
generated. Approximately 28 million paired reads were generated with 5.6 G data for
each sample. The program Tophat (https://ccb.jhu.edu/software/tophat/) was used to
map the reads to the eggplant genome (Hirakawa et al., 2014); then the expression
profile of all spinach genes was obtained with FPKM (Fragments Per Kilobase of exon
per million fragments Mapped) value using software Cufflinks (http://cole-trapnell-
lab.github.io/cufflinks, v2.2.1) under the guidance of annotated gene models with a GFF
file. The SmeDof gene expression profile from each sample was analysed using the HemI
program (http://hemi.biocuckoo.org/) with the average hierarchical clustering method.

RESULTS AND DISCUSSION
Genome-wide identification of Dof genes in eggplant
Gene family analysis is an efficient approach to understand the structure, function, and
evolution of genes. TheDof genes are plant-specifc transcription factors that are ubiquitous
in plant species and participate in various biological processes. To identify SmeDof
homologues in eggplant, we used the HHM profile of the Dof domain (PF02701.13)
as a query to perform an HMMER search against the Eggplant Genome Database
(http://eggplant.kazusa.or.jp). A total of 85,446 genes were predicted in eggplant genome
(versione SME_r2.5.1), including 42,035 predicted genes (38,498 intrinsic genes and 3,537
partial genes), 41,048 transposable elements and 2,363 were pseudo or short genes or both.
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A total of 29 genes encoding transcription factors of the SmeDof family were identified. The
number is similar to that in rice (30OSDof genes;Washio, 2003) but lower than the number
of Dof genes in Arabidopsis (36 At Dof genes; Lijavetzky, Carbonero & Vicente-Carbajosa,
2003), soybean (78 GmDof genes; Guo & Qiu, 2013), Chinese cabbage (76 BraDof genes;
Ma et al., 2015), potato (35 StDof genes; Venkatesh & Park, 2015), cucumber (36 CsDof
genes; Wen et al., 2016), and tomato (34 SlDof genes; Cai et al., 2013). For convenience,
the 29 SmeDof genes were assigned names from SmeDof-01 to SmeDof-29.

The 29 SmeDof genes in eggplant were classified into four groups and nine subgroups
based on predicted Dof domains: A, B1, B2, C1, C2.1, C2.2, C3, D1 and D2 (Fig. 1, Table 1).
In a previous study on Dof transcription factors from green unicellular algae to vascular
plants, Dof genes are classified into groups A, B, C, D, E, F and G (Moreno-Risueno et
al., 2007), whereas group G is absent from Dof gene analysis between sorghum and rice
(Kushwaha et al., 2011). The classification of the 29 SmeDof genes was consistent with that
of Arabidopsis, although the number of members in each subgroup might vary. However,
in cucumber, the CsDof genes were classified into eight subgroups, with no genes found in
subgroup C3 (Wen et al., 2016). The genome-wide analysis of the Dof transcription factors
classified the soybean Dof genes into nine different groups: A, B1, B2, C1, C2, C3, D1, D2,
and D3 (Guo & Qiu, 2013).

The SmeDof genes had molecular weights ranging from 18.6 to 64.4 kD with pI
values varying from 4.55 to 9.48. Two eggplant genes Sme2.5_00232.1_g00011 and
Sme2.5_01519.1_g00001 were identified as candidates with the E-value cutoff of 2.2e–09
and 9.7e-06, respectively. However, because 26 and 21 amino acid residues, respectively,
aligned to the Dof domain were too short to act as a functional zinc-finger Dof domain,
these two genes were excluded. Detail information regarding the SmeDof genes, including
name, coding protein, CDS length, molecular weight and PI value, is shown in Table 1.

Phylogenetic relationship of the DOF proteins in major plant species
The formation of the plant-specific Dof transcription factors is associated with the
evolutionary process of plants (Taylor & Raes, 2004; Shigyo et al., 2007). To provide insight
into the evolution of the Dof family of genes, we performed phylogenetic analysis across
representative plant species, including an alga, moss, lycophyte, gymnosperm, eudicot and
monocot. Detail information of the gene family in different plant species is shown in Table
S1. However, the lycophyte Dof proteins were removed from the final phylogenetic tree
because of the lack of complete and functional domains. A phylogenetic tree is usually
constructed by a neighbour-joining or maximum-likelihood method using sequences of
whole-length proteins, domains or CDS regions. In this study, the neighbour-joining
method with 1,000 bootstraps using the Dof domain sequence was performed to construct
the phylogenetic tree (Fig. 1), which was generally consistent with previous reports (Shigyo
et al., 2007;Moreno-Risueno et al., 2007; Ma et al., 2015).

As demonstrated previously, the number of Dof transcription factors varies among land
plants (Yang, Tuskan & Cheng, 2006), and the results of this study confirm that conclusion.
As shown in Fig. 1, the green algae C. reinhardtii only had one Dof gene in subgroup D1,
indicating thatDof members in other groups might originate from subgroup D1members;
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Figure 1 The phylogenetic tree of theDof. genes from six plant species. Individual species are dis-
tinguished by different shapes with different colours. The prefixes of Cre, Pp3c, MA, LOC_Os, AT and
SmeDof indicate these genes were found in C. reinhardtii, P. patens, Norway spruce, rice, Arabidopsis and
eggplant, respectively.

Full-size DOI: 10.7717/peerj.4481/fig-1

whereas the number of Dof transcription factors in the moss P. patens enlarged into 27
genes. In P. patens, 11, 8, 6 and 2 Dof genes were classified into subgroups C3, D1, D2
and C2.2, respectively; thus, these four clades were likely relatively original compared with
other clades. In some species, the Dof genes are enriched in certain branches. Multiple
Dof genes of P. patens in subgroups C3 and D1 were aggregated into small branches
that split with Dof genes in the other species, which possibly resulted from Dof gene
duplication in P. patens. A total of 23 Dof genes were found in Picea abies distributed in all
subgroups. According to the phylogenetic tree, the 29 eggplant Dof genes were distributed
in all 9 branches, with 3, 2, 4, 2, 4, 2, 1, 6 and 3 in subgroups A, B1, B2, C1, C2.1, C2.2,
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Table 1 Classification and characterization of eggplantDof genes.

SmeDof name Protein name Group CDS
length

Whole
gene
length

Molecular
weight

pI Instability
index

Instability
status

Aliphatic GRAVY

SmeDof-01 Sme2.5_02793.1_g00001.1 C2.1 4,037 302 33,233.76 8.46 47.87 unstable 60 −0.766
SmeDof-02 Sme2.5_00047.1_g00017.1 C2.1 2,071 281 30,200.42 9.03 33.68 stable 59.68 −0.622
SmeDof-03 Sme2.5_00720.1_g00002.1 B2 3,408 391 42,895.37 6.98 52.72 unstable 62.58 −0.672
SmeDof-04 Sme2.5_02054.1_g00006.1 B2 1,242 264 29,975.35 8.16 41.07 unstable 64.92 −0.746
SmeDof-05 Sme2.5_00536.1_g00017.1 C1 1,576 288 31,920.38 6.3 41 unstable 52.08 −0.666
SmeDof-06 Sme2.5_00019.1_g00022.1 C3 18,793 589 64,449.89 6.14 52.01 unstable 82.61 −0.337
SmeDof-07 Sme2.5_02584.1_g00003.1 B2 3,886 360 39,038.66 7.09 48.45 unstable 52.31 −0.736
SmeDof-08 Sme2.5_00326.1_g00010.1 A 7,425 386 41,284.63 5.94 44.67 unstable 58.16 −0.581
SmeDof-09 Sme2.5_01232.1_g00017.1 A 1,629 182 19,981.01 8.14 56.25 unstable 53.13 −0.815
SmeDof-10 Sme2.5_03054.1_g00002.1 C3 2,634 293 32,721.61 7.48 48.1 unstable 59.25 −0.661
SmeDof-11 Sme2.5_01191.1_g00008.1 D2 6,024 243 25,553.48 8.72 46.98 unstable 57.08 −0.423
SmeDof-12 Sme2.5_18208.1_g00003.1 D2 1,061 232 24,021.45 6.58 49.43 unstable 51.29 −0.582
SmeDof-13 Sme2.5_00151.1_g00002.1 C1 2,298 297 32,940.49 6.75 39.71 stable 57.1 −0.718
SmeDof-14 Sme2.5_01155.1_g00012.1 A 1,301 217 23,346.49 9.17 53.57 unstable 44.06 −0.872
SmeDof-15 Sme2.5_03699.1_g00001.1 C2.1 2,569 267 29,110.24 9.21 48.03 unstable 56.97 −0.676
SmeDof-16 Sme2.5_01191.1_g00002.1 B2 1,185 290 31,399.01 9.03 50.92 unstable 65 −0.563
SmeDof-17 Sme2.5_04366.1_g00001.1 B1 9,807 261 28,334.34 9.4 35.24 stable 53.1 −0.713
SmeDof-18 Sme2.5_01247.1_g00005.1 D1 1,913 371 41,024.83 7.59 37.61 stable 66.98 −0.725
SmeDof-19 Sme2.5_00013.1_g00005.1 C2.1 1,607 217 24,352.14 6.98 54.26 unstable 63.73 −0.721
SmeDof-20 Sme2.5_00146.1_g00017.1 B1 1,302 301 33,581.31 9.48 61.73 unstable 55.35 −0.744
SmeDof-21 Sme2.5_00669.1_g00003.1 D1 2,744 504 54,727.03 5.66 52.16 unstable 56.31 −0.787
SmeDof-22 Sme2.5_02533.1_g00002.1 D1 812 166 18,642.8 8.87 40.68 unstable 52.89 −0.873
SmeDof-23 Sme2.5_03125.1_g00004.1 D1 4,976 445 49,545.73 6.47 48.04 unstable 54.36 −0.859
SmeDof-24 Sme2.5_00720.1_g00003.1 C3 1,335 305 33,223.53 9.43 70.52 unstable 44.46 −0.913
SmeDof-25 Sme2.5_09080.1_g00001.1 C2.2 1,225 258 29,384.18 4.55 50.9 unstable 53.33 −0.825
SmeDof-26 Sme2.5_00161.1_g00001.1 D1 4,032 467 52,088.65 5.9 43.24 unstable 51.58 −0.846
SmeDof-27 Sme2.5_02556.1_g00009.1 B1 1,679 370 39,849.03 8.98 63.55 unstable 52.22 −0.652
SmeDof-28 Sme2.5_08918.1_g00002.1 D2 920 205 22,056.75 9.23 55.35 unstable 62.34 −0.42
SmeDof-29 Sme2.5_00298.1_g00013.1 D1 2,953 525 57,189.32 6.01 56.78 unstable 56.32 −0.835

C3, D1 and D2, respectively (Fig. 1). In algae, only one Dof factor was identified in the
green alga C. reinhardtii and none in the red alga Cyanidioschyzon merolae (Yanagisawa,
2002; Yanagisawa, 2004; Shigyo et al., 2007). By contrast, Glycine max contains the high
number of 93 members of Dof family genes (Ma et al., 2015). These results revealed that
the number of Dof genes increases from algae to higher plants, suggesting an expansion of
Dof family transcription factors during the evolution of lower plants to terrestrial plants.
This conclusion is consistent with previous study on Dof TFs in Chinese cabbage (Ma et
al., 2015). Moreover, the origin of the Dof transcription factors predates the divergence
between the green algae and the ancestors of land plants (Moreno-Risueno et al., 2007;
Shigyo et al., 2007).
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The Dof genes in rice were found in 9 branches, but were absent in subgroup C3, which
was similar to cucumber (Wen et al., 2016). The Dof members in subgroup C3 originated
after moss and were more divergent than members in other groups, although none were
identified in rice. Three members of eggplant SmeDof genes were classified into subgroup
C3; however, the domain sequences were also disparate with members in Arabidopsis.
Gene duplication in a single species is a possible result from genome duplication after the
divergence between asterids and eurosides II clades, which were the ancestors ofArabidopsis
and eggplant.

Phylogenetic relationships of the Dof proteins among Solanaceae
species
We constructed a phylogenetic tree of the Dof genes from six species of Solanaceae based
on the Dof domains using the neighbour-joining method (Fig. 2, Table S1). As shown
in Table 2, five of the six species, S. melongena, S. lycopersicum, S. tuberosum, C . annuum
and P. axillaris, had similar numbers of Dof genes ranging from 29 to 33. By contrast, the
allotetraploid Nicotiana tabacum had 60 Dof TF coding genes, which was likely because
of genome duplication events increasing gene copies. The Dof proteins in tobacco were
enriched in 3 subgroups: B1, C2.1, andD1, with 13, 16, and 14 genes, respectively. However,
the Dof genes of N. tabacum in subgroup C2.2 did not differ much from those of the other
five species, except for those of petunia, which had 4 genes in this group. The Dof TFs
of eggplant, tomato, potato and pepper in subgroups C1 and D1 were the same, with 2
and 6, respectively. Except for the allotetraploid tobacco, Dof genes from different species
varied slightly from A to D2 subgroups, indicating an even distribution within the family
Solanaceae.

The genome size of eggplant (833.1 Mb, 42,035 coding genes; Hirakawa et al., 2014),
tomato (950 Mb, 34,727 coding genes; Tomato Genome Consortium, 2012) and potato
(844 Mb, 35,119 coding genes; Potato Genome Sequencing Consortium, 2011) did not vary
significantly, which corresponded to their similar number of Dof transcription factor
encoding genes, with 29, 33, and 32 members, respectively. Notably, although the genome
size of hot pepper (3.48 Gb, 34,899 coding genes; Kim et al., 2014) was approximately
fourfold larger than that of its close relatives tomato and eggplant, the total coding genes
and Dof genes did not have proportionally more. We propose that because hot pepper is a
diploid species which did not experience the recent whole-genome duplication (Kim et al.,
2014), and therefore, no significant enlargement ofDof genes occurred. The genome size of
another solanaceous species N. tabacum (4.41–4.57 Gb, 85,439 coding genes; Sierro et al.,
2014) was almost fivefold larger than that of eggplant, but the number of Dof transcription
factors (60 members) was fewer than twice that of eggplant (29 members), which might be
attributed to gene loss after the allopolyploidization event.

Gene structure and conserved motifs analyses of the eggplant
Dof genes
The exon-intron organization can be used as supporting evidence to determine the
evolutionary relationships among genes or organisms (Koralewski & Krutovsky, 2011;
Malviya et al., 2015). Therefore, structural analysis of gene families with phylogenetic
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Figure 2 The phylogenetic tree of theDof. genes from six plant species in Solanaceae. Individual
species were distinguished by different shapes with different colors. Bootstrapping values are indicated
as percentages (when >50%) along the branches. The prefix of SmeDof, Solyc, PGSC, Peaxi, CA and Ntb
indicated these genes were found in eggplant, tomato, potato, petunia, pepper and tobacco.

Full-size DOI: 10.7717/peerj.4481/fig-2

Table 2 Detailed information on the Dof members in each subgroup of the six plant species from family Solanaceae.

Plant species of Solanaceae Subgroup Unclassified Total

A B1 B2 C1 C2.1 C2.2 C3 D1 D2

Solanum melongena 3 3 4 2 4 1 3 6 3 0 29
Solanum lycopersicum 2 6 4 2 4 1 4 6 3 1 33
Solanum tuberosum 2 5 6 2 4 2 3 6 2 0 32
Capsicum annuum 3 4 3 2 3 4 3 6 3 2 33
Petunia axillaris 3 5 6 1 4 1 3 5 2 3 33
Nicotiana tabacum 4 13 4 4 16 1 4 14 0 0 60
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relationships can provide valuable information on duplication events and evolutionary
patterns (Cai et al., 2013). To investigate the mechanisms of structural evolution of SmeDof
genes in eggplant, we compared the exon-intron structures of 29 annotated SmeDof genes.
A detailed illustration of gene structure including the CDS, intron and UTR structures is
shown in Fig. 3. Similar to the structure of Arabidopsis, rice, cucumber and tomato Dof
genes (Lijavetzky, Carbonero & Vicente-Carbajosa, 2003; Wen et al., 2016; Cai et al., 2013),
the eggplant Dof genes had few introns, which ranged in number from 0 to 2 in each
gene (Fig. 3). Three of the SmeDof genes, SmeDof-15, SmeDof-17 and SmeDof-29, had
one intron, whereas SmeDof-02 and SmeDof-07 both had two introns. Moreover, 24 of
29 SmeDof genes were found without introns. SmeDof genes with introns showed either
‘‘0’’, ‘‘1’’, or ‘‘2’’ intron phases and were in four different subgroups: B1, B2, C2.1, and D2.
The gene SmeDof-17 had the longest intron. Of all eggplant Dof genes, SmeDof-06 was the
longest gene with the longest UTRs, whereas the shortest gene was SmeDof-22.

The diversity of motif compositions in SmeDof proteins was assessed using the MEME
programme, and a total of 15 conserved motifs were identified. The schematic distribution
of these 15 motifs among SmeDof proteins is shown in Figs. 4 and 5. The motif, motif1, was
uniformly observed in all SmeDof proteins andwas confirmed as the conservedDof domain.
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Figure 4 Conserved motifs embedded in the eggplantDof genes.
Full-size DOI: 10.7717/peerj.4481/fig-4

Similar to the results from Arabidopsis, rice, cucumber and tomato (Lijavetzky, Carbonero
& Vicente-Carbajosa, 2003; Wen et al., 2016; Cai et al., 2013), this result suggested that
SmeDof transcription factors were evolutionarily conserved in plants. Groups B2 and
C2.2 and six other genes (SmeDof-02, SmeDof-06, SmeDof-08, SmeDof-10, SmeDof-15, and
SmeDof-28) had only one conserved motif1 (Fig. 4). All members in group A contained
motif10 except for SmeDof-08, whereas motif13 was in all SmeDof proteins in Group B1.
Both Dof proteins in Group C1 contained motif1 and motif14, with SmeDof-05 containing
the additional motif9. Members of group D2 generally had more than 9 motifs except
for SmeDof-22, which only contained motif1 and motif4; all other members had motif2,
motif3, motif4, motif5, motif6, and motif11. The SmeDof genes in each subgroup had
several unique motifs, suggesting that Dof proteins within the same subclusters shared
certain functional similarities. Distribution of the motifs revealed that the SmeDof genes
were likely conserved during evolution.
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Figure 5 Conserved motifs embedded in the eggplantDof genes. Amino acid sequences of each motif.
The font size represents the frequency of the respective amino acid.

Full-size DOI: 10.7717/peerj.4481/fig-5

Identification of orthologous, co-orthologous and paralogous Dof
genes in eggplant, tomato, Arabidopsis and rice
The relationships of orthologous, co-orthologous, and paralogous Dof genes among
four species were investigated. Orthologs are genes evolved by vertical descent from a
single ancestral gene whereas paralogs are originated by duplication. The co-orthologs
are subdivided type of orthologs, which are two or more genes in one lineage that are,
collectively, orthologous to one or more genes in another lineage due to a lineage-specific
duplication(s) (Koonin, 2005). The comparative analysis was performed using OrthoMCL
with default settings, and the results are presented in Fig. 6 and Table S2. Among the 29
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SmeDof genes of eggplant and the 33 Dof genes of tomato, 28 orthologous gene pairs were
identified. Ten orthologous gene pairs were identified among the 29 SmeDof genes and the
36 Dof genes of Arabidopsis, whereas only five orthologous gene pairs were found between
eggplant and rice (30 Dof genes). The most orthologous genes were between eggplant and
tomato, which could be explained because both species are in the family Solanaceae. We
also identified six co-orthologous gene pairs between eggplant and Arabidopsis and seven
pairs between eggplant and rice. Paralogous genes were detected in all four species, with 14
pairs in Arabidopsis, nine pairs in rice, one pair in tomato, and one gene pair in eggplant.
The genes SmeDof-21 and SmeDof-29 were the only paralogous Dof genes in eggplant.

Expression pattern of the Dof genes among different eggplant
varieties and close species
To increase our understanding of the expression profiles of the Dof among different
eggplant varieties and close species, we investigated gene expression for each SmeDof gene
using RNA-seq data of six samples: two cultivated eggplants, three closest wild relatives and
a semi-wild relative. The FPKM expression of SmeDof genes in six eggplants is provided
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Figure 7 The heat map shows the expression profile of the eggplantDof genes in six eggplants. The x-
axis represents the names of the six eggplants, and the y-axis represents different SmeDof genes. The ex-
pression levels of SmeDof genes are revealed by different colours, which increase from blue to red.

Full-size DOI: 10.7717/peerj.4481/fig-7

in Table S3. As shown in Table 3 and Fig. 7, the wild species AET_SG and INT_2006 were
closely related. The alignment rate between RNA-seq reads of the wild SIS_2007 and the
published eggplant genome sequence was only 13.40%, and therefore, this eggplant was the
most distant from domesticated eggplants (Fig. 7). The cultivated eggplant MEL_HZHQ
with linear, long fruits was phylogenetically more closely related to the semi-wild species
MEL_S58 instead of the other cultivated typeMEL_LYQ, which has round fruits.Moreover,
MEL_HZHQ is similar to the semi-wild species in morphology, with vine branches and
multi-pistillate flowering. The low expression values of genes in SIS_2007, AET_SG, and
INT_2006 were highly supported by that these plant materials were close wild relatives to
eggplant, not varieties of eggplant. The left reads mapped ratio were 70%–88% and the
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Table 3 The alignment rates of RNA-seq sequences of six eggplants against the eggplant reference
genome.

Sample name Subspecies Eggplant
type

Left reads
mapped

Left multi
mapped

Concordant
mapped

AET_SG S. aethiopicum gr. Gilo wild 70.20% 4.70% 56.40%
INT_2006 S.intergrifolium wild 71.80% 5.00% 58.40%
MEL_HZHQ S. melongena cultivated 87.40% 4.70% 81.70%
MEL_LYQ S. melongena cultivated 88.60% 5.00% 82.00%
MEL_S58 S. melongena semi-wild 86.90% 5.00% 80.60%
SIS_2007 S. sisymbriifolium wild 26.70% 6.30% 13.40%

concordant mapped ratio were 56%–82% except SIS_2007. The mapped ratio were in a
normal range of RNA-Seq mapping ratio, as most studies have a concordant mapped ratio
were 50%–90%.

The expression levels of different SmeDof genes in the six types of eggplants are
represented by different colours and are shown in Fig. 7. SmeDof-25 and SmeDof-04 did
not express in any of the eggplants. The expression of SmeDof genes SmeDof-20, SmeDof-19,
and SmeDof-22 was either very low or not detecable in the six types of eggplants, whereas
SmeDof-17 was highly expressed in all types of eggplants. The expression patterns of
SmeDof-05, SmeDof-08, and SmeDof-23 in MEL_LYQ were different from those in the
other five eggplants; SmeDof-05 and SmeDof-08 were highly expressed in MEL_LYQ, but
the expression was comparatively low in other eggplants. By contrast, SmeDof-23 had high
expression levels in the other five eggplants but did not express in MEL_LYQ. The two
genes SmeDof-21 and SmeDof-27 had different expression in the wild eggplant SIS_2007
compared with that in the other types of eggplants. The expression levels of SmeDof-29
varied significantly between AET_SG and INT_2006. However, the functions of Dof genes
in different ecotypes of eggplants remain to be further investigated.

CONCLUSIONS
We conducted a comprehensive analysis of Dof transpcrition factors in the genome of
eggplant. A total of 29 SmeDof genes encoding Dof transpcrition factors were identified
from eggplant, which were classified into four groups and nine subgroups: A, B1, B2,
C1, C2.1, C2.2, C3, D1 and D2. The gene structure, conserved motifs and homologous
genes of Dof genes in eggplant were investigated. All of the SmeDof proteins contained
motif1 which was considered as the conserved Dof domain. A comparative study of the
Dof family factors between eggplant and other plant species was performed that could
facilitate the functional analysis of Dof factors in eggplant. Moreover, we also investigated
the expression patterns of Dof genes in different types of eggplants. Our study provides
valuble information for further understanding of the mechanisms underlying abiotic stress
response of SmeDof transcription factors.
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