
J Phys Fitness Sports Med, 3(3): 347-352 (2014)
DOI: 10.7600/jpfsm.3.347

JPFSM: Short Review Article

Clinical definition and diagnostic criteria for sarcopenia
Jun Udaka1*, Norio Fukuda2, Hideki Yamauchi3 and Keishi Marumo1

Received: June 13, 2014 / Accepted: June 25, 2014

Abstract   The occurrence of sarcopenia and muscular dystrophy with aging has attracted at-
tention. Many factors are reported as causes of sarcopenia, such as the functional decline of a 
digestive organ occurring with aging and malnutrition due to a decrease in food intake. Also, 
a decrease in growth hormone and an increase in cytokines are also considered to be causes of 
sarcopenia. Meanwhile, the differentiation between sarcopenia and disuse muscle atrophy is not 
clear. It will be important in future studies to clearly define the differences between sarcopenia 
and disuse muscle atrophy. Recently, the diagnostic criteria of sarcopenia have been defined 
according to a large-scale investigation. In the future, an easier sarcopenia diagnostic method 
should be developed. It is necessary to design specific treatment strategies more closely cor-
related to the clinical condition of individual patients, because the causes of sarcopenia vary 
widely. In this review, we summarize the characteristics of the clinical condition, diagnosis, and 
treatment of sarcopenia.
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Introduction

   To date, muscular atrophy studies have focused mainly 
on disuse muscular atrophy using the immobilization and 
space-flight models1,2). This area of research has achieved 
success in the development of methods for the treatment 
and prevention of disuse muscular atrophy3). Recently, 
a new concept of muscular atrophy, sarcopenia, has re-
ceived attention. The term sarcopenia was proposed by 
Rosenberg in 1989 to refer to muscle loss due to aging4). 
Aging societies, which have increased as a result of de-
velopments in medical technology, are thought to be the 
key reason for the attention to the concept of sarcopenia. 
Moreover, the high nursing care costs necessary to man-
age sarcopenia are a burden on medical economics5). 
Therefore, great effort has been initiated in order to estab-
lish the diagnostic criteria for sarcopenia6). Nevertheless, 
many questions remain regarding the clinical condition of 
sarcopenia.
   Sarcopenia and disuse muscular atrophy share common 
characteristics7,8), which has led to some confusion in the 
use of these terms9). Clear differentiation between these 
two conditions is therefore important for future research 
on sarcopenia. This paper summarizes the reports on 

sarcopenia and discusses the current status of sarcopenia 
diagnosis and treatment.

Causes of sarcopenia

   Disuse muscular atrophy is a form of muscular atrophy 
that arises because of decreased muscular activity or mo-
tor stimulation. As sarcopenia is a form of muscular atro-
phy that accompanies aging, all of the changes that occur 
due to aging are considered to be causes of sarcopenia. It 
is reported that sarcopenia arises owing to a large number 
of factors10,11) (Fig. 1), and these factors need to be inves-
tigated.
   Muscular hypertrophy and atrophy result from muscle 
protein synthesis and breakdown, respectively. Therefore, 
a shortage of nutrients required for muscle protein syn-
thesis hinders normal muscle metabolism. Consequently, 
environments in which nutrient intake becomes difficult 
facilitate the loss of muscle mass. The digestive tract in 
elderly people has a reduced ability to produce nitric ox-
ide in the cardiac region, thereby lowering the ability of 
the region to expand. This results in a feeling of fullness 
even with the intake of only a small amount of food12), 
which in turn reduces appetite, and can lead to a short-
age of the amino acids necessary for muscle synthesis. 
Elderly people have also been shown to have a decreased *Correspondence: judk@jikei.ac.jp
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ability to synthesize muscle protein from the amino acids 
they consume13,14). As such, elderly people who consume 
food rich in amino acids have been reported to have im-
proved muscle protein synthesis. In particular, leucine has 
been shown to have a strong anabolic action on skeletal 
muscle15,16). The important role of vitamin D in muscle 
synthesis has also received attention. In fact, vitamin D 
intake has been reported to help prevent falls17), which 
is thought to reflect increased muscle strength due to the 
action of vitamin D on muscle protein synthesis. Vitamin 
D receptor expression in skeletal muscle has also been 
shown to decrease with age18). The aforementioned results 
indicate an extremely important relationship between sar-
copenia and nutrition.
   The regenerative function of muscles has also been re-
ported to be lower in patients with sarcopenia19,20). Satel-
lite cells, which exist between the basement membrane 
and sarcolemma of muscle fibers, play an important role 
in muscle regeneration. When muscle is damaged, satel-
lite cells are activated and begin to multiply in response 
to stimulation by growth factors and cytokines, and are 
transformed into muscle precursor cells. These cells 
merge with the existing muscle fibers to carry out muscle 
repair and hypertrophy. The decline in satellite cell func-
tion with age has been identified as one of the reasons 
for the decline in the ability of muscles to recover with 
age21,22).
   In addition, insulin-like growth factor 1 (IGF-1) and 
inflammatory cytokines have been reported to control 
the function of satellite cells. IGF-1, in addition to being 
secreted by the liver in response to growth hormones, it is 
also known to be produced within myocytes in response 
to mechanical stimulation23,24). IGF-1 binds with IGF-1 
receptors on myocyte membranes, and phosphorylates the 
intracellular signal transduction pathway mediators, insu-
lin receptor substrate 1 (IRS-1), phosphatidylinositol 3-ki-
nase, and Akt. Phosphorylated Akt then promotes muscle 
protein synthesis via S6K and glycogen synthase kinase 
and the phosphorylation of forkhead box-O (FOXO), a 
transcription factor of atrophy-related genes (atrogenes). 

This hinders the intranuclear translocation of atrogenes 
and suppresses the breakdown of muscle protein25,26). 
However, FOXO proteins have been shown to accumulate 
in the nuclei of satellite cells in old age, suggesting that 
they are involved in the decline in growth functions22).
   Inflammatory cytokines such as tumor necrosis factor-α 
(TNF-α) and interleukin-6 (IL-6) are particularly impor-
tant as causative factors of sarcopenia. TNF-α contributes 
to promoting skeletal muscle catabolism during cachex-
ia27). Activation of NF-κB by TNF-α is known to decrease 
MyoD expression, which promotes the degradation of 
myosin28). Furthermore, activation of NF-κB by TNF-α 
increases the expression level of the MuRF1 gene. This 
promotes the degradation of muscle protein via the ubiq-
uitin-proteasome system29). Meanwhile, IL-6 is secreted 
by macrophages and is known to decrease IGF-1 expres-
sion30). IL-6 can also activate NF-κB to promote skeletal 
muscle catabolism, and IL-6 production has been shown 
to be elevated in the elderly31). 

Changes in muscle type during atrophy

   The skeletal muscle is divided macroscopically into red 
and white muscle tissues. The characteristics of muscle 
fibers can be further differentiated in detail through myo-
sin ATP staining, myosin antibody staining, or myosin 
heavy-chain (MyHC) isoform quantification by electro-
phoresis32,33). Red muscle tissue is mainly composed of 
type I fibers, and white muscle tissue type II fibers. Type 
I fibers have slow contraction speeds and are thus called 
slow-twitch fibers, while type II fibers have fast contrac-
tion speeds and called fast-twitch fibers. For instance, the 
soleus has many type I fibers, whereas the gastrocnemius 
has many type II fibers. The muscle fiber type is known to 
change during atrophy according to the causes that trigger 
the atrophy. For example, disuse muscular atrophy that 
arises according to the fixed-joint or dangling hind-leg 
model exhibits a decrease in type I fibers and an increase 
in type II fibers34,35). MyoD and HMGCoA-reductase 
inhibition have been suggested to participate in myosin 

Fig. 1	 Risk factor for sarcopenia. Sarcopenia is thought to progress by some risk factors occurring at the same time. Sarcopenia 
may accelerate lack of exercise. 
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heavy chain (MyHC) changes36,37). However, unlike dis-
use muscular atrophy, in sarcopenia, the type II fibers are 
known to be susceptible to influence10,38,39). This reduces 
the muscle contraction speed, causing loss in the ability 
to execute the rapid movements needed to protect against 
falling. This chain of pathological events is thought to be 
one of the causes of falls in elderly people17). Elucidat-
ing the cause of atrophy which is selective for a specific 
muscle type could play an important role in treating sar-
copenia.

Mitochondrial changes that accompany muscular atro-
phy.   Adenosine triphosphate (ATP) is the energy source 
for muscular contractions. Muscles contract using chemi-
cal energy from the release of inorganic phosphate (Pi) 
during ATP hydrolysis. ATP is a chemically unstable sub-
stance that cannot be incorporated directly from outside 
the cell or stored for long periods inside the cell. Thus, 
ATP is synthesized as necessary by myocyte mitochon-
dria. Meanwhile, oxidative stress has been reported to 
increase in muscle tissue when activity is restricted, such 
as when immobilized in a cast or splint40). In sarcopenia, 
this is thought to increase the generation of active oxygen 
in mitochondria, which increases the damage to muscle 
tissue41). Therefore, mitochondrial dysfunction can have 
a considerable effect on myocytes. In fact, the amounts 
of mitochondria42) and neutralizing enzymes for the gen-
eration of active oxygen in mitochondria are reported to 
decline in disuse atrophy43). A reduced ability of mito-
chondria to synthesize proteins and lower enzyme activity 
levels was also reported in sarcopenia44). These changes 
may be factors that influence the functional decline in 
myocytes that accompanies aging. A recent study sug-
gested that mitochondrial function disorders and insulin 
resistance affect the onset of sarcopenia45). In relation to 
this, angiotensin II receptor blockers (ARBs), hypotensive 
agents, have been reported to increase skeletal muscle 
mass46), which is thought to be due to the activation of 
mitochondrial function by ARBs47).

Relationship between muscular function and changes 
to sarcomeric structure

   The decrease in muscular cross-sectional area that ac-
companies atrophy has a considerable effect on the re-
duction in muscular tension, because muscle strength is 
proportional to the cross-sectional area of the muscle. In 
muscular atrophy, muscle force per unit of cross-sectional 
area is also decreased. This indicates the presence of 
factors that regulate muscular force other than muscular 
cross-sectional area. Possible causes for this are the ex-
pansion of the space between thick and thin filaments in 
the sarcomere (lattice spacing), a decrease in the number 
of filaments, and shortened filament length43,48,49). In our 
experiments on the effect of lattice spacing on reductions 
in contractile force, we found that improving lattice spac-

ing significantly increased contractile force, although this 
was still less than that in healthy muscle. This suggests 
the presence of factors that regulate contractile force other 
than the muscular cross-sectional area and lattice spacing 
of filaments35).
   The basis for the expansion in lattice spacing is thought 
to be the stabilizing effect of connectin (titin) on the 
sarcomeric structure. This protein is known to act as a 
“spring” during muscular extension50,51). The decrease in 
connectin that is observed in atrophy reduces this spring-
like function, which is thought to destabilize the function 
that maintains thick filaments in their location, causing 
lattice spacing to expand. In addition to connectin, inter-
mediate filaments, such as desmin, have been reported to 
be important factors in regulating muscular structure52). 
Future research is expected to clarify how these multiple 
factors help determine the structure of the sarcomere. Few 
reports have been published on microstructure in sarcope-
nia53). However, as the functional irregularities that arise 
in sarcopenia are clarified, more detailed structural analy-
ses are needed.

Diagnosis and treatment for sarcopenia

   Many studies have examined the pathology of sarco-
penia, yet the clinical reports are few. In particular, diag-
nostic methods have not been standardized. Muscle mass 
measurement using dual-energy X-ray absorptiometry 
(DXA, or formerly DEXA) is the most commonly used 
method for diagnosing sarcopenia54,55). Bioelectrical im-
pedance analysis (BIA) is a simple method that has also 
been used despite its lack of accuracy. While imaging di-
agnostic modalities such as magnetic resonance imaging 
(MRI) or computed tomography (CT) allow for accurate 
measurements of muscle mass, these methods are cost 
prohibitive56-58).
   Considering, however, that these diagnostic methods 
do not necessarily reflect the patient’s motor abilities, the 
European Working Group on Sarcopenia in Older People 
(EWGSOP) developed a method of diagnosis that focuses 
on motor abilities6). They proposed a cutoff walking speed 
of 80 cm/s for sarcopenia diagnosis, and recommended 
additional examinations such as DXA or bioelectrical im-
pedance analysis (BIA) for patients with walking speeds 
that fall below the cutoff value. After this report was pub-
lished, clinical surveys on sarcopenia similar to that of the 
EWGSOP were undertaken in other regions as well59-61). 
However, because this cutoff value is a European crite-
rion, it will be necessary to clarify whether this value is 
appropriate for implementation in other regions as well. 
   The relationship between biomarkers and sarcopenia 
has been reported57,58,62), and the usefulness of measuring 
several biomarker candidates, including inflammatory 
biomarkers, clinical parameters, hormones, and products 
of oxidative damage, has been studied. Biomarkers that 
can be obtained from blood and urine may be beneficial, 
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as there is little burden on the patient. Considering that 
sarcopenia occurs as people age, the potential patient pop-
ulation is extremely large. Therefore, performing imaging 
diagnostics for all patients would be problematic from the 
standpoint of health economics. However, at present, no 
large-scale clinical trials use biomarkers for sarcopenia 
diagnosis (Table 1).
   A variety of approaches have been undertaken to treat 
sarcopenia63-65). Strength training is known to significantly 
increase both muscle mass and strength in the elderly66,67). 
Studies have also indicated that nutritional interventions 
are important. However, their effects are considered in-
sufficient compared to that of exercise. Taken together, 
robust prescriptions of both nutrition and exercise have 
been reported to achieve even greater results68) Owing to 
the multiplicity of the causes of sarcopenia, any one ther-
apy alone is unlikely to achieve a satisfactory effect. Re-
cent studies have suggested that an exercise effect can be 
achieved through medication69,70). Such drugs could prove 
effective in patients who are not able to perform sufficient 
exercise for therapeutic purposes. Nevertheless, as can be 
expected, the use of an exercise pill to address obesity or 
lack of exercise has been criticized71).

Conclusion

   Sarcopenia has many causes. The mechanism by which 
each cause influences the onset of the disease is in the 
process of being elucidated. Clarifying the differences 
between sarcopenia and disuse muscular atrophy would 
likely help establish better methods of diagnosis, which 
could also lead to personalized treatment. 

Table 1.   Diagnostic method for sarcopenia

Physical 
performance 

Short Physical Performance Battery (SPPB)
Repeated Chair Stands
Balance Test
Walking speed

grip strength

Established tool for 
elderly people and 
rehabilitation

Imaging DEXA
BIP

CT, MRI

Established tool

High cost
Others Biochemical markers

(IL-6, TNF-α, IGF-1, etc) 
Unestablished tool
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